International Trade in General Oligopolistic Equilibrium

J. Peter Neary
Oxford, CEPR and CESifo

Festschrift Workshop in Honour of David Greenaway
University of Nottingham
June 25, 2015

This research has been supported by the European Research Council.
Introduction

Overview

Goal:
- Integrate imperfect competition and trade
- Combine insights of trade theory and I.O.
- Bring real firms into trade theory

Has all this not been done?
- New trade theory revolution?

Yes, but really two revolutions:
1. Oligopoly in partial equilibrium
 - IIT (cross-hauling), strategic trade policy
2. Monopolistic competition in GE: Firms atomistic
 - IIT (love of variety), MNCs, new economic geography
 - Heterogeneous firms, endogenous organizational form

Unfinished part of the revolution:
- Oligopoly in general equilibrium
- Growing evidence that large firms matter for trade

[Mayer and Ottaviano (2008), Freund and Pierola (2015)]
Why General Equilibrium?
- Interaction between goods and factor markets

Why oligopoly not competition (perfect or monopolistic)?
- More realistic assumptions
 - Infinitely elastic supply of atomistic firms
 - No barriers to entry or exit
 - No strategic behaviour
- New light on central questions in trade theory:
 - Trade patterns; Gains from trade; Trade policy and income distribution
- Adding oligopoly to GE also allows new issues to be addressed:
 - Trade and wages debate: non-price interaction
 - Trade and competition; competitive advantage
 - Effects of trade on market structure: Cross-border mergers
 - Multi-product firms
Oligopoly in GE: Theoretical Challenges

- Problems with modelling oligopoly in general equilibrium:
 - Large firms have monopsony power
 - Large firms can influence GNP
 - Reaction functions badly behaved; equilibrium may not exist
 - Is profit maximization well defined?

- Previous attempts to embed oligopoly in GE:
 - “Perceived” versus “actual” demand curves
 - Imperfect competition in goods and labour markets

- Resolution: Firms large in their own market, but small in the economy
 - A continuum of oligopolistic sectors
 - Firms take factor prices, GNP, and prices in other sectors as given
 - But: They have market power in their own sector
 - Labour market economy-wide and perfectly competitive
Related work:

- Ruffin (2003)
- Eaton, Kortum, and Sotelo (2013)
- Edmond, Midrigan and Xu (2015)
Outline

1. Building Blocks
2. GOLE: Autarky
3. GOLE: Symmetric Free Trade
4. Conclusion
Outline

1 Building Blocks
 - Continuum-Quadratic Preferences
 - Measuring Welfare Change
 - Specialization Patterns in an International Oligopoly
 - Linking Factor and Goods Markets

2 GOLE: Autarky

3 GOLE: Symmetric Free Trade

4 Conclusion
Preferences: Additive Separability

Additive separability:

\[U[\{x(z)\}] = \int_0^1 u[x(z)]dz, \quad u'[x(z)] > 0, \quad u''[x(z)] < 0 \]

“Frisch” demand functions:

\[p(z) = \lambda^{-1} u'[x(z)] \]

\(\lambda \): Marginal utility of income

- Taken as given by firms: “Perceived” demand function
- Endogenous in GE: “Actual” demand function

[Browning, Deaton, and Irish (1985)]
Additive Separability plus Aggregation

- Consistent aggregation requires Gorman Polar Form preferences
- Additive separability plus Gorman Polar Form ⇔ “Pollak” preferences

\[u[x(z)] = ax(z) - \frac{1}{2} bx(z)^2 \]

- Demand functions are linear conditional on \(\lambda \):
 \[x(z) = \frac{1}{b}[a - \lambda p(z)] \]

- Consistent aggregation over home and foreign representative consumers:
 \[\bar{x}(z) = x(z) + x^*(z) = \frac{1}{b}[\bar{a} - \bar{\lambda} p(z)] \quad \bar{a} \equiv a + a^*, \quad \bar{\lambda} \equiv \lambda + \lambda^* \]
Building Blocks
Measuring Welfare Change

Measuring Welfare Change

- How to compare welfare in two different equilibria, \(A \) and \(B \)?
 - Two alternative but equivalent methods, corresponding to different normalizations of utility.

1. **Cardinal/quantitative**: Use the expenditure function

 \[\Delta e^{AB} \equiv e(p^A, u^B) - e(p^A, u^A) \]

 - An equivalent variation type of money-metric welfare change:

 \[\Delta e^{AB} = (u^B - u^A)(\mu_2^p)^{1/2} \]

 - With CQ preferences:

 \[\mu_2^p \equiv \int_0^1 p(z)^2 \, dz \]

2. **Ordinal**: Use the “Frisch indirect utility function”

 \[U = -\lambda^2 \mu_2^p \]

 - CQ utility depends on \(\mu_2^p \) and marginal utility of income:

 - In practice: Choose \(\lambda \) as numéraire; welfare is minus the second moment of prices
Specialization Patterns

- Cournot trade model: partial equilibrium
 - Cournot vs. Bertrand [Neary and Tharakan (2013)]
 - Brander (1981), but with integrated rather than segmented markets.
- Given numbers of firms at home and abroad: \(n, n^* \)
- Perceived inverse demand curve:
 \[p = a' - b'\bar{x}; \quad a' \equiv \frac{a}{\lambda}, \quad b' \equiv \frac{b}{\lambda}, \quad \bar{x} = \bar{y} = ny + n^*y^* \]
- Firms in each country have identical costs: \(c, c^* \)
- Home sales with no foreign firms:
 \[y(z) = \frac{a' - c}{b'(n+1)}; \quad y(z) > 0 \Rightarrow c < a' \]
- Home sales with active foreign firms:
 \[y(z) = \frac{a' - (n^* + 1)c + n*c^*}{b'(n+n^*+1)}; \quad y(z) > 0 \Rightarrow c < \frac{a' + n*c^*}{n^*+1} \]
Specialization Patterns

\[\pi(c; n^* = 0) = 0 \]

H firms unprofitable
Specialization Patterns

H firms unprofitable when \(n^* > 0 \)

\[\pi(c, c^*; n^* > 0) = 0 \]
Specialization Patterns

H firms profitable

\[
\frac{d'}{n^* + 1}
\]
Symmetrically:

\[a' \frac{a'}{n^* + 1} \]

F firms profitable
Specialization Patterns

- **HF**: Home and foreign production
- **F**: Foreign production only
- **O**: No home or foreign production
- **H**: Home production only

Equilibrium Production Patterns for Arbitrary Home and Foreign Costs
Specialization Patterns

- **F**: Foreign production only
- **O**: No home or foreign production
- **H**: Home production only

Compare Perfect Competition: Cone of Diversification Vanishes
The Labour Market and Specialization Patterns

- Continuum of sectors, indexed by \(z \in [0, 1] \)
- Ricardian cost structure:
 \[
 c(z) = wa(z); \quad c^*(z) = w^*a^*(z)
 \]
- Assume home more efficient in low-\(z \) sectors
 - Assumption: \(y(z) \) decreasing, \(y^*(z) \) increasing, in \(z \)
 - DFS: \(a(z)/a^*(z) \) increasing in \(z \)
 - Special case: \(a' > 0, a^* < 0 \)
- Specialisation thresholds:
 - Perfect competition: \(\tilde{z} : c(\tilde{z}) = c^*(\tilde{z}) \)
 - Here: 2 threshold sectors, \(\tilde{z} \) and \(\tilde{z}^* \), and 3 possible regimes:
 1. \(z \in [0, \tilde{z}^*] \): Only home firms profitable
 2. \(z \in [\tilde{z}^*, \tilde{z}] \): Both home and foreign firms profitable
 3. \(z \in [\tilde{z}, 1] \): Only foreign firms profitable
 - Incomplete specialization in (2): Barriers to entry allow less efficient firms to survive
- Recall figure
Specialization Patterns

Equilibrium Production Patterns for a Given Cost Distribution

Formally
Illustrative Equilibrium Configurations
General Oligopolistic Equilibrium: Autarky

- Full employment:
 \[L = \int_0^1 \alpha(z)ny(z)dz \]

- Firm output and price:
 \[y(z) = \frac{a-\lambda w\alpha(z)}{b(n+1)} \quad \lambda p(z) = \frac{a+\lambda w\alpha(z)}{n+1} \]

- Equilibrium wage:
 \[w_a \equiv (\lambda w)|_a = [a\mu_1 - \frac{n+1}{n} bL] \left(\frac{1}{\mu_2} \right) \]
 \[\mu_1 \equiv \int_0^1 \alpha(z)dz \quad \mu_2 \equiv \int_0^1 \alpha(z)^2dz \]

- Welfare:
 \[U_a \equiv -\left(\lambda^2 \mu_2^p \right) = -\frac{a^2}{(n+1)^2} \frac{\sigma^2}{\mu_2} - \frac{(a\mu_1-bL)^2}{\mu_2} \]
 \[\sigma^2 \equiv \mu_2 - \mu_1^2 \]

- Competition Effect: Welfare increasing in \(n \)
- But: Only if sectors differ: \(\sigma^2 > 0 \)

[Lerner (1933)]
Outline

1 Building Blocks

2 GOLE: Autarky

3 GOLE: Symmetric Free Trade
 - Symmetric Free Trade: Wages
 - Gains from Trade
 - Winners and Losers from Trade
 - Volume of Trade

4 Conclusion
Symmetric Free Trade: Wages

- **Full employment:**
 \[
 L = \int_0^1 \alpha(z)ny(z)dz \\
y(z) = \frac{a-(n+1)\lambda w\alpha(z)+n\lambda w\alpha^*(z)}{b(2n+1)}
 \]

- **Equilibrium wage:**
 \[
 w_f \equiv (\lambda w)_f = \left[a\mu_1 - \frac{n+1}{2n} bL \right] \frac{1}{\mu_2+n\delta}
 \]

- Compare with autarky: \(w_a = \left[a\mu_1 - \frac{n+1}{n} bL \right] \frac{1}{\mu_2} \)

 1. **Market Size Effect:** \(w_f > w_a \)
 2. **Competition Effect:** \(w_f < w_a \)
 3. **Comparative Advantage Effect:** \(w_f < w_a \)

- \(\delta \): International technological dissimilarity; i.e., comparative advantage
 \[
 \delta \equiv \mu_2 - \int_0^1 \alpha(z)\alpha^*(z)dz
 \]
Welfare in free trade:

\[U_f = -\frac{a^2}{(2n+1)^2} \frac{2\sigma^2-\delta}{2\mu_2-\delta} - (a\mu_1 - bL)^2 \frac{2\mu_2-\delta}{2(\mu_2+n\delta)^2} \]

Compare with autarky: \(U_a = -\frac{a^2}{(n+1)^2} \frac{\sigma^2}{\mu_2} - \frac{(a\mu_1-bL)^2}{\mu_2} \)

- Zero in a featureless world: \(\sigma^2 = \delta = 0 \) \[\text{[Lerner (1933)]} \]
- Strictly positive if \(\delta = 0 \) but some technological heterogeneity across sectors: \(\sigma^2 > 0 \) (competition effect)
 - i.e., pro-competitive gains even when no trade, and all sectors identical ex ante and ex post
 - Compare Brander (1981): Here, gains even when markets are integrated

- Increasingly positive the greater is comparative advantage \(\delta \)
 - All this, despite complete symmetry and incomplete specialisation
Recall:
- Market size effect tends to raise wage
- Competition and comparative advantage effects tend to reduce it
- Latter may dominate for large δ

But: Aggregate welfare always rises
Implied: Profits may increase because of comparative advantage
- Contrary to partial equilibrium

Even stronger result: Share of wages in GDP is decreasing in δ

[Anderson-Donsimoni-Gabszewicz (1989)]
Volume of Trade

- Import volumes $m(z)$ are increasing in n
- Import shares $m(z)/x(z)$ are increasing in n on average
- So, oligopoly may explain the “missing trade” mystery

Outline

1. Building Blocks
2. GOLE: Autarky
3. GOLE: Symmetric Free Trade
4. Conclusion
Model: General Oligopolistic Equilibrium [GOLE]

Details:
- Continuum-quadratic preferences
- Cournot + Ricardo, or Brander + Samuelson

Results, in contrast with perfect and monopolistic competition:
- Production patterns more diverse, incomplete specialization
- Gains from trade even if countries identical ex post and ex ante
- Competition effects operate only if sectors heterogeneous
- Profits may rise with free trade
- Volume of trade is lower (missing trade)

Extensions and Applications ...

Broader implications:
- For some questions, oligopoly richer than competition
- (either perfect or monopolistic)
Thank you for listening. Comments welcome!

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013), ERC grant agreement no. 295669. The contents reflect only the authors’ views and not the views of the ERC or the European Commission, and the European Union is not liable for any use that may be made of the information contained therein.
Measuring Welfare Change: Details

- $u^B > u^A \iff e(p, u^B) > e(p, u^A)$ for any fixed p
- In particular, for $p = p^A$: $u^B > u^A \iff e(p^A, u^B) > e(p^A, u^A)$
- So, money metric measure of welfare change:
 \[\Delta e^{AB} = e(p^A, u^B) - e(p^A, u^A) \]
- Relate this to equivalent variation: $EV_{AB} = e(p^A, u^B) - e(p^B, u^B)$
 - Subtract $I^B = e(p^B, u^B)$ from both sides: $\iff EV_{AB} > I^A - I^B$
 - EV: the amount that someone who currently has income I^A and prices p^A would be willing to pay in order to avoid a change such that the new price vector is p^B and her income is I^B.
 - Dixit and Weller (1979): “basic test for utility increase in going from A to B: the gain in consumer’s surplus should exceed any loss in lump-sum income.”
- With Gorman (GPF) preferences, $e(p, u) = f(p) + ug(p)$, this simplifies:
 \[\Delta e^{AB} = (u^B - u^A)g(p^A) \]
Utility: \(U \{x(z)\} = \int_0^1 \left[ax(z) - \frac{1}{2} bx(z)^2 \right] dz \)

Frisch demands: \(x(z) = \frac{1}{b} [a - \lambda p(z)] \)

Substitute back into \(U \) to get Frisch indirect utility function:

\[
V^F[\lambda, \{p(z)\}] = \int_0^1 x(z) \left[a - \frac{1}{2} bx(z) \right] dz \\
= \frac{1}{2b} \int_0^1 [a - \lambda p(z)] [a + \lambda p(z)] dz = \frac{1}{2b} \int_0^1 \left[a^2 - \lambda^2 p(z)^2 \right] dz \\
\rightarrow V^F = \frac{1}{2b} \left(a^2 - \lambda^2 \mu^p_2 \right) \quad \mu^p_2 \equiv \int_0^1 p(z)^2 dz \\
\rightarrow \tilde{V}^F = -\lambda^2 \mu^p_2 \quad \text{where: } \tilde{V}^F \equiv 2bV^F - a^2
\]
Pollak Preferences

- Gorman Polar Form preferences
 - \(e(p, u) = f(p) + u g(p) \), \(f \) and \(g \) linear homogeneous in \(p \)
 - "Quasi-homothetic": Linear Engel curves from \(f(p) \)
 - \(f(p) \) is the price index of the reference indifference curve; \(g(p) \) is the marginal price index
 - Consistent aggregation

- Additive separability plus Gorman Polar Form \(\Leftrightarrow \) "Pollak" preferences

\[
 u [x(z), z] = \]

Demand functions are "translated CES" conditional on \(\lambda \):

\[
x(z) = \]
CQ Preferences: The Expenditure Function

- Solve for λ as a function of $\{p(z)\}$ and I:
 - Multiply demand function by $p(z)$, then integrate over all goods:
 \[\int_0^1 p(z) x(z) \, dz = \frac{1}{b} \int_0^1 \left[a p(z) - \lambda p(z)^2 \right] \, dz \quad \rightarrow \quad I = \frac{1}{b} \left(a \mu_1^p - \lambda \mu_2^p \right) \]
 \[\rightarrow \quad \lambda = \frac{a \mu_1^p - bI}{\mu_2^p} \]

- Substitute into Frisch indirect utility function to get Marshallian:
 \[V[I, \{p(z)\}] = \frac{1}{2b} \left[a^2 - \left(\frac{a \mu_1^p - bI}{\mu_2^p} \right)^2 \right] \mu_2^p \]

- Rewrite in Gorman Polar Form, $\tilde{V}[\{p(z)\}, I] = \frac{I - f(p)}{g(p)}$:
 \[\rightarrow \quad \tilde{V}[\{p(z)\}, I] = -\frac{1}{b} \left(a^2 - 2bV \right)^{1/2} = \frac{I - \frac{a}{b} \mu_1^p}{(\mu_2^p)^{1/2}} \]

- Invert to get expenditure function $e[\{p(z)\}, u] = f(p) + u g(p)$:
 \[e[\{p(z)\}, u] = \frac{a}{b} \mu_1^p + \tilde{u} (\mu_2^p)^{1/2} \quad \text{where:} \quad \tilde{u} = -\frac{1}{b} \left[(a^2 - 2bu) \right]^{1/2} \]
Detailed Derivations: Autarky Wage

- Full employment:

\[L = \int_0^1 \alpha(z)ny(z)\,dz \quad y(z) = \frac{a - \lambda w\alpha(z)}{b(n+1)} \]

- Evaluate integral:

\[L = n \int_0^1 \alpha(z) \frac{a - \lambda w\alpha(z)}{b(n+1)}\,dz = \frac{n}{b(n+1)} \left[\int_0^1 \alpha(z)a - \lambda w\alpha(z)\,dz \right] \]

- Solve for equilibrium wage:

\[w_a \equiv (\lambda w)\bigg|_{\substack{a \mu_1 - \frac{n+1}{n} \, bL}} = \left[a\mu_1 - \frac{n+1}{n} \, bL \right] \frac{1}{\mu_2} \]

\[\mu_1 \equiv \int_0^1 \alpha(z)\,dz \quad \mu_2 \equiv \int_0^1 \alpha(z)^2\,dz \]
Detailed Derivations: Autarky Welfare

- **Price:**
 \[\lambda p(z) = \frac{a + \lambda w \alpha(z)}{n + 1} \]

- **Welfare:**
 \[U_a \equiv -(\lambda^2 \mu_2^p) = -\frac{1}{(n + 1)^2} \left(a^2 + 2an\mu_1w_a + n^2\mu_2w_a^2 \right) \]

 \[= -\frac{a^2}{(n + 1)^2} \frac{\sigma^2}{\mu_2} - \frac{(a\mu_1 - bL)^2}{\mu_2} \quad \sigma^2 \equiv \mu_2 - \mu_1^2 \]

