Introduction

The influence of a country’s trade policy on its economic well-being is one of the most widely debated topics in economics. Yet the prior question of how the stance of trade policy should be measured has received very little attention in the past. In practice this is done typically using a variety of ad hoc measures such as the trade-weighted average tariff, the coefficient of variation of tariffs, or the non-tariff-barrier coverage ratio. But all these measures lack any theoretical foundation and are subject to theoretical and practical drawbacks. Some researchers, such as Papageorgiou et al. (1991), have constructed subjective measures of trade restrictiveness. These have the advantage of incorporating important local considerations, but they are inherently difficult to compare across different countries or time periods.

The problem of how the restrictiveness of trade policy should be measured is not so severe in the textbook world where there is only a single trade barrier that takes a well-defined form, such as a single tariff or a single quota. But in most real-world situations, especially in developing countries, actual systems of trade intervention are pervasive and highly complex. This poses a challenge for analysts and policy makers alike. In the face of a bewildering array of tariffs and quantitative restrictions, it is extremely difficult to assess the true orientation of a country’s overall trade policy or to evaluate the thrust of a package of policy changes that encourage trade in some product lines but discourage it in others.

Traditional analysis provides little guidance on how to aggregate restrictions across different markets. This makes it difficult to aggregate proposals for trade liberalization that form part of a stabilization package or to assess the progress made in moving toward less restricted trade. A further reason for seeking a framework within which trade policies can be compared consistently is of analytical as well as practical importance. Since
ultimately the case for free trade is a scientific hypothesis, theoretically sound but potentially false, some measure of trade restrictiveness is necessary if satisfactory tests of the impact of trade on growth and economic performance are to be possible.\footnote{Leamer (1988b) and Edwards (1992) propose and implement tests along these lines, adopting the Heckscher-Ohlin explanation of trade patterns as a maintained hypothesis. Krishna (1991) and Pritchett (1996) review this and other approaches to measuring openness and trade restrictiveness.}

This book describes an approach we have developed that provides theoretically satisfactory yet practically implementable procedures for measuring the restrictiveness of trade policy. Two relatively recent developments have made this approach possible. At a theoretical level, the normative theory of international trade has been formalized in a systematic way and extended to take account of varieties of trade policy other than tariffs.\footnote{Dixit (1986) and Anderson (1988, 1994) provide overviews of work in the field.} And, at a practical level, the rapid increase in availability of cheap computing power has made possible the implementation of models with a disaggregated structure that comes closer than ever before to the complexity of real-world protective structures. Later in the book we describe how the approach we propose can be implemented on a personal computer. First, we examine the conceptual problem in more detail, show how different aspects of trade policy regimes can be incorporated

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Trade policy restrictiveness and the cost of protection}
\end{figure}

1. Leamer (1988b) and Edwards (1992) propose and implement tests along these lines, adopting the Heckscher-Ohlin explanation of trade patterns as a maintained hypothesis. Krishna (1991) and Pritchett (1996) review this and other approaches to measuring openness and trade restrictiveness.

into a single measure, the Trade Restrictiveness Index, and review some of the theoretical extensions and applications of this Index.

The simplest context in which measuring trade restrictiveness arises is when tariffs are the only form of trade policy. Figure 1.1 illustrates the market for a single good whose world price (assumed given) is $p^*$ and whose home import demand curve is $m(\pi)$. Domestic producers and consumers face a price that is raised by the tariff to $\pi^0$. By adopting a partial equilibrium perspective for the moment, we can measure the deadweight loss, or cost of protection, given by the Marshallian triangle $ABC$. As for the restrictiveness of trade policy, in this one-good context it can obviously and unambiguously be measured by the height of the tariff, the distance $BC$. However, once we move beyond the simple one-good case, it is not immediately clear what is meant by the restrictiveness of trade policy, far less how we might go about measuring it. Just as in figure 1.1, it is not the same as the welfare cost of protection, though we will see that one natural way to measure trade policy restrictiveness uses that welfare cost as a benchmark. The next chapter presents a mainly diagrammatic analysis of an extended two-good example that introduces these issues, and prepares the way for the general theoretical treatment in part II of the book.
What do we mean by a measure of “trade policy restrictiveness”? In principle, we mean some scalar index number that aggregates the trade restrictions that apply in a number of individual markets. Whether a particular index number formula is satisfactory depends on the uses to which the measure of restrictiveness is to be put. Some indexes are fully satisfactory for one purpose but quite misleading for another. Other indexes, lacking a clear theoretical foundation, are not satisfactory for any purpose. In this chapter we provide an intuitive introduction to the two main indexes introduced in this book, and discuss how other indexes used for the same purpose fall short.

The main focus of this book is on the Trade Restrictiveness Index, or TRI, an index that aggregates trade restrictions while holding constant the level of real income. This is the natural aggregate to use in studies that attempt to link growth in income to measures of a country’s trade policy stance. It would not make sense to “explain” income growth in terms of a measure of trade policy that itself varies with income. The TRI is also the natural index to use in evaluating a country’s progress toward trade liberalization, for example, in the context of the World Bank’s Structural Adjustment Loans. Since loan conditionality is predicated on the assumption of a link between trade policy and income growth, it is desirable to measure the two concepts independently.

The book also discusses a different measure of trade restrictiveness that is appropriate for other purposes. In a trade negotiations context, where foreign exporters are concerned with domestic market access, it makes sense to aggregate trade restrictions in a way that holds constant the volume of imports rather than real income. An index of this type is discussed informally below and considered formally in chapter 5.

Before considering how an ideal measure of trade restrictiveness might be constructed, we review the measures that have been used in practice to
aggregate across tariffs. (We postpone consideration of quotas until chapter 7.) These include different measures of average tariffs and alternative measures of tariff dispersion, such as the standard deviation and coefficient of variation of tariffs. We illustrate the properties of these measures and contrast them with those of our alternative welfare-based measure in a very simple context, a linear two-good partial-equilibrium model. In subsequent chapters we will see how our measure can be applied in much more general contexts.

2.1 The Trade-Weighted Average Tariff

Especially when data are particularly poor, it is not unknown for analysts to compute the simple (i.e., unweighted) average of tariff rates across different commodities. However, this measure has obvious disadvantages: it treats all commodities identically, and it is sensitive to changes in the classification of commodities in the tariff code. Clearly, tariffs should be weighted by their relative importance in some sense. The simplest and most commonly used method of doing so is to use actual trade volumes as weights. This leads to the trade-weighted average tariff, $\tau^a$:

$$\tau^a = \frac{\sum m_i t_i}{\sum m_i \pi^*_i},$$

where $t_i$ is the specific tariff on good $i$, $m_i$ is its import volume, and $\pi^*_i$ its world price. This index is very easy to calculate: it equals total tariff revenue, $\sum m_i t_i$, divided by the value of imports at world prices, $\sum m_i \pi^*_i$. The average tariff can be rewritten as a weighted average of tariff rates:

$$\tau^a = \sum \omega^*_i \tau_i, \quad \omega^*_i \equiv \frac{m_i \pi^*_i}{\sum m_j \pi^*_j},$$

where $\tau_i$ (equal to $t_i/\pi^*_i$) is the ad valorem tariff rate on good $i$. Note that the weights $\omega^*_i$ are valued at world prices $\pi^*_i$ rather than at domestic prices $\pi_i$.

Despite its convenience the trade-weighted average tariff runs into difficulties immediately. As the tariff on any good rises, its imports fall, so the now higher tariff gets a lower weight in the index. For high tariffs this fall in the weight may be so large that the index is decreasing in the tariff rate. (Recalling that the numerator of $\tau^a$ is tariff revenue, another way of putting this is that the tariff rate is on the wrong side of the Laffer curve.) More subtly, tariffs have greater effects on both welfare and trade volume.
when they apply to imports in relatively elastic demand, but it is precisely these goods whose weights fall fastest.

Figures 2.1 to 2.3 illustrate these considerations in a linear two-good example. Each panel of figure 2.1 depicts the domestic market for one of the goods, whose home import demand curve is \( m_i(p_i) \), \( i = 1, 2 \). For ease of exposition the world prices of the two goods, \( p_i \) and \( p_2 \), are normalized at unity. Domestic producers and consumers face the tariff-inclusive prices \( p_i^0 \), represented by \( QC \) for good 1 and \( QD \) for good 2. As drawn, the import demand curve for good 1 is more elastic than that for good 2, whereas good 1 has a lower tariff than good 2. So in this example tariff rates and import demand elasticities are negatively correlated. The trade-weighted average tariff, obtained by weighting the two tariff rates by the imports (valued at world prices) of the two goods \( AO \) and \( OF \), is indicated by \( \tau^a \). (We show in the appendix to this chapter how to locate the trade-weighted average tariff in the figure.)

Next consider a change in trade policy that leads to the situation illustrated in figure 2.2. The two import demand functions are the same, but the configuration of tariff levels is reversed: now the correlation between demand elasticities and tariff levels is positive rather than negative. In the
left-hand panel, imports of the more elastic good 1 are almost eliminated, so its high tariff receives a very low weight in the average tariff. In the right-hand panel, the low tariff on the low-elasticity good 2 receives a high weight. As a result the calculated average tariff (again denoted by \( t^a \)) is low, considerably lower than that in figure 2.1. Yet it seems intuitively obvious that trade is more restricted in figure 2.2 than in figure 2.1, since both welfare and the volume of trade have fallen. (Given the partial equilibrium perspective of this chapter, the deadweight loss or welfare cost of protection resulting from the two tariffs is measured by the sum of the Marshallian triangles \( BAH \) and \( EFJ \). The volume of trade equals \( AF \) in both figures.) The index has thus moved in the wrong direction, since its value has fallen even though trade is now more restricted.

The comparison between figures 2.1 and 2.2 is extended and illustrated from a different perspective in figure 2.3. For the same demand functions as before, figure 2.3 plots the trade-weighted average tariff as a continuous function of the tariff rates on the two goods.\(^1\) Clearly, for similar

---

\(^1\) The demand function slopes are 1.2 for good 1 and 0.3 for good 2. The tariff rates \( \tau_1 \) and \( \tau_2 \) equal \( \{1.5, 5.0\} \) and \( \{3.0, 1.0\} \) in figures 2.1 and 2.2 respectively.
In the special case of identical tariff rates (along the diagonal of the three-dimensional surface), the index number problem disappears. However, for non-uniform tariffs, the trade-weighted average tariff gives a very misleading indication of the magnitude and even of the direction of change in trade policy. The most striking feature of figure 2.3 is that the trade-weighted average tariff actually declines in $\tau_1$, the tariff rate on the higher elasticity good 1, when $\tau_1$ is high and $\tau_2$ is low.

### 2.2 Alternative Weights: Current or Free Trade? Imports or Production?

We have seen the difficulties caused by using current import volumes to construct trade-weighted average tariffs. In response, some authors have suggested using instead the import volumes that would prevail in free trade as weights. This view is well expressed by Loveday (1931), quoted with approval by Leamer (1974, p. 34): “The theoretically perfect weighting system would be the one under which each commodity were given a
coefficient equivalent to the value which it would have in international trade of a free trade world."

But is this indeed the “theoretically perfect weighting system”? Figure 2.4 illustrates the behaviour of the trade-weighted average tariff in our example when free-trade import volumes are used as weights. Since free-trade import levels for the two goods have been (arbitrarily) set equal to each other, the behavior of the index is predictable: it increases linearly and symmetrically in the two tariff rates. But we have already seen that both import volumes and welfare fall faster as the tariff on the higher elasticity good 1 is increased. Using free-trade weights avoids the most obvious defect of using current trade weights in that the resulting index is always increasing in each individual tariff rate. But otherwise, it does not seem to measure trade restrictiveness very satisfactorily.

A further consideration is that the use of free-trade weights poses a major practical problem: the free-trade import volumes are not directly observable. In principle, they can be estimated (Leamer shows how this may be done), and even imperfect estimates would avoid the difficulty
that weights based on actual import volumes are biased downward by tariffs. Nonetheless, the need to estimate the weights means that the informational requirements of this index are just as great as those of the “true” indexes that we discuss below: a complete model of import demand must be specified and estimated.

The choice between actual and free-trade import weights is identical, in principle, to that between Paasche (current-weighted) and Laspeyres (base-weighted) indexes in any other branch of economics. In practice, some plausible compromise between the two (e.g., their geometric mean, the Fisher Ideal index) is often used. However, a central theme of the economic approach to index numbers (e.g., see Pollak 1971 and Diewert 1981) is that the choice between alternative index-number formulas should primarily be based not on informal issues of plausibility but on the extent to which they approximate some “true” or benchmark index, which answers some well-defined economic question. We will return to this theme in section 2.4 below and address it more formally in chapter 4.

Many other weighting schemes have been proposed, but none has a superior theoretical foundation and all suffer from practical disadvantages. One possibility, discussed by Leamer (1974), is to use world exports. These have two advantages: like domestic imports, data on them are easily available, and unlike imports, they are much less likely to be influenced by domestic tariffs. However, this virtue reflects a basic problem with using any external variables as weights: they take no account of the special features of the country being studied.

Other possible sources of weights are domestic consumption or production levels. However, these also exhibit some odd features. Production shares give zero weight to tariffs on noncompeting imports, while consumption shares, like import shares, may be low for high tariffs precisely because they restrict trade so much. Finally, note that the implications of either consumption or production shares cannot be illustrated in figures 2.1 and 2.2, since these figures as drawn are consistent with an infinite range of consumption and production levels. Thus the high tariff on good 1 in figure 2.2 (which causes a large drop in imports and a considerable welfare cost) might get a low weight if sector 1 is less important than sector 2 in domestic consumption or production.

2.3 Measures of Tariff Dispersion

One implication of the previous two sections is that the problem of constructing a satisfactory aggregate tariff measure increases with the
dispersion of tariff rates. This has led many practitioners to supplement weighted averages of tariff rates by measures of tariff dispersion to try and get a full picture of the restrictiveness of a tariff system.

Just as we discussed already in the context of average tariffs, a key issue in choosing between different measures of tariff dispersion is which weights, if any, should be used. In the absence of any theoretical basis for using measures of dispersion, the unweighted standard deviation or coefficient of variation of tariffs is often used. But this has little to recommend it. In our two-good example the unweighted standard deviation depends symmetrically on the two tariff rates, thus failing to give any indication that trade is more restricted by increases in the tariff on the high-elasticity good 1. The same is true if any fixed set of weights, such as the levels of free-trade imports, is used. This suggests that current import shares should be used as weights in calculating the standard deviation of tariffs.

However, using current imports as weights leads to additional problems, as figure 2.5 illustrates. When the low-elasticity good 2 has the

Figure 2.5
Trade-weighted standard deviation of tariffs
higher tariff, the import shares do not vary much, and so the trade-weighted standard deviation is approximately linear in the individual tariff rates. By contrast, when the high-elasticity good 1 has the higher tariff, its import share falls more rapidly and so the trade-weighted standard deviation rises at a decreasing rate in \( \tau_1 \) and even declines for sufficiently high values of \( \tau_1 \). This behavior gives exactly the wrong impression of the restrictiveness of the tariff structure, which is greatest when \( \tau_1 \) is high. For example, the import-weighted standard deviation of tariffs is higher for the parameter values of figure 2.1 than for those of figure 2.2, suggesting once again that trade is more restricted in the former case whereas intuitively this is not so. These undesirable features are only partly avoided by using the coefficient of variation rather than the standard deviation of tariffs. The behavior of the coefficient of variation can be inferred from figures 2.3 and 2.5: it is very flat for all the parameter values shown, except for very high values of \( \tau_1 \), when it increases rapidly, reflecting the fact that the average tariff is declining even more rapidly than the standard deviation. Once again, this behavior does not give a satisfactory depiction of the degree of trade restrictiveness.

Over and above the performance of the standard deviation of tariffs in this particular example, there are two general problems with using any measure of tariff dispersion as an indicator of trade restrictiveness. First, it implicitly assumes that a reduction in dispersion represents a reduction in trade restrictiveness. There are reasons, to be discussed in section 3.4 and chapter 6, why this may be true in some cases. However, as we will see, it is not a general presumption. Second, it is not clear how a measure of tariff dispersion can be combined with a measure of average tariffs. If both move in the same direction, there is a presumption that trade restrictiveness has unambiguously risen or fallen (although we have just noted the qualifications that must be made in interpreting changes in tariff dispersion). But this is no longer true if the two measures move in opposite directions. More generally, there is no satisfactory rule for combining the measures of average and dispersion to yield a scalar measure that might, even in principle, be comparable across countries or across time.

### 2.4 The Welfare-Equivalent Uniform Tariff

The discussion so far shows the problems with purely statistical measures such as the trade-weighted average tariff or the standard deviation of tariffs. All, in the memorable phrase of Afriat (1977), provide “answers without questions.” Since they do not start from any explicit criterion
of trade policy restrictiveness, their merits can be evaluated only on intuitive ad hoc grounds. And even on such grounds they do not correspond to measures of restrictiveness in any reasonable sense. A more formal approach, starting from an explicit concept of trade policy restrictiveness, is required.

The two central themes of this book are, first, that measures of trade policy restrictiveness should start from a formal criterion against which restrictiveness is measured and, second, that a natural criterion for an economist to adopt is the effect of the structure of trade policy on national welfare. As we will see in section 2.5 and in later chapters, our approach can easily be adapted to allow for other criteria. But the welfare-theoretic perspective is a natural starting point, and so it is the one with which we begin. It leads to an index number of tariffs that we call the “welfare-equivalent uniform tariff” or the “TRI uniform tariff,” where TRI denotes the Trade Restrictiveness Index.

It is straightforward to see how this perspective leads to an alternative measure of trade policy restrictiveness in the example given earlier. Figures 2.6 and 2.7 repeat the tariff configurations of figures 2.1 and 2.2 respectively. Taking welfare as the standpoint, the appropriate way of

\[ QO = \pi_1 = \pi_2 = 1 \]
\[ OC = \tau_1 \]
\[ OD = \tau_2 \]
\[ OK = \tau^* \]
Measuring trade restrictiveness is to ask: “What is the uniform tariff that, if applied to both goods, would be equivalent to the actual tariffs, in the sense of imposing the same welfare loss?” The answer to this question in figure 2.6 is a tariff equal to \( OK \): the increase in the tariff on good 1 from \( OC \) to \( OK \) yields a welfare loss equal to the area \( ABba \). By construction, \( ABba \) equals the welfare gain of \( FEef \) arising from the reduction in the tariff on good 2 from \( OD \) to \( OK \). The same applies in figure 2.7 with appropriate modifications: the uniform tariff \( OK \) now implies a reduction in the tariff on good 1 and an increase in that on good 2. Evidently the welfare-equivalent uniform tariff is higher in figure 2.7 than in figure 2.6, in accordance with the intuitive presumption that trade is more restricted in figure 2.7. A corollary is that in both cases the welfare-equivalent uniform tariff is closer to the actual tariff on the high-elasticity good 1: this accords with the intuition that a high tariff on that good is more restrictive than a high tariff on good 2.

Figure 2.8 plots the welfare-equivalent uniform tariff as a function of the tariff rates on the two goods. Like the trade-weighted average tariff in figure 2.3, this index coincides with the actual tariff rates when they are equal to one another along the diagonal of the three-dimensional

---

**Figure 2.7**

TRI or welfare-equivalent uniform tariff: Tariff rates and import demand elasticities positively correlated
surface. But, unlike the trade-weighted average tariff, it has satisfactory properties at other points too. It is always increasing in each individual tariff rate, and it responds more rapidly to increases in the tariff on the high-elasticity good 1.

These properties can be confirmed formally by deriving an explicit formula for the welfare-equivalent uniform tariff. Among the side-benefits of the resulting algebra, we can show that the approach extends to any number of goods. To solve for the welfare-equivalent uniform tariff, write the linear import demand function for good $i$ as

$$m_i = \alpha_i - \beta_i \pi_i,$$  \hspace{1cm} (3)

where $\beta_i$ is the price-responsiveness of imports of good $i$ (i.e., the slope of the import demand curve for good $i$ relative to the vertical axes in figures 2.1 and 2.2). Now recall that with linear demands the welfare loss $L_i$ from a tariff at rate $\tau_i$ on good $i$ equals $(\tau_i \pi_i^*)^2 / \beta_i / 2$. Hence the total welfare loss

---

**Figure 2.8**

TRI or welfare-equivalent uniform tariff
on all goods is \( L = \sum L_i \), and so the welfare-equivalent uniform tariff \( \tau^A \) is defined implicitly by the equation:

\[
\sum \{ \tau^A \pi_i^* \}^2 \beta_i = \sum \{ \tau_i \pi_i^* \}^2 \beta_i. 
\]

The right-hand side is the actual welfare loss from an arbitrary set of tariffs \( \{ \tau_i \} \), while the left-hand side is the hypothetical welfare loss from a uniform tariff rate \( \tau^A \). Equating the two and solving for \( \tau^A \) gives the welfare-equivalent uniform tariff:\(^2\)

\[
\tau^A = \left\{ \sum \omega_i \tau_i^2 \right\}^{1/2}, \quad \omega_i = \frac{\{ \pi_i^* \}^2 \beta_i}{\sum \{ \pi_j^* \}^2 \beta_j}, 
\]

Note the differences from the formula for the trade-weighted average tariff \( \tau^a \) in equation (1): \( \tau^a \) is a weighted \textit{arithmetic} mean of the tariff rates whereas \( \tau^A \) is a weighted \textit{quadratic} mean of the tariff rates, and, crucially, the weights used in constructing \( \tau^a \) depend on the \textit{levels} of imports, \( m_i \), whereas those used in constructing \( \tau^A \) depend on the \textit{marginal import responses}, the \( \beta_i \).

The weights in (5) can alternatively be written in terms of the elasticity of import demand for each good, evaluated at world prices, \( \varepsilon_i = \pi_i^* \beta_i / m_i \):

\[
\omega_i = \varepsilon_i \omega_i^*, 
\]

where the \( \omega_i^* \) weights are those used in (2) to construct the trade-weighted uniform tariff. Differentiating equations (5) and (6) shows that as required, the welfare-equivalent uniform tariff is increasing in each tariff rate, and by more so the greater the elasticity of import demand for the good in question.

The fact that the welfare-equivalent uniform tariff is related to the total welfare cost of the tariff structure gives it a firm theoretical basis. But does it mean that the welfare-equivalent uniform tariff is just another welfare index? It is true that the informational requirements of calculating the welfare-equivalent uniform tariff are similar to those of calculating the cost of protection. But the two measures are not the same, since they answer very different questions. The cost of protection answers the question “What is the welfare loss imposed by the tariff structure?” By contrast, we have already seen that the welfare-equivalent uniform tariff answers the very different question “What is the uniform tariff which

---

2. This expression for the TRI uniform tariff in the special case of independent linear demands is also derived by Feenstra (1995, p. 1562).
would be equivalent to the actual tariffs, in the sense of imposing the same welfare loss?”

An analogy with the theory of the true cost-of-living index (which we will pursue more formally in chapter 4) throws further light on this question. All economists agree that the fixed-weight consumer price index overestimates the true rate of inflation, which is more appropriately measured by a Konüs or true cost-of-living index. For example, the Boskin Commission Report estimated that substitution bias alone led to an overestimate of US inflation of about 0.3 percent per annum in the years prior to 1996, adding billions of dollars to the government deficit because of the index linking of taxes and benefits.\footnote{See Labor Statistics Bureau (1996).} One response to this Report would be to assert that its estimates of true inflation are unnecessary, since it would be possible with the same underlying information to calculate the welfare cost of inflation over the period. But this ignores the usefulness and importance of being able to summarize in a single number the “true” rate of inflation. In the same way the welfare-equivalent uniform tariff summarizes in a single number the “true” height of tariffs.

To see the relationship between the welfare-equivalent uniform tariff and the cost of protection more formally, we rewrite the welfare cost equation (4) as follows:

\[ L = \frac{(\tau^A \pi^*)^2 \beta}{2} = \sum L_i, \tag{7} \]

where

\[ L_i = \frac{(\tau_i \pi^*_i)^2 \beta_i}{2}. \]

Here \( \pi^* \), defined as \( \left[ \sum (\pi^*_i)^2 \right]^{1/2} \), is a quadratic mean of world prices, and \( \beta \), defined as \( \sum (\pi^*_i)^2 \beta_i / \sum (\pi^*_i)^2 \), may be interpreted as the “aggregate price-responsiveness of imports.” Inspection of this equation shows that the welfare-equivalent uniform tariff \( \tau^A \) bears the same relationship to the aggregate welfare loss \( L \) as each individual tariff rate bears to the welfare loss in its own market. The two measures \( L \) and \( \tau^A \) are closely linked, but they measure distinct concepts. Of course, the details of this derivation rely heavily on the linear partial-equilibrium specification of our example. However, we will see in chapter 4 that in general equilibrium our
index of trade restrictiveness is also related in an appropriate manner to the true cost of protection.

2.5 The Import-Volume-Equivalent Uniform Tariff

In trying to measure the restrictiveness of a tariff system, it is natural for an economist to consider the equivalent uniform tariff that would yield the same level of welfare, and this is the benchmark on which we concentrate in this book. However, for some purposes and audiences, other benchmarks such as employment, output, or import volume may also be of interest. We will return to this topic in more detail in chapter 5. In the present example it is straightforward to illustrate the behavior of an index that equals the uniform tariff yielding a constant volume of imports (measured at world prices). Such an index was used by the Australian Vernon Committee (Commonwealth of Australia 1965) and its properties were investigated by Corden (1966). We may call it the “import-volume-equivalent uniform tariff” or the “Mercantilist TRI uniform tariff” (“MTRI” for short), since it recalls the concerns of Mercantilist writers with the balance of trade. Its behavior in the two-good example is illustrated in figure 2.9.

The key feature of figure 2.9 is that the MTRI uniform tariff is linear in both tariff rates but increases more rapidly in \( \tau_1 \), the tariff on the more elastic good. Moreover the Mercantilist index behaves somewhat similarly to the welfare-equivalent uniform tariff (the surface in figure 2.9 never lies above that in figure 2.8) but very differently from the ad hoc indexes considered earlier in this chapter.

To derive an explicit expression for the import-volume-equivalent uniform tariff, note that it is defined implicitly by the equation:

\[
\sum \pi_i^* [x_i - \beta_i (1 + \tau^u) \pi_i^*] = \sum \pi_i^* [x_i - \beta_i (1 + \tau_i) \pi_i^*].
\] (8)

The right-hand side is the total value of imports given an arbitrary set of tariffs \( \{\tau_i\} \), while the left-hand side is the value of imports that would be generated by a uniform tariff rate \( \tau^u \). Equating the two and solving for \( \tau^u \) gives the import-volume-equivalent uniform tariff:

\[
\tau^u = \sum \omega_i \tau_i.
\] (9)

This has the same linear form as the trade-weighted average tariff \( \tau^w \) but the same weights as the welfare-equivalent uniform tariff \( \tau^\Lambda \).4

4. It is also identical to equation (5) in Corden (1966), except that we ignore intermediate inputs, so Corden’s \( \omega_i \) parameters (giving the share of value added in the domestic output of sector \( i \)) are set equal to one.
2.6 Conclusion

In this chapter we have used a simple two-good linear example to introduce the issues that arise in measuring the restrictiveness of trade policy. We have seen that the most commonly used measure, the trade-weighted average tariff, has many undesirable features. Most strikingly, it is likely to be decreasing in tariffs on highly elastic goods. This more obvious defect is overcome by using alternative weights, such as consumption, production, or the level of imports that would obtain in free trade. However, indexes based on these weights have their own difficulties, and none of them has any firm theoretical basis. Finally measures of dispersion such as the standard deviation of tariffs have an intuitive appeal, since the problems of average tariff measures are more acute the less uniform is the tariff system. But such measures themselves have only a tenuous relationship to trade restrictiveness in our example. And even if this were not
so, there is no way of combining them with a measure of average tariffs to obtain an overall measure of trade policy restrictiveness.

All these problems with ad hoc or purely statistical measures of trade policy restrictiveness reflect a lack of clarity about what is being measured. The approach we propose in this book is to start with an explicit criterion against which trade policy restrictiveness is to be measured. Appropriate indexes can then be derived from these criteria, and we have illustrated in this chapter how this can be done in two cases. The most natural criterion from an economist’s perspective is that of welfare. This leads to the welfare-equivalent uniform tariff, constructed to yield the same welfare loss as the actual (and typically nonuniform) tariff structure. An alternative criterion, with more appeal in a trade negotiations context, is the volume of imports. This leads to the import-volume-equivalent or Mercantilist uniform tariff, constructed to yield the same import volume (at world prices) as the actual tariff structure. We have seen that these measures have much more satisfactory properties and that, at least in our special example, they behave similarly to each other but very differently from the ad hoc indexes. In the remainder of the book we turn to show how these simple insights can be extended to more realistic contexts.

Appendix: The Geometry of the Trade-Weighted Average Tariff

In this appendix we show how the trade-weighted average tariff can be located in two-panel diagrams such as figures 2.1 and 2.2. Specializing equation (1) to the two-good case, the trade-weighted average tariff becomes

$$\tau^a \equiv \frac{t_1 m_1 + t_2 m_2}{\pi_1 m_1 + \pi_2 m_2}. \quad (10)$$

With world prices normalized to one, this can be rewritten in terms of tariff rates

$$\tau^a = \frac{\tau_1 m_1 + \tau_2 m_2}{m_1 + m_2}. \quad (11)$$

This in turn can be manipulated to equal

$$\tau^a = \tau_1 + \frac{(\tau_2 - \tau_1) m_2}{m_1 + m_2}. \quad (12)$$
Now repeat the same steps, expressed not in terms of symbols but of distances in figure 2.10, which repeats the essential features of figure 2.1:

\[ t_a = \frac{OC}{C1} + \frac{OD}{C1} \]

\[ AF \]

The final step is to locate the points \( N \) and \( L \) in figure 2.10. The coordinates of these points are the import volume of one good and the tariff rate of the other good. The straight line joining points \( N \) and \( L \) intersects the vertical axis at \( G \). It is now easy to show that the distance \( OG \) denotes the trade-weighted average tariff. By similar triangles, \( CL/BL = CG/BN \). This implies that \( OF/AF = CG/CD \). Substituting into (13) gives

\[ \tau^a = OC + CG = OG, \]

which proves the required result.

Figure 2.10
Locating the trade-weighted average tariff