CES Preferences: Demands, Gravity and Variety
Notes for Graduate International Trade Lectures

J. Peter Neary

University of Oxford

January 21, 2015
Plan of Lectures

1. CES Preferences
2. The Gravity Equation
3. Measuring Gains from Variety
4. Supplementary Material
Plan of Lectures

1. CES Preferences
 - The CES Utility Function
 - Preference for Variety
 - Implications of Taste for Diversity
 - Demands

2. The Gravity Equation

3. Measuring Gains from Variety

4. Supplementary Material
The CES Utility Function

\[u = \left(\sum_{i=1}^{n} x_i^\theta \right)^{1/\theta} \]

- A symmetric CES function:
 - \(x_i \) is the consumption of variety \(i \)
 - \(n \), the number of varieties, is given to consumers;
 - In monopolistically competitive equilibrium, it is endogenous.
 - The index \(\theta \) is a measure of substitutability, and must lie in \([−∞, 1]\)
 - As we will show, it is related to the elasticity of substitution \(\sigma \):
 \[\sigma \equiv \frac{1}{1−\theta} \iff \theta = \frac{\sigma - 1}{\sigma} \]
 So: \[\{−∞ < \theta < 1\} \iff \{0 < \sigma < ∞\} \]
 - \(0 < \sigma \leq 1 \) is fine for consumers; but, as we will see:
 - It is inconsistent with a taste for diversity
 - It is inconsistent with firms’ second-order condition
CES preferences imply a taste for variety:

Proof: Assume all varieties have the same price p and so are consumed in equal amounts, so total expenditure is $I = npx$:

$$x_i = x = \frac{l}{np} \Rightarrow u = (nx^\theta)^{1/\theta} = n^{1/\theta} x = n^{\frac{1}{\sigma-1}} l/p$$

- This is the indirect utility function in symmetric equilibria.

- Logarithmically differentiating, with l and p fixed: \[
\hat{u} = \frac{1}{\theta} \hat{n} + \hat{x} = \frac{1}{\theta} \hat{n} - \hat{n} = \frac{1}{\sigma-1} \hat{n}
\]

1. Gain at extensive margin; more than offsets:
2. Loss at intensive margin

- i.e., utility rises with variety for $\sigma > 1$, and by more the lower is σ.

QED
Implications of Taste for Diversity

CES price index as a function of number of goods
Demands

- Form the Lagrangian: \(L \equiv u^\theta + \lambda \left(I - \Sigma_i p_i x_i \right) \)
 - \(u^\theta \) easier than \(u \); yields same results: utility is ordinal not cardinal.
 - The term multiplied by the Lagrange multiplier \(\lambda \) is written such that it would be positive if the constraint did not strictly bind; this ensures that \(\lambda \) is never negative.

- Take the first-order conditions and manipulate to obtain:
 - Frisch demand functions: \(x_i = \left(\frac{\lambda p_i}{\theta} \right)^{-\sigma} \)
 - Relative demand functions: \(\frac{x_i}{x_j} = \left(\frac{p_i}{p_j} \right)^{-\sigma} \)
 - Marshallian demand functions: \(x_i = \frac{p_i^{-\sigma}}{\Sigma_j p_j^{1-\sigma}} I = \left(\frac{p_i}{P} \right)^{-\sigma} \frac{I}{P} \)

- To derive \(P \), the true cost of living index:
 - Substitute Marshallian demands into \(u \) to get indirect utility function:
 - \(u^\theta = \Sigma_i x_i^\theta = \frac{\Sigma_i p_i^{-\sigma\theta}}{(\Sigma_j p_j^{1-\sigma})^{\theta}} I^\theta = \left(\Sigma_j p_j^{1-\sigma} \right)^{1-\theta} I^\theta \quad \text{(since } \sigma\theta = \sigma - 1) \)
 - \(\Rightarrow \quad V(p, I) = \frac{I}{P(p)}, \quad e(P, u) = P(p) u, \quad P(p) \equiv \left(\Sigma_j p_j^{1-\sigma} \right)^{\frac{1}{1-\sigma}} \)
Plan of Lectures

1. CES Preferences

2. The Gravity Equation
 - Introduction
 - Digression: Newton and Gravity
 - Anderson-van Wincoop
 - Anderson-van Wincoop (cont.)
 - Anderson-van Wincoop (cont.)
 - Export and Import Multilateral Resistance

3. Measuring Gains from Variety

4. Supplementary Material
Empirically, trade volumes are well explained by simple “gravity” equations of the kind:
\[\ln V_{jk} = \ln I_j + \ln I_k - \delta d_{jk} \]
- \(V_{jk} \) is the value of exports from \(j \) to \(k \),
- \(I_j \) is the value of GDP in \(j \),
- \(d_{jk} \) is the distance from \(j \) to \(k \),
- \(\delta \) is a parameter, often estimated to be close to 0.6.

Adding additional variables (e.g., dummies for contiguity, latitude, common language etc.) led to increased empirical success but also increased theoretical embarrassment:
- Why does the equation work so well? How should the coefficients be interpreted? [c.f. Leamer and Levinsohn, 1995]
- Problem of interpretation came to a head with McCallum’s (AER 1995) ”border puzzle”:
 - Controlling for GDP and distance, intra-national trade (trade between different Canadian provinces or between different U.S. states)
 - ... is much greater than international trade (trade between a particular Canadian province and a particular U.S. state).
Note that Newton’s theory of gravity gives inspiration but no real guidance:

- The gravitational force between two bodies \(F_{jk} \) is explained by:
 - Their masses \(m_j \) and \(m_k \);
 - The distance between them \(d_{jk} \);
 - \(G \): Newton’s gravitational constant;
 - \(\ln F_{jk} = \ln G + \ln m_j + \ln m_k - 2 \ln d_{jk} \)

But: the equation is exact (except for large masses when recourse must be had to Einstein’s theory of general relativity).

- In any case, it does not apply to more than two bodies: the general \(n \)-body problem is unsolved.
With CES preferences, a rationalization for the gravity equation of trade flows can be given as follows:

- Assume \(n \) countries, each is endowed with a single good and consumes all \(n \) goods.
- The amount of country \(j \)'s good consumed in country \(k \) is denoted \(x_{jk} \).
- Trade costs are of the “iceberg” kind: \(\tau_{jk} \geq 1 \) units must be shipped from \(j \) in order to deliver one unit to consumers in \(k \).
- The “mill price” or “factory-gate price” of country \(j \)'s good is \(p_j \).
- The price of country \(j \)'s good to consumers in country \(k \) is \(p_{jk} = \tau_{jk} p_j \).
- Hence the value of shipments from \(j \) to \(k \), denoted \(V_{jk} \), is the same:
 - whether valued at \(j \)'s prices: \(\tau_{jk} x_{jk} \) units valued at \(p_j \) each
 - or at \(k \)'s prices: \(x_{jk} \) units valued at \(p_{jk} = \tau_{jk} p_j \) each
- The Marshallian demand function can then be reexpressed in this notation and multiplied by \(p_{jk} \) to give the value of trade:

\[
V_{jk} = \frac{p_{jk}^{1-\sigma}}{P_k^{1-\sigma}} I_k = p_j^{1-\sigma} \frac{\tau_{jk}^{1-\sigma}}{P_k^{1-\sigma}} I_k \quad (1)
\]
Anderson-van Wincoop (cont.)

- This is reminiscent of the gravity equation:
 - Depends $-$'ly on trade costs (for which distance is a plausible proxy);
 - Depends $+$'ly on importer GDP;
- But:
 - Exporter GDP I_j is missing;
 - Also depends on individual goods prices p_j: usually unobservable.

These problems can be overcome, and eqtn. given a GE underpinning, by invoking the GDP=Total Sales eqtn. for export country j:

$$I_j = \sum_h p_{jh} x_{jh} = p_j^{1-\sigma} \sum_h \frac{\tau_{jh}^{1-\sigma}}{P_h^{1-\sigma}} I_h$$

(2)

- Solve this for prices $p_j^{1-\sigma}$ and substitute into (1) to eliminate p_j:

$$V_{jk} = \frac{I_j}{\sum_h \frac{\tau_{jh}^{1-\sigma}}{P_h^{1-\sigma}} I_h} \frac{\tau_{jk}^{1-\sigma}}{P_k^{1-\sigma}} l_k = \frac{1}{\sum_h \frac{\tau_{jh}^{1-\sigma}}{P_h^{1-\sigma}} \theta_h} \left(\frac{\tau_{jk}}{P_k} \right)^{1-\sigma} \frac{l_j l_k}{I_W}$$

(3)

- where $\theta_h \equiv \frac{I_h}{I_W}$ is country h’s share in world GDP.
Now, define denominator as a new price index:

$$\Pi_j^{1-\sigma} = \sum_h \theta_h \frac{\tau_{jh}^{1-\sigma}}{P_h^{1-\sigma}}$$

A θ-weighted average of the transport costs relative to local prices P_h faced by country j in all its export markets.

Hence the gravity equation takes a simple and elegant form:

$$V_{jk} = \left(\frac{\tau_{jk}}{\Pi_j P_k} \right)^{1-\sigma} \frac{l_j l_k}{l_W} \quad (4)$$

Thus bilateral trade flows depend:

- Log-linearly on both exporter and importer GDP;
- Negatively on bilateral trade costs;
- But: Only when the latter are measured relative to appropriate averages of the multilateral trade costs faced by the two countries.

AvW: Π_j and P_k are export and import “multilateral resistance” terms.

$\frac{l_j l_k}{l_W}$ is “Frictionless Trade”; actual trade is lower.

- Depends only on country size - of both exporter and importer
- Recall that this does not hold in Heckscher-Ohlin
Finally, rewrite P_k in a way that shows clearly that it is dual to Π_j.

To do this, use (3) once again (with suitable changes in variables) to eliminate prices p_h from the importing country’s price index P_k, which can then be rewritten as a θ-weighted average of the transport costs relative to export prices Π_h faced by country k on all its imports:

$$P_k^{1-\sigma} = \sum_h p_h^{1-\sigma} = \sum_h p_h^{1-\sigma} \tau_h^{1-\sigma} = \sum_h \frac{I_h}{\tau_h^{1-\sigma}} \tau_h^{1-\sigma} = \sum_h \theta_h \frac{\tau_h^{1-\sigma}}{\Pi_h^{1-\sigma}}$$

Note that Π_j and P_k are only defined up to a single normalization:
- A 10% increase in all the Π_j implies a 10% fall in all the P_k and no change in any other variables.
- More precisely, system is homogeneous of degree zero in Π_j and P_k^{-1}.
Plan of Lectures

1. CES Preferences

2. The Gravity Equation

3. Measuring Gains from Variety
 - Konüs and Sato-Vartia
 - Proof of the Sato-Vartia Result
 - Feenstra: Measuring the Gains from New Varieties
 - Applications of Sato-Vartia-Feenstra
 - Addendum

4. Supplementary Material
A different application of CES preferences.

First: Derive the true price index when variety is constant.

Digression: Why do we need to derive it? Isn’t it just P?

No: P is unobservable in the realistic case of asymmetric utility:

$$u = \left(\sum_{i=1}^{n} \beta_i x_i^\theta \right)^{\frac{1}{\theta}} \Rightarrow P = \left(\sum_{i=1}^{n} \beta_i^\sigma p_i^{1-\sigma} \right)^{\frac{1}{1-\sigma}}$$

(5)

A classic index number problem: How to find an empirical index (i.e., based on observables) which equals (or approximates) an unobservable true index?

Solution for CES is the Sato-Vartia Index:

$$\ln P^{SV} \equiv \sum_{i=1}^{n} \omega_i \left(\ln p_i^1 - \ln p_i^0 \right)$$

(6)

where: $\omega_i \equiv \mu_i \mu^{-1}$, $\mu_i \equiv \frac{s_i^1 - s_i^0}{\ln s_i^1 - \ln s_i^0}$, $\mu \equiv \sum_{i=1}^{n} \mu_i$

In words: The SV index is a weighted geometric mean of price relatives, where the weights are the normalised logarithmic means of the budget shares in the two periods.
Proof of the Sato-Vartia Result

- Demand functions \(x_i = \beta_i^\sigma \left(\frac{p_i}{P} \right)^{-\sigma} \) imply budget shares \(s_i = \beta_i^\sigma \left(\frac{p_i}{P} \right)^{1-\sigma} \)
- Take logs: \(\ln s_i = \sigma \ln \beta_i + (1 - \sigma)(\ln p_i - \ln P) \)
- Sum over \(i \), with weights \(\omega_i \) to be determined, and take difference between two periods:

\[
\ln P^1 - \ln P^0 = \sum_{i=1}^{n} \omega_i \left(\ln p_i^1 - \ln p_i^0 \right) + \frac{1}{\sigma - 1} \sum_{i=1}^{n} \omega_i \left(\ln s_i^1 - \ln s_i^0 \right) \tag{7}
\]

- Provided tastes are constant \((\beta_i^1 = \beta_i^0) \), the \(\beta_i \) vanish!
- For the price index to equal a weighted average of log price changes, the second term on the right-hand side must be zero.
- Hence, the true price index between the two periods equals:

\[
\ln P^1 - \ln P^0 = \sum_{i=1}^{n} \omega_i \left(\ln p_i^1 - \ln p_i^0 \right) \tag{8}
\]

- where: \(\omega_i \equiv \mu_i \mu^{-1} \), \(\mu_i \equiv \frac{s_i^1 - s_i^0}{\ln s_i^1 - \ln s_i^0} \), \(\mu \equiv \sum_{i=1}^{n} \mu_i \)
Suppose the set of goods changes, though not fully: $\mathcal{I} = \mathcal{I}^0 \cap \mathcal{I}^1 \neq \emptyset$

Redefine the budget shares with respect to expenditure on common goods:

$$s^t_i(\mathcal{I}^t) = s^t_i(\mathcal{I}) \lambda^t$$

where:

$$\lambda^t \equiv \frac{\sum_{i \in \mathcal{I}} p^t_i x^t_i}{\sum_{i \in \mathcal{I}^t} p^t_i x^t_i}, \quad t = 0, 1 \quad (9)$$

Take difference in log budget shares between periods as before:

$$\ln s^1_i(\mathcal{I}^1) - \ln s^0_i(\mathcal{I}^0) = (1 - \sigma) \left[(\ln p^1_i - \ln p^0_i) - (\ln P^1 - \ln P^0) \right] \quad (10)$$

Sum this over $i \in \mathcal{I}$ only, with weights to be determined:

$$\ln P^1 - \ln P^0 = \sum_{i \in \mathcal{I}} \omega_i \left(\ln p^1_i - \ln p^0_i \right) + \frac{1}{\sigma - 1} \sum_{i \in \mathcal{I}} \omega_i \left[\ln s^1_i(\mathcal{I}^1) - \ln s^0_i(\mathcal{I}^0) \right] \quad (11)$$

Using (9), this gives the SV result with a simple correction factor:

$$\ln P^1 - \ln P^0 = \sum_{i \in \mathcal{I}} \mu_i \mu^{-1} \left(\ln p^1_i - \ln p^0_i \right) + \frac{1}{\sigma - 1} \left(\ln \lambda^1 - \ln \lambda^0 \right) \quad (12)$$

where:

$$\mu_i \equiv \frac{s^1_i(\mathcal{I}) - s^0_i(\mathcal{I})}{\ln s^1_i(\mathcal{I}) - \ln s^0_i(\mathcal{I})}, \quad i \in \mathcal{I}, \quad \mu \equiv \sum_{i \in \mathcal{I}} \mu_i$$
\[
\frac{P^1}{P^0} = \left(\frac{\lambda^1}{\lambda^0} \right)^{\frac{1}{\sigma-1}} \prod_{i \in I} \left(\frac{p^1_i}{p^0_i} \right)^{\omega_i}
\]

(13)

- **Interpretation:** If new varieties are important, \(\lambda^1 \) will tend to be small.
 - So, price index will be *lower*
 - Intuitively, a new good in period 1 has an infinite reservation price in period 0.
 - Similarly if varieties are upgraded, so \(b^1_i > b^0_i \) for some \(i \).

- **Correction factor is less important the higher is \(\sigma \)**
 - Ignoring new varieties matters less if they are close substitutes for existing ones.

 - They estimate total gains from increased import varieties as 2.6% of GDP.
Note that Feenstra (1994) defines the CES price index as

\[P = \left(\sum_{i=1}^{n} b_i p_i^{1-\sigma} \right)^{\frac{1}{1-\sigma}}, \] i.e., \(b_i = \beta_i^\sigma \)
Plan of Lectures

1. CES Preferences
2. The Gravity Equation
3. Measuring Gains from Variety
4. Supplementary Material
 - Solving for CES Demands
 - Origins of the CES
Solving for CES Demands

\[L \equiv u^\theta + \lambda \left(I - \sum_i p_i x_i \right) = \sum_{i=1}^n \beta_i x_i^\theta + \lambda \left(I - \sum_{i=1}^n p_i x_i \right) \]
(14)

\[\Rightarrow \frac{\partial L}{\partial x_i} = \beta_i \theta x_i^{\theta - 1} - \lambda p_i = 0 \quad \Rightarrow \quad x_i = \left(\frac{\lambda p_i}{\theta \beta_i} \right)^{-\sigma} \]
(15)

\[\Rightarrow x_j x_i = \left(\frac{\beta_i p_j}{\beta_j p_i} \right)^{-\sigma} \]
(16)

Solve for \(x_j \), multiply by \(p_j \) and sum over \(j \):

\[\Rightarrow \sum_{i=1}^n p_j x_j = \frac{x_i}{\beta_i p_i^{-\sigma}} \sum_{j=1}^n \beta_j^\sigma p_j^{1-\sigma} = I \quad \Rightarrow \quad x_i = \frac{\beta_i^\sigma p_i^{-\sigma}}{\sum_j \beta_j^\sigma p_j^{1-\sigma}} I \]
(17)

\[\Rightarrow x_i = \beta_i^\sigma \left(\frac{p_i}{P} \right)^{-\sigma} \frac{I}{P} \quad \text{where:} \quad P \equiv \left[\sum_j \beta_j^\sigma p_j^{1-\sigma} \right]^{\frac{1}{1-\sigma}} \]
(18)
Origins of the CES

- Mathematical form developed by Hardy, Littlewood and Polya (1934)
- Introduced into economics by Arrow, Chenery, Minhas and Solow (1961)
 - As a form for a two-factor production function
- Applied to monopolistic competition by Dixit-Stiglitz (1977) and Spence (1977)
 - Their innovation: Making n endogenous, so allowing it to be used in monopolistic competition
 - Difference between them: Spence assumed quasi-linear utility, so not applicable to general equilibrium