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1 Introduction

This paper develops a new approach to measuring demand responses in the study of consumer

behaviour. It concerns the commonly occurring empirical setting in which there is only a

relatively small number of market prices but a large number of consumers within each of those

markets. This research builds on the earlier results in Blundell, Browning and Crawford (2003)

where a powerful method for detecting revealed preference violations was advanced and used

to provide tight nonparametric bounds on welfare costs. The contribution here is to use rich

within-market consumer level data together with the minimum of restrictions from revealed

preference theory to provide the best bounds on consumer demand responses to new relative

prices. These E-bounds are shown to be much tighter than those derived from standard

revealed preference analysis.

A common situation in applied economics is that we have a set of observations on agents

in a fixed environment with particular realised economic variables and we wish to predict

their behaviour in the same environment but with new values for the economic variables.

For example, we observe demands at particular sets of prices and total expenditures and

we wish to predict demands at a new set of prices and total expenditure. With no other

structure, the observed behaviour is totally uninformative about the new situation and literally

anything that is logically possible is an admissible prediction. One way around this is to use

a parametric statistical model and interpolate (or extrapolate). An alternative is adopt a

theoretical position on what generates the observed behaviour and to use the theory and

the previous observations to make predictions. Usually this leads to bounds on predicted

behaviour rather than point predictions. Predicted demand responses are set identified in the

sense of Manski (2007). The relevant question then becomes: how plausible is the theory and

how tight are the bounds?

In this paper we derive bounds on predicted demand behaviour from observations on ex-

pansions paths (Engel curves) for a finite set of prices and the imposition of the basic (Slutsky

or revealed preference) integrability conditions from economic theory. The plausibility of the

latter derives from them being, effectively, the observable restrictions from assuming transi-

tivity which is the bedrock of consumer theory in economics. Moreover, the theory implies

testable restrictions so it is potentially rejectable. We give the tightest possible bounds on
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demands given observed expansion paths and the basic (nonparametric) theory, if the latter

is not rejected by the former. We find that the data and the theory give surprisingly tight

bounds if we consider new situations that are within the span of the observed data.

To introduce our methodology, imagine facing a set of individual consumers with a se-

quence of relative prices and asking them to choose their individual demands, given some

overall budget that each can expend. If they behave according to the axioms of revealed pref-

erence their vector of demands at each relative price will satisfy certain well known inequalities

(see Afriat (1973) and Varian (1982)). If, for any individual, these inequalities are violated

then that consumer can be deemed to have failed to behave according to the optimisation

rules of revealed preference. This is a very simple and potentially powerful experimental set-

ting for assessing the applicability RP theory. If, as in an experiment, one can choose the

budget at which individuals face each price vector then Proposition 1 of Blundell, Browning

and Crawford (2003) shows that there is a unique sequence of such budgets, corresponding

to the sequence of relative prices, which maximises the chance of finding such a violation.

This is the Sequential Maximum Power path. If experimental data are not available then

the Blundell, Browning and Crawford (2003) study also shows how to use expansion paths to

mimic the experimental choice of this optimal sequence. Thus providing a powerful method

of detecting RP violations in observational as well as experimental studies. In this paper

we extend the previous analysis in three ways. The first of these is the derivation of the

tightest possible bounds on predicted demands for given relative prices and total outlay, for

observational data of the type collected in consumer expenditure surveys. To do this we find

it convenient to use the Strong Axiom of Revealed Preference (SARP) rather than the more

general GARP condition used in Blundell et al (2003). Second, we show exactly when having

more data (more observed relative price regimes) is informative in the specific sense of tight-

ening predicted bounds. The third innovation concerns how to deal with rejection of the RP

conditions. We show that we can find minimal local perturbations to the expansion paths

such that the perturbed data do satisfy the RP conditions and how these perturbations may

be interpreted in terms of taste changes. We also discuss explicitly how our analysis relates

to the important emerging literature on partial identification (see Manski (2003)).

To construct bounds we extend the analysis introduced in Varian (1983) by considering
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expansion paths for given relative prices rather than demands at some point. We label these

‘expansion path based bounds’ as E-bounds. The advantages of the E-bounds method devel-

oped here are that it can describe the complete demand response to a relative price change

for any point in the income distribution without recourse to parametric models of consumer

behaviour and it gives the tightest possible bounds, given the data and the theory. The

measurement of such price responses are at the centre of applied welfare economics, they

are a vital ingredient of tax policy reform analysis and is also key to the measurement of

market power in modern empirical industrial economics. Robust measurement is therefore a

prerequisite of reliable analysis in these fields of applied microeconomics.

Since the expansion paths are estimated, albeit by semiparametric techniques, they are

subject to sampling variation. Consequently, violations of the revealed preference inequal-

ities may simply reflect sampling variation rather than rejections by the individuals in the

population under study. We develop a minimum distance method for imposing the revealed

preference conditions and use this to construct a test statistic for the revealed preference

inequalities. We contrast these results to those obtained using a parametric model in which

Engel curves are assumed to be quadratic. We show that this parametric model produces

similar results. However, the local nature of our analysis provides a persuasive case for using

semiparametric Engel curves.

Examining our consumer expenditure data, we consider whether revealed preference in-

equality restricted expansion paths can be found that are not rejected by the data. We find

that preferences are generally consistent with RP theory over sub-sequences of time periods

in our data but that rejections over longer sequences do occur. Where significant rejections

occur, there are a plethora of alternatives to the simple model which has stable preferences for

the household (the unitary model). Some of these concern the supplementary assumptions we

have to make on aggregation across households, aggregation of goods, the choice of an annual

time period etc.. Other alternatives are more fundamental. For example, one alternative is

that the household does have transitive preferences but these change over time. We present

an explicit measure of such taste changes based on estimated perturbations to preferences.

These provide a natural metric against which to measure taste change. Another alternative is

that since our sample is for many-person households, the unitary assumption is incorrect and

3



it is the individuals in the household who have stable transitive preferences. In this regard

Browning and Chiappori (1998) present evidence, based on a parametric model, that couples

do reject the usual Slutsky conditions but not those for a non-unitary collective model. An

important rationale for our RP approach is that we can be sure that any rejections of the

RP conditions for the unitary model are not due to the choice of functional form. Where

significant rejections do occur, the RP inequalities approach can be extended to allow for a

collective model; see Cherchye et al (2007).

In our empirical analysis, the relative price variation occurs over time and we consider

consumer behaviour as it is recorded in standard repeated consumer expenditure surveys

such as the US Consumers Expenditure Survey and the UK Family Expenditure Survey. The

latter is the source for our empirical analysis. We observe samples of consumers, each of a

particular household type, at specific points in time. Assuming consumers are price-takers,

we can recover expansion paths by estimating Engel curves at each point in time. We present

E-bounds for own and cross price responses using these expansion paths.

The E-bounds on demand responses we construct are found to be informative. The ad-

vantage of adding in more relative price variation is carefully explored, both theoretically and

empirically. We show that it is the combination of the new prices and the quantity choice

implied by the new expansion path that determines whether the new observation is informa-

tive. We discuss precisely how such information tightens the bounds. Empirically we show

the value of allowing for sampling variation and of introducing perturbations. Bounds on de-

mands are improved and we are also able to detect slow changes in tastes. These bounds on

demand responses and the changes in tastes are found to differ across the income distribution.

Freeing-up the variation in relative price responses across the income distribution is one of

the key contributions of this research. Historically parametric specifications in the analysis of

consumer behavior have been based on the Working-Leser or Piglog form of preferences that

underlie the popular Almost Ideal and Translog demand models of Deaton and Muellbauer

(1980) and Jorgenson, Lau and Stoker (1982). Even though more recent empirical studies

have suggested further nonlinear income terms, (see, for example, Hausman, Newey, Ichimura

and Powell (1995), Lewbel (1991), Blundell, Pashardes and Weber (1993), Banks, Blundell

and Lewbel (1998)), responses to relative prices at different incomes for these parametric
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forms remain unnecessarily constrained.

The remainder of the paper is as follows: In section 2 we examine bounds on demand

responses and develop a method for generating the best bounds. We also consider how

additional data impacts the bounds and in particular the circumstance under which new

data are informative. In section 3 we describe how we apply our approach to the household

level data in the UK Family Expenditure Survey. We examine the semiparametric estimation

of expansion paths and the method used to detect revealed preference violations and to

impose revealed preference restrictions. In section 4 we estimate E-bounds on cross-price

and own-price responses and show that these can be quite narrow. In section 5 we consider

imposing revealed preference restrictions and introduce the idea of preference perturbations.

Although we find we can reject stability of preferences over the whole period from 1975 to

1999, we can find sub-periods over which stable preferences cannot be rejected. This is found

to substantially improve the bounds on demand responses. We also estimate bounds on

demands at different percentiles of the income distribution and show that these can differ in

important ways. Section 6 concludes.

2 Expansion Path Bounds on Demands

2.1 Defining E-bounds.

We shall be concerned with predicting demands given particular budgets. To this end, we

assume that every agent responds to a given budget (p, x), where p is a J-vector of prices

and x is total expenditure, with a unique, positive demand J-vector:

Assumption U: Uniqueness of demands: for each agent there exists a set of demand

functions q(p, x) : RJ+1
++ → RJ

++ which satisfy adding-up: p
0q(p, x) = x for all prices p and

total outlays x.

For a given price vector pt we denote the corresponding J-valued function of x as qt (x) (with

qjt (x) for good j) and refer to this vector of Engel curves as an expansion path for the given

prices. We shall also have need of the following assumption:

Assumption W: Weak normality: if x > x0 then qjt (x) ≥ qjt (x
0) for all j and all pt.
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This rules out inferior goods. Adding up and weak normality imply that at least one of the

inequalities in this assumption is strict and that expansion paths are continuous.

The question we address is: given a budget {p0, x0} and a set of observed prices and ex-

pansion paths {pt,qt (x)}t=1,..T , what values of q such that p00q = x0 are consistent with these

observed demands and utility maximisation? Working with a finite set of observed prices it is

natural to characterise consistency with utility maximisation in terms of revealed preference

axioms. Since we are requiring that demands be single valued (and not correspondences)

we work with the Strong Axiom of Revealed Preference (SARP) rather than the more usual

Generalised Axiom (GARP).1

Definition 1 qtR0qs : If at prices pt the agent chooses qt and we have p0tqt ≥ p0tqs then we

say that qt is directly revealed weakly preferred to qs: qtR0qs

Definition 2 qtRqs : If we have a chain

qtR
0qu,quR

0qv, ...qwR
0qs

then we say that qt is revealed weakly preferred to qs: qtRqs.

Given this we have:

Definition 3 SARP: qtRqs and qt 6= qs implies not qsR0qt for all s, t.

The definition of SARP does not rule that we might have the same demand for two different

price vectors.

The basic idea behind our analysis is shown in Figure 1 for a two good, two expansion path

example. In this example, the two expansion paths are shown as q1 (x) and q2 (x). These

intersect the new budget line {p0, x0} at q1 (x̃1) and q2 (x̃2) respectively so that

p00q1 (x̃1) = p
0
0q2 (x̃2) = x0. (1)

Definition 4 Intersection Demands: qt (x̃t) which satisfy p00qt (x̃t) = x0.

1Varian (1982) provides a discussion of the relationship between SARP and GARP; in brief, SARP requires
single valued demand curves, whilst GARP allows for set-valued demand correspondences (so that SARP
implies GARP).
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The two assumptions on demand above ensure that a unique intersection demand exists for

any {p0, x0} and qt (x). We also show the two budget lines at the intersection demands,

labelled {p1, ex1} and {p2, ex2} respectively. As drawn, the two intersection demands satisfy
SARP since neither is revealed weakly preferred to the other. The final step is to display

the set of points on the new budget line {p0, x0} that are consistent with these intersection

points and with SARP. This is shown as the interval labelled S (p0, x0); this set includes the

intersection demands and, for two goods, it is closed. We term this set the support set for

{p0, x0}. Any point on the new budget that is in the support set S (p0, x0) satisfies SARP

for the intersection demands and any point outside fails. For example, a point q0 within the

interior of the support set is weakly revealed preferred to the intersection demands (since

p00q0 = x0 ≥ p00qt (x̃t) for t = 1, 2), it is distinct from them but the intersection demands are

not directly weakly preferred to q0. Conversely, consider a point q0 that is not in S (p0, x0). In

this case SARP fails immediately since q1 (x̃1)R0q0 (which implies q1 (x̃1)Rq0), q1 (x̃1) 6= q0
and q0R0q1 (x̃1). Finally, the intersection points satisfy SARP and hence are in the support

set.

Figure 1: The Support Set

( )11
~, xp

( )22
~, xp

( )x1q

( )x2q( )00 , xp ( )11
~xq

( )22
~xq

( )00 , xS p

Given Figure 1 and the definition of intersection demands it is straightforward to define

the support set algebraically.2 Given a budget {p0, x0} the set of points that are consistent
2In all that follows we assume that the observed prices {p1, ...,pT } are relatively distinct in the sense that

pt 6= λps for all s, t and any λ > 0.
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with observed expansion paths {pt;qt (x̃t)}t=1,...,T and utility maximisation is given by the

support set :

S (p0, x0) =

½
q0 :

q0 ≥ 0, p00q0 = x0
{p0,pt;q0,qt (x̃t)}t=1,...,T satisfy SARP

¾
(2)

This differs from the support set definition given in Varian (1982) in two major respects. The

Varian definition was based on T observed demand bundles whereas the present definition

makes use of T expansion paths. Furthermore this support set is defined using expansion

paths evaluated at specific budget levels; the intersection demands. We refer to the intervals

defined by expansion paths in this way as E-bounds - expansion curve based demand bounds.

These bounds on demands for the new budget are best in the sense that tighter bounds cannot

be found without either observing more expansion paths, imposing some additional theoretical

structure over and above utility maximisation (such as quasi-homotheticity or separability)

or assuming a functional form for preferences. To show this we define an alternative support

set that uses points on the expansion paths that are not necessarily intersection points:

S0 (p0, x0) =

½
q0 :

q0 ≥ 0, p00q0 = x0
{p0,pt;q0,qt (xt)}t=1,...,T satisfy SARP

¾
The next proposition states that this set is always at least as large as the support set; (the

proof is given in the Appendix):

Proposition 1 If demands are weakly normal then S0 (p0, x0) ⊇ S (p0, x0).

Thus there do not exist alternative bounds (derived from the same data) which are tighter

than the E-bounds. The E-bounds therefore make maximal use of the data and the basic

nonparametric theory in predicting in a new situation. The properties of the support set are

given in the following proposition:

Proposition 2 (1) S (p0, x0) is non-empty if and only if the data set {pt,qt (x̃t)}t=1,...T sat-

isfies SARP. (2) If the data set {pt,qt (x̃t)}t=1...T satisfies SARP and p0 = pt for some t then

S (p0, x0) is the singleton {qt (x̃t)}. (3) S (p0, x0) is convex.

The first statement establishes that there are some predicted demands for {p0, x0} if and

only if the intersection demands satisfy SARP. The second statement shows that the support
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set is a single point if the new price vector is one that has been observed. Our decision to

consider SARP rather than GARP is largely to give this property; for GARP we would have

an interval prediction even for a previously observed price. The convexity is useful when it

comes to solving numerically for E-bounds. Note that, contrary to what Figure 1 suggests,

with more than two goods the support set is not necessarily closed.

The empirical analysis below requires that we compute E-bounds for given data but the

definition of S (p0, x0) is not particularly suited to empirical implementation as it stands. The

second set we define gives a set of conditions that allow us to do this in a simple way using

linear programming (LP) techniques. If {pt,qt (x̃t)}t=1,...,T satisfies SARP we define:

SLP (p0, x0) =

½
q0 :

q0 ≥ 0, p00q0 = x0,
p0tq0 ≥ p0tqt (x̃t) , t = 1, 2...T

¾
(3)

The set SLP is closed and convex. We now show that this set is the same as the support set,

except (perhaps) on the boundary of the latter.3 If we denote the closure of S by cl (S) then

we have:

Proposition 3 (1) cl (S (p0, x0)) = SLP (p0, x0). (2) SLP (p0, x0) \S (p0, x0) = {q ∈ SLP (p0, x0) :

p0tq = x̃t and q 6= qt (x̃t) for some t}

As we have seen, for two goods S (p0, x0) is closed so that it coincides with SLP (p0, x0) but for

more than two goods the set on the right hand side of the second statement is non-empty (so

long as S (p0, x0) is non-empty). SLP (p0, x0) gives us a feasible algorithm for displaying E-

bounds. We first define intersection demands and test for SARP on the intersection demands.

If the intersection demands pass SARP, we can then display bounds for each good. For

example, to find the supremum predicted value for good j we maximise qj0 subject to the

constraints in (3). This is a standard linear programming problem.

2.2 When is a new observation informative?

We turn now to a consideration of when and how additional observations on expansion paths

lead to an improvement in our bounds. We consider the situation in which we have T observed

prices {p1,p2, ...pT}. Take a hypothetical budget {p0, x0} and suppose that the corresponding
3If we had considered GARP rather than SARP then we would have S = SLP .
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intersection demands satisfy SARP; denote the support set by ST (p0, x0). Suppose now that

we add one more observed price and expansion path, {pT+1,qT+1 (x)}, find the corresponding

intersection demand qT+1 (x̃T+1) and compute the new support set ST+1 (p0, x0).

We begin with the following observations. Firstly, the support set cannot increase with

the introduction of a new intersection demand; that is ST+1 (p0, x0) ⊆ ST (p0, x0) so that

additional information weakly shrinks the support set. Secondly, the introduction of a new

budget plane and corresponding intersection demand might cause a violation of SARP. If it

does then the new support set will be empty (by Proposition 2) and therefore, trivially, we

know that the support set will strictly shrink: ST+1 (p0, x0) = ∅ ⊂ ST (p0, x0). For the rest

of this section we will set this possibility aside and assume that the new observation does not

cause a violation. Given this we ask when a new observation will be informative and lead to a

strict shrinkage of the support set. The first result is trivial but is worth formally recording.

Proposition 4 If pT+1 = p0 6= pt for t = 1, ...T , ST (p0, x0) is non-empty and qt (x̃t) 6=

qs (x̃s) for some t and s then ST (p0, x0) ⊃ ST+1 (p0, x0).

This shows that if the newly observed price just happens to coincide with p0 then the new

support set will be smaller. The proof of this proposition, along with part 2 of proposition 2,

establishes that if the intersection points are distinct (which they will almost surely be) then

the set of predicted points is a singleton only if the new price p0 is equal to one of the observed

prices. More interesting is the case in which pT 6= p0. To present the characterisation for

this, we need one more definition:

Definition 5 The budget plane {pT+1, x̃T+1} intersects with ST (p0, x0) if there exists some

q0 ∈ ST (p0, x0) such that p0T+1q0 = x̃T+1.

We now present conditions for strict shrinkage of the support set.

Proposition 5 Given ST+1 (p0, x0) 6= ∅ then ST+1 (p0, x0) ⊂ ST (p0, x0) iff the new budget

plane {pT+1, x̃T+1} intersects with ST (p0, x0).

This says that a new observation is only informative, in the sense that it will strictly shrink the

support set if the new budget plane intersects with the initial support set. It is therefore the
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intersection with the initial support set which is the important feature of any new information

rather than the closeness of any new price observation to the p0 vector of interest. The

following three good example serves to illustrate this proposition and to emphasize the point

that, if the intersection condition does not hold then a new observation will be uninformative

regardless of how close the new price vector is to the hypothetical price vector. Consider the

following data for three goods and three periods:

{p1,p2,p3} =

⎡⎣ 0.64 0.19 0.90
0.26 0.77 0.89
1 1 1

⎤⎦
{q1,q2,q3} =

⎡⎣ 1.895 1.768 0.399
1.571 1.141 1.901
1.267 1.545 1.850

⎤⎦ (4)

and take the hypothetical budget given by [p10, p
2
0, p

3
0] = [0.5, 0.5, 1] and x0 = 3.

4 Suppose now

that we observe a new price p4 with an intersection demand:

q4 = [1, 1, 2]
0 (5)

We ask: what values of p4 lead to a strict contraction of the support set? With the values

given it is easy to show that any:

p4 = p0 − [τ , τ , 0]0 (6)

does not give a strict contraction for any τ > 0. Thus we can take an new price vector that

is arbitrarily close to the hypothetical prices but does not lead to an improvement in the

bounds. Conversely, any price vector:

p4 = p0 + [0, τ , 0]
0 (7)

gives a strict contraction for any τ > 0, even if τ is large. That is, new prices that are far

from the hypothetical prices may give a strict contraction of the support set.

As we have shown, adding a new data point may tighten bounds. But it may also lead to

a rejection of SARP so that more information is not an unmixed blessing. In the framework

presented so far violations of SARP leads to an empty support set so that we are unable to

4Note that values for the quantities have been rounded and do not exactly satisfy the intersection demand
condition p00qt = x0.
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make predictions about the demand curve. In the next section we consider how econometric

estimation of expansion paths might provide a stochastic structure in which we can make

progress in such a situation.

3 Estimating Bounds on Demand Responses

3.1 Data

In this analysis we take three broad consumption goods: food, other nondurables, and services5

and examine the E-bounds on demand responses. For this we draw on 25 years of British

Family Expenditure Surveys from 1975 to 1999. In many contexts these three consumption

goods represent an important grouping as the price responsiveness of food relative to services

and to other non-durables is of particular interest. For example, the price responsiveness at

different income levels is a key parameter in the indirect tax debate. Although food is largely

free of value added tax (VAT) in the UK, the discussions over the harmonisation of indirect

tax rates across Europe and the implications of a flat expenditure tax raised uniformly across

all consumption items requires a good understanding of food demand responses across the

income distribution. It is also important in general discussions of cost of living changes across

the income distribution. Relative food prices saw some abrupt rises as the tariff structure and

food import quotas were changed in Europe early in the period under study. To study further

disaggregations of goods with any precision some form of separability has to be assumed.

The Family Expenditure Survey (FES) is a repeated cross-section survey consisting of

around 7,000 households in each year. From these data we draw the sub-sample of couples

with children who own a car. This gives us between 1,421 and 1,906 observations per year and

40,731 observations over the entire period. We use total spending on non-durables to define

our total expenditure variable. Table A1 in the Data Appendix provides descriptive statistics

for these data. Figure 2 illustrates the trends in mean budget shares over the period. As

can be seen, the mean budget share for food exhibits a large fall whereas services are rising

steadily over our data period.

There was substantial relative price variation over our data period, as seen in the dated

5See the Data Appendix.
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Figure 2: Mean budget shares.

points in Figure 3. The annual price indices for these commodity groups are taken from the

annual Retail Prices Index. The figure shows the scatter plot of the prices of food and services

relative to non-durables. The dashed line in the figure shows the convex hull of the relative

price data. The relative prices show a dramatic change in the mid to late-1970’s. We see a

steadily rising price for services relative to food and non-durables.

To compute the E-bounds on demand responses below we will consider variations in relative

prices around a central p0 vector defined by the mean price vector. We explore a sequence

of relative price changes in which the price of food is varied whilst the prices of non-durables

and services are held at their mean values. The line of crosses in Figure 3 shows the particular

sequence of the p0 vector we use. Note that this passes through a dense part of the relative

price distribution where we might expect (subject to the discussion in section 2) to be able

to produce quite informative bounds on demand responses. The path also starts and finishes

in areas of very sparse price information outside the convex hull of the prices where, without

extrapolation, we would not expect to have much to say about likely demand responses. The

solid lines which make up the smaller hull in Figure 3 describe a set of contiguous periods

over which SARP revealed preference conditions are not rejected. We return to this case in
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Figure 3: Relative prices, 1975− 1999.

our empirical analysis of E-bounds bounds, we first lay out the estimation of the expansion

paths and intersection demands.

3.2 Empirical Expansion Paths

In general, our interest is in consumer behaviour described by the vector of J − 1 demand

equations

qij = mj(xi,p,ε
i
j) for j = 1, ..., J − 1 ≥ 1 (8)

where xi, is the total outlay (or total expenditure) of household i, lnp is a J vector of the log

of relative prices and εij an unobservable heterogeneity term for each good j. We begin by

assuming εij to be distributed independently of x and p but will relax the assumption on x.

Consumers observed in the same time period and location are assumed to face the same

relative prices. Relative prices are assumed to vary exogenously. Let
©
(qij, xi)

ªn
i=1

represent

an independent but not identically distributed sequence of n household observations on the

demand qij of good j and total expenditure x for each household i facing the same relative

prices. Under the constant relative price assumption, Engel curves for each location and period

correspond to expansion paths for each price regime. Assuming thatmj is additively separable
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in εij we write

qij = mj (xi) + εij (9)

for unknown continuous functionmj (·) . It is these Engel curves, for each relative price regime,

that we will use to estimate the intersection demands (1) in Definition 2 which are used to

identify the support set (2). We will make conditional mean assumptions on the εij so that

the intersection demands mj (xi) can be identified through a set of moment conditions. We

will also appeal to appropriate uniform consistency and rate of convergence results from the

econometric theory literature as we develop an analogous moment estimator formj (xi) below.

Throughout this analysis we assume the separable error form (9). As we note below,

generalisations of this separable specification for unobserved heterogeneity are a key direction

for future research (see Matzkin (2007) and the discussion in section 3.2.3 below). In the

estimation of these Engel curves we choose a semiparametric specification that allows for

observable demographic variation in mj across households as well as the endogeneity of total

expenditure x.

3.2.1 A Semiparametric Specification for Engel Curves

The analysis we present here is applicable to fully nonparametric specification for Engel curves.

Blundell and Duncan (1998) have shown the attraction of nonparametric Engel curves when

trying to capture the shape of income effects on consumer behaviour across a wide range of

the income distribution. However, to ensure sufficient support across the x distribution we

choose the shape-invariant semiparametric specification, adopted in Blundell, Browning and

Crawford (2003), to pool across different household types.

Each household type is defined by di, a (D × 1) vector of observable household composition

variables relating to household i = 1, ..., n. Our specification of (9), written in terms of budget

shares wi
j(≡

pjqij
xi
), takes the form

wi
j = gj (lnxi − lnφ(d0iα)) + d0iγj + ξij (10)

for household i and good j. The function φ(d0iα) represents a general equivalence scale and

d0iγj documents the way in which observable demographic differences di across households

impact on each expenditure share.6 In the estimation results below we use a prior estimate
6An expenditure share transformation is used primarilary to reduce the potential for heteroscedasticty in
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of the general equivalence scale φ(d0iα) which we take from the OECD scales (Burniaux et al,

(1998)). The semiparametric specification (10) turns out to be a parsimonious, yet accurate,

description of behaviour.7

To establish the identification of the parameters of interest gj and γj in this shape-invariant

specification and to derive the properties of this estimator we make the following assumptions:

Assumption CM: E(ξij| lnxi,di) = 0 ∀ j.

Assumption C: gj (xi) is continuous.

Assumption B: wi
j has bounded support.

The assumptions CM, C and B ensure that the parameters gj and γj are identified (see

Blundell, Chen, and Kristensen (2007), Theorem I) . Further, the specification chosen here,

in which α is fixed according to an external equivalence scale, can be estimated using the

partially linear regression approach in which gj is replaced by a Nadaraya-Watson kernel re-

gression function (see Robinson (1988)). Results from that paper establish root−n asymptotic

normality and semiparametric efficiency of the parametric components γj and regular non-

parametric convergence rates for the kernel estimator of gj. Andrews (1995) shows uniform

consistency with nonidentically distributed random variables.

3.2.2 Endogeneity of Total Outlay x

The lnx variable in (10) is a measure of log total outlay, or total expenditure, by the household

on the set of goods under analysis in period t. This is very likely to be jointly determined with

the expenditure shares. To account for the endogeneity of lnx we adopt the control function

approach (see Blundell and Powell (2003), for a general discussion). We adopt a two-step

semiparametric estimator for this model adapting the results in Newey, Powell and Vella

(1999). The first step consists of the construction of a residual vector from the regression

of lnx on the exogenous variables in the model and an excluded instrument. The hourly

earnings of the head of household is used as the excluded instrument in the application below

where a sample of families is selected from the British FES with working age male heads of

household. This control function approach is compared to the semiparametric instrumental

the distribution of the ξj terms. However, we only place conditional mean restrictions on these error terms
and will not require homoscedasticty.

7See Bludell, Duncan and Pendakur (1998).
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variable estimator in Blundell, Chen and Kristensen (2007) where it is found to account quite

well for the endogeneity of total expenditure.8

The set of instrumental variables is labeled z and we specify the reduced form for lnx as

lnxi = z
0
iπ + vi (11)

where z are a set of variables which include the demographic variables di and the excluded

instrument.9 We also make the further conditional mean assumption on v

Assumption CF1: E(vi|zi) = 0.

which ensures the root-n consistent estimation of π on which the control function v is derived.

The control function estimator makes the additional conditional mean assumption

Assumption CF2: E(ξij| lnxi,di, vi) = 0.

for the error term in (10) for each good j. These assumptions, together with CM, C and B,

ensure the identification of gj and γj in (10), see Newey, Powell and Vella (1999).

The two-step control function estimator for this model specification consists at the first-

step of the construction of a residual vector bv from the regression of lnx on z. The second

step is the semiparametric regression of wj on gj (lnx− lnφ) + d0γj and the control variablebv. In our estimator for (10), the additive form for this second step regression is imposed using
the Robinson (1988) partially linear regression approach described above. The only further

concern is the addition of the estimated term bvi in each of the semiparametric regressions,
based on the least squares estimate of π in (11). Since the estimator for π converges at a

root−n rate it does not effect the properties of the estimator of gj, however the asymptotic

distribution of the estimator for γj will depend on the distribution of π, see Blundell and

Powell (2003). Andrews (1995) shows uniform consistency and rate of convergence results for a

semiparametric model of this type where the regressor variables are not observed but are based

on a finite dimension preliminary estimator as is the case here, allowing for nonidentically

distributed random variables. Finally, it is worth noting that, since the same variables are

included on the right hand side of each of these J − 1 Engel curves, the estimator is invariant

to the equation deleted, see Blundell, Duncan and Pendakur (1998).

8Blundell, Chen and Kristensen (2007) also considers the joint estimation of the general equivalence scale
parameters α as well as the commoditiy specific parameters γ.

9For the reduced form we could adopt a nonparametric specification without unduely complicating the
approach used here. However, in exprimentation we found it made little difference to the overall results.
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3.2.3 Nonseparable Unobserved Heterogeneity

As we noted in the discussion of (8), our overall interest is in consumer behaviour described

by nonseparable heterogeneity in demands. In terms of the vector of share equations we

might express these as w = g(lnx, lnp,d, ε) where ε is a J − 1 vector of unobservable

heterogeneity. The unobserved heterogeneity enters nonseparably in the share equation. An

important problem for future research is to estimate the distribution of demands across the

heterogeneity distribution and not focus on the moments E(w| lnx, lnp,d) as we do in this

paper. In the nonseparable heterogeneity case, global invertibility is required to identify the

complete distribution of demands, see Brown and Matzkin (1998) and Beckert and Blundell

(2005). Moreover, generalisations of quantile regression are required for estimation of the

parameters of interest, see Matzkin (2007). To allow for exogeneity of lnx in such an analysis

we would need to further condition on the control variable v (see Imbens and Newey (2007)).

For the more limited case of local average demands considered in this paper, there is never-

theless a general condition, due to Lewbel (2001). Under the exogeneity of lnx this condition

allows interpretation to E(w| lnx, lnp,d) even in the case of nonseparable unobserved hetero-

geneity. If we assume F (ε| lnx, lnp,d) = F (ε|d) so that preference heterogeneity conditional

on demographics is independent of prices and total outlay, then the covariance between bud-

get shares and the responsiveness of these to changes in log total outlay, conditional on the

observable determinants of demand is defined as

H(lnx, lnp,d) = cov

µ
∂g

∂ lnx
,g0 | lnx, lnp,d

¶
.

In this case Lewbel (2001) shows that average demands of rational consumers satisfy integra-

bility conditions iff H(.) is symmetric and positive semidefinite.10 If H is small relative to the

the Slutsky matrix for these average demands, then the system will be ‘close’ to integrable.

To generalise this condition to allow for the endogeneity of lnx we again need to add the

control variable v to write F (ε| lnx, lnp,d,v) = F (ε|d,v).11

10For example, in the Almost Ideal Demand system (Deaton and Muellbauer, 1980), heterogeneity in the
intercept and price parameters would automatically satisfy this condition.
11We would like to thank a referee for pointing this out.
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4 Empirical E-Bounds on Demand Responses

To construct E-bounds in our application to the FES data, we first estimate the three-good

Engel curve system using the semiparametric control function estimator described in the pre-

vious section. Using these estimated expansion paths we recover the estimated intersection

demands bqt (x̃t) for each {p0, x0} and check the revealed preference SARP conditions for
{pt, bqt (x̃t)}. Perhaps unsurprisingly these unrestricted estimated intersection demands con-
tain some violations of SARP. In the next section we develop an approach to testing and

imposing the SARP conditions on the intersection demands. Before moving to that discus-

sion, we first consider searching for contiguous periods over which we cannot reject stable

preferences using the bqt (x̃t) . We find the periods 1982 through 1991 satisfy SARP. The po-
tential cost of discarding other periods can be seen by looking back to the smaller convex

hull in Figure 3 which shows the price data corresponding to the subset of SARP-consistent

intersection demands. A comparison of the two convex hulls shows the reduction in the space

spanned once SARP-violating intersection demands have been dropped.

In Figure 4 we present the E-bounds on the own demand curve for food at the median

income using the reduced set of SARP-consistent observations. As can be seen from a com-

parison with Figures 3, the bounds on the demand curve are particularly tight when the p0

vector is in the dense part of the observed price data. Outside the convex hull of the data the

E-Bounds widen and we cannot rule out extreme responses (such as households not buying

food if the price rises by more than 5%).

In Figures 5 and 6 we present the corresponding E-bounds for cross price responses. These

figures show the power of E-Bounds: through the use of revealed preference inequalities and

without appealing to parametric models or extrapolation we have been able to construct tight

bounds on own and cross price responses. They also show the limitations in the sense that

price experiments (by the standards typical of many policy simulation studies) can easily

take on values outside the range of observed price variations and produce bounds which are

necessarily very wide.

To construct E-bounds on demand curves we have exploited movements along the esti-

mated expansion paths and it is reasonable to ask whether this involved comparisons across
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Figure 4: Own price demand bounds for food.

-8 -6 -4 -2 0 2 4 6
0

5

10

15

20

25

30

Percent Change in the Price of Food

Figure 5: Cross-price demand bounds for non-durables.
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Figure 6: Cross-price demand bounds for services.

a wide range of incomes. In fact we find that these comparisons do not require implausibly

wide variations across income levels. For example, to construct the curve in Figure 4, 10 in-

tersection demands are required. The range of income went from the 56th percentile in 1982

to the 40th percentile in 1991. This shows a further attractive feature of the local nature

of this analysis: nonparametric Engel are only required over a limited range of the income

distribution when constructing a specific demand bound at a particular income percentile.

5 Revealed Preference Restrictions

5.1 Testing and Imposing SARP

The revealed preference restrictions, SARP in Definition 3 above, are key conditions in the

identification of the E-bounds on predicted demand responses for {p0, x0}. These bounds are

defined by the support set S (p0, x0) in (2). Proposition 2 shows that this support set is non-

empty (and hence identified) iff the data set {pt,qt (x̃t)t=1,...T} satisfies SARP. Consequently,

we first examine the validity of the SARP restrictions on the set of T intersection demands.

Because the intersection demands are derived from the estimated expansion paths they

will be subject to sampling variation. Consequently violations of the SARP conditions on the

intersection demands may simply be due to estimation error. We use the stochastic structure

of the estimated Engel curves to account for this. We derive a SARP constrained estimator
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for the intersection demands and a test of the SARP conditions. The starting point is the

suggestion by Varian (1985) for testing optimising behaviour. We develop this idea by using

the precision of the estimated expansion paths at the specific income levels corresponding to

the intersection demands. We can then construct a misspecification test for violations of the

revealed preference conditions.

Suppose the intersection demands, qt (x̃t), were known functions of a finite set of parame-

ters θt so that qt (x̃t) = f (θt) for known f (.). Denote the vector of θt’s for t = 1, ..T by θ. In

Appendix A3 we show that in the current context the SARP restrictions can be represented

by a set of moment inequality restrictions (MIR). These place moment inequality restrictions

on θ. Thus we can appeal to recent results by Manski (2003), Chernozhukov, Hong and Tamer

(2007) and Andrews and Guggenberger (2007) for moment inequality estimators of this type.

There is always a value of θ that satisfies the MIR so long as the support of the estimated θ

values allow for any positive demands that satisfy adding-up.12 Generally there will be a set

of values for θ that satisfy SARP. This set may include the intersection demands, in which

case the latter satisfy SARP.

Let S denote the set of all intersection demands that satisfy SARP. The support set

corresponding to any set of intersection demands contained in S is unique and convex. If

the SARP conditions fail for the unrestricted intersection demands bqt (x̃t)t=1,...T , we generate
a restricted estimator, bqSt using the following Gaussian quasi-likelihood ratio or minimum
distance criterion function:

Q = min
{qt}t=1,...T

TX
t=1

(qt − bqt (ext))0Ω−1t (qt − bqt (ext)) (12)

subject to {qt}t=1,...T ∈ S

where the weight matrix Ω−1t is the inverse of the covariance matrix of the estimated unre-

stricted intersection demands bqt (ext). The solution to (12) defines intersection demands bqSt
which satisfy SARP and are unique almost everywhere.

Evaluated at the restricted intersection demands the distance function (12) also provides

a test statistic for SARP. To investigate the properties of this test recall that the SARP

12In that case we could take, for example, the demands implied by a Cobb-Douglas utility function with
equal weights for each good. We use these demands as starting values for the minimum distance problem
described below.
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restrictions can be represented as a set of moment inequality restrictions, see Appendix A3.

Consequently, this test falls within the general class of misspecification tests investigated in

Andrews and Guggenberger (2007, section 7). We note however that their results are not

directly applicable as they are derived for a parametric specification, as in qt (x̃t) = f (θt)

above, whereas we adopt a semiparametric specification for qt (x̃t) in our application. We

conjecture that, given uniform consistency of the estimator for the intersection demands, the

results will carry through to the semiparametric case, but we leave this to future research. For

comparison, in appendix A.4, we present a set of estimated bounds using a fully parametric

specification for the intersection demands.

To construct critical values, we let nt denote the sample size in period t, and draw samples

of size bnt < nt with replacement. We assume bnt −→ ∞ and bnt
nt
−→ 0 as nt −→ ∞. The

subsample statistics used to construct the 1− α sample quantile are then defined exactly as

in (12) but based on the subsample of size bnt rather than the full sample. We repeat this

many times and obtain the empirical distribution of Q. We denote the 1− α quantile of the

distribution as C1−α. The nominal level α test rejects the SARP restrictions if and only if the

statistic Q exceeds the subsampling critical value C1−α. This test statistic can also be used

to define a confidence set for the identified support set S (p0, x0) for the predicted demands

q0. This draws on the recent work by Chernozhukov, Hong and Tamer (2007) and references

therein.13

An interpretation of the restricted intersection demands bqSt is as locally perturbed demands
that conform to SARP. That is they measure the minimum perturbation to tastes necessary

to ensure preference stability. Consequently, the estimated ‘perturbations’, bqSt−bqt (ext) , them-
selves are likely to be of interest: random taste behaviour would be reflected in a corresponding

random pattern in perturbations; slowly changing tastes would be reflected by a systematic

evolution of these perturbations. We analyse the estimated perturbations in our empirical

analysis below.

13Andrews and Guggenberger (2007) consider the subsampling confidence set for set identified parameters.
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5.2 Constrained E-Bounds

In section 4 we searched for a contiguous period of SARP-consistent demands and simply

discarded those intersection demands which caused violations. In this section we investigate

the improvements in the E-Bounds which can be made if we impose SARP-consistency on the

intersection demands across relative prices even where violations occur. We do this using the

minimum distance criterion function (12). In principle this should further tighten the bounds

because (i) it will expand the convex hull of the prices in use thereby potentially increasing

the range over which we can tightly bound the demand curves, and (ii) the extra information

may include budget planes which intersect with the support sets which underlie Figure 4, 5

and 6. By Proposition 5 this will strictly shrink the bounds.

We begin our examination of the constrained E-bounds by imposing SARP at all the

observed relative prices t = 1, ...T . To do this we use the inverse of the estimated pointwise

variance covariance matrix of the estimated expansion paths (evaluated at the intersection

demands values) as the weight matrix Ω−1t in the minimum distance procedure (12). Tests

for the restrictions are presented below. This produces a sequence of estimated restricted

intersection demands bqSt and analogous perturbations bqSt − bqt (ext) .
Figure 7 presents the estimated the perturbations bqSt − bqt (ext) by good and period in

the center of the demand curves at the median income. Since there are three goods and 25

intersection demands (one each of the 25 annual Engel curves) there are 75 perturbations. No

structure is imposed on these perturbations other than that the restricted intersection demand

are nonnegative and satisfy SARP. The figure also contains 95% pointwise confidence intervals

for some periods which suggests an extended period in the centre of this range where we may

be able to find a stable representation of preferences.

If demand behaviour were completely random, or if it were rational but contaminated with

classical measurement error, then we might expect that the perturbations would reflect this.

Slowly changing tastes on the other hand would be reflected by a systematic evolution of these

perturbations. In fact, the adjustments needed to make these data theory-consistent seem

to follow a reasonably systematic pattern. The perturbation to food demand, for example,

is generally increasing over time. It is negative in the early data indicating that the earlier
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Figure 7: Demand perturbations

food demands needs to be adjusted downwards and the later observations need to be adjusted

upwards. This can be interpreted as the perturbation necessary to adjust for a slow change

in preferences away from food towards services. Comparing this to Figure 2 we can see that

this adjustment would go some way to slowing the apparent decline in the food share over

the period. More significantly, this analysis shows that we cannot rationalise the changes in

mean budget shares seen in Figure 2 by appealing to price, income or demographic changes.

The restricted intersection demands satisfy SARP and so we can identify the support set

S (p0, x0) which give us the E-Bounds for the predicted demand responses at {p0, x0}. The

resulting estimated E-bounds on the own demand curve are illustrated in Figures 8 and 9

along with, for comparison, the E-bounds recovered by dropping SARP rejections (Figure 4:

the solid lines). As can be seen, there is an improvement/narrowing of the bounds when all of

the observations are used and constrained to be revealed preference consistent, compared to

the case in which some data points are just dropped. Nevertheless, the improvement is quite

small in the central part of the demand curve (see Figure 9) where the existing bounds were

already fairly tight. Note also that there is no reason for the new bounds to lie everywhere

inside the old bounds. Whilst the addition of theory-consistent data always weakly tightens

the bounds, the data being added here contains violations and has been perturbed as a result.
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Figure 8: Constrained E-Bounds for Food

Consequently the restricted intersection demands can lead to the bounds widening at some

relative price points. The general pattern of the bounds are similar however, with typically

wider bounds the further the new price vector is from the most dense part of the observed

price distribution.

As before it is useful to examine the range of incomes (total budgets) over which compar-

isons have been made to construct these E-bounds for the median income consumer. Again

the range is quite limited going from a maximum of the 60 percentile in the mid-1970s to the

40th percentile at the end of the 1990s.

5.3 Demand Responses Across the Income Distribution

The E-Bounds on predicted demands presented above have been constructed at the median

income (expenditure). But we might expect demand responses to vary with income levels.

Figure 10 shows how the demand bounds vary according to the total budget. Three sets

of bounds are calculated corresponding to the 25th, 50th and 75th percentiles of the x0

distribution (the solid lines for the median are identical to the dashed lines in the preceding

figure over this range). It is clear from this figure that there is not a single elasticity that
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Figure 9: Constrained E-Bounds for Food - Detail

summarises price response behaviour. Price responses appear to be quite variable both along

each demand curve and also across income levels. The range of price responsiveness highlights

the local nature of our nonparametric analysis. The price responsiveness are local to both

income and relative prices. Unlike in the Stone-Geary model, for example, there is no reason

why price elasticities should not be increasing or decreasing with income. For some broad

aggregates such as food a price elasticity which is increasing with income would seem sensible

while for more disaggregated food items - rice and potatoes, for example - the reverse could

equally well be true.

5.4 Revealed Preference Violations and Best RP-Consistent De-
mands

In the analysis so far we have investigated two approaches to dealing with violations of revealed

preference on the intersection demands qt (x̃t)t=1,...T : dropping offending intersection demands

and imposing SARP restrictions on all of the data using the minimum distance criterion (12).

We have seen that the perturbations required to make the intersections demands SARP-

consistent are trended and are consistent with a story of systematic taste change over the
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Figure 10: Demand Bounds for Food By Budget Percentile (log-log)

period. However, we can also use (12) to test the SARP restrictions. As described in section

5.1, we adopt a subsampling critical value with bnt
nt
= .2 which convincingly rejects SARP

with a p-value very close to zero.14 Simply imposing SARP across the intersection demands

in all the periods in this data qt (x̃t)t=1,...T is clearly invalid.

We therefore return to our SARP-consistent dataset described in Figure 3. As the pertur-

bations in Figure 7 suggest, it may be possible to add additional intersection demands outside

this period without rejecting the SARP restrictions. Using the criteria (12) we found that

expanding the set of intersection demands by adding the periods 93-95 did not reject SARP,

the 20% (bnt
nt
= .2) subsample p-value was 0.08. The extended convex hull of the relative price

space spanned by these periods is shown in Figure 11.

Using this extended set of SARP consistent intersection demands the resulting E-bounds

on the own price demand curve is in Figures 12 and 13. Figure 12 shows the demand curve

using the original SARP consistent subset of the data (solid lines), and the demand curve

obtained by imposing SARP on the extended demand subset of the data. For comparison

in Appendix A4, we present results that use the parametric QUAIDS specification for the

14Rejection also occurs using a 25% and a 15% subsample ( bntnt = .25 and .15, respectively).
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Figure 11: Price scatter plot of the extended period

expansion paths. These results are similar to the semiparametric case and, as expected,

display even tighter bounds on demand responses. However, given the local nature of our

revealed preference analysis we choose to present the results relating to the semiparametric

Engel curve analysis in the main text of this paper, leaving the parametric analysis to the

appendix.

Figure 13 gives a detailed view of the central part of the demand curve. At ‘zero’ the

E-bounds using the extended period are [9.6742, 9.8694]. These bounds are quite precise and

the (bn
n
= .2) subsample 95% confidence set is [9.4987, 9.9516]. As in our discussion of Figure

8, the extended period uses restricted intersection demands and there is no requirement that

the new E-bounds lie everywhere inside the bounds that simply use the 82-91 period.

6 Summary and Conclusions

The aim of this paper has been to bound predictions of demand responses using revealed

preference inequalities alone. We have focussed on the situation where we can observe only

a relatively small number of market prices but a large number of consumers in each of these
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Figure 13: Best RP-Consistent E-Bounds for Food: Detail
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markets. Our approach has been to make use of this rich within-market consumer-level data

to estimate income expansion paths conditional on prices. We have shown how to derive best

bounds on predicted demand behaviour from a combination of observations on expansions

paths and the imposition of the basic (Slutsky or revealed preference) integrability conditions

from economic theory. We find that these E-bounds give surprisingly tight bounds, especially

where we consider new situations that are within the span of the relative price data in observed

markets.

The E-bounds approach to measuring consumer behaviour allows price responses to vary

nonparametrically across the income distribution by exploiting micro data on consumer ex-

penditures and incomes over a finite set of discrete relative price changes. We have introduced

the concept of preference perturbations, local to each income percentile, which characterise

the degree of congruence with RP conditions and provide a useful metric for describing taste

change.
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Appendix A1: Proofs of Propositions

Proof of Proposition 1.
Let S0 (p0, x0) denote the support set

S0 (p0, x0) =

⎧⎨⎩q0 :
p00q0 = x0, q0 ≥ 0 and

{p0,pt;q0,qt (x)}t=1,...,T satisfies SARP
and xt 6= x̃t for some t

⎫⎬⎭
where the qt (x) data are demands on expansion paths at arbitrary budget levels. Suppose
that there exists some demand vector q0 ≥ 0 and p00q0 = x0 such that q0 ∈ S (p0, x0) but q0 /∈
S0 (p0, x0) . Then by definition of S0 (p0, x0) it must be the case that {p0,pt;q0,qt (x)}t=1,...,T
contains a violation of SARP. That is there is some element of {qt (x)}t=1,...,T (call it qt (x))
such that either qt (x)Rq0 and q0R0qt (x) or q0Rqt (x) and qt (x)R0q0. Consider the first
case where q0R0qt (x). If demands are weakly normal then the corresponding intersection
demand qt (ext) used to define S (p0, x0) must be such that qt (ext)R0qt (x). But qt (x)Rq0
and hence qt (x)Rqt (ext) and there is a contradiction of SARP. Now consider the second case
where qt (x)R0q0. Since q0 ∈ S (p0, x0) we know that by definition p0tq0 ≥ p0tqt(x̃t) and hence
qt (x)R

0qt(x̃t). Therefore we have another contradiction of SARP. Hence q0 /∈ S0 (p0, x0)⇒
q0 /∈ S (p0, x0) .¥
Proof of Proposition 2.
(1) S (p0, x0) is non-empty if and only if the data set {pt,qt (x̃t)}t=1,...T satisfies SARP.
If {pt,qt (x̃t)}t=1,...T fail SARP than so does {p0,pt;q0,qt (x̃t)}t=1,...,T for any {p0;q0} so that
the support set is empty. Conversely, if {pt,qt (x̃t)}t=1,...T pass SARP then these points satisfy
the conditions for inclusion in S (p0, x0) which is thus non-empty.
(2) S (p0, x0) is the singleton qt (x̃t) if p0 = pt and the data set {pt,qt (x̃t)}t=1,...T satisfies
SARP.
Let p0 = pt and suppose there is a q0 ∈ S (p0, x0) with q0 6= qt (x̃t). We have p00q0 = x0. By
construction qt (x̃t)R0q0 which implies qt (x̃t)Rq0. Since q0 satisfies SARP and q0 6= qt (x̃t)
we have not (q0R0qt (x̃t)) which is equivalent to p00q0 < p00qt (x̃t) = p0tqt (x̃t). Since both
sides of this strict inequality are equal to x0 this gives a contradiction.
(3) S (p0, x0) is convex.
Let the support set contain q̌0 and q̃0. The convex combination λq̌0 + (1− λ) q̃0 for λ ∈
[0, 1] satisfies the non-negativity constraint and p00 (λq̌0 + (1− λ) q̃0) = λx0 + (1− λ)x0 =
x0. Finally, we have p0tq̌0 ≥ p0tqt(x̃t) and p0tq̃0 ≥ p0tqt(x̃t) so that p0t (λq̌0 + (1− λ) q̃0) ≥
p0tqt(x̃t).¥
Proof of Proposition 3.
If {pt,qt}t=1,2...T fails SARP then both sets are empty and the proposition holds trivially. In
the following we shall assume that {pt,qt}t=1,2...T passes SARP. We shall first show SLP ⊇ S,
then part 2 of the proposition and then cl (S) ⊇ SLP .
SLP (p0, x0) ⊇ S (p0, x0).
Take any q0 ∈ S (p0, x0). We have q0 ≥ 0 and p00q0 = x0 and {pt,qt}t=1,2...T satisfies SARP.
Thus we only need to check the last condition in SLP . Since p00q0 = x0 = p00qt we have
q0R

0qt which implies q0Rqt. The definition of SARP then gives p0tqt < p0tq0 which is the
condition in the definition of SLP (p0, x0).
For part 2 of the proposition we have:

SLP \ S =

⎧⎨⎩
q0 : q0 ≥ 0,p00q0 = x0,

p0tq0 ≥ p0tqt (x̃t) , t = 1, 2, ...T
{p0,pt,q0,qt (x̃t)}t=1,...T fails SARP

⎫⎬⎭
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If q0 = qt (x̃t) q0 ∈ S so that we only need to consider q0 6= qt (x̃t) for all t. This and the
failure of SARP implies either:
(A) qt (x̃t)Rq0 and p00q0 ≥ p0tqt (x̃t) for some t. The first statement requires that there
is some s such that qs (x̃s)R0q0 which implies p0sqs (x̃s) ≥ p0sq0. Combining this with the
condition p0sq0 ≥ p0sqs (x̃s) gives p0sq0 = p0sqs (x̃s) as in the statement in the proposition.
or:
(B) q0Rqt (x̃t) and p0tqt (x̃t) ≥ p00q0. In this case the latter statement and p0tq0 ≥ p0tqt (x̃t)
give the statement in the proposition.
cl (S) ⊇ SLP .
We have just shown that it is only boundary of SLP that are not in S. Thus the closure of S
contains SLP .¥
Proof of Proposition 4.
Since pT+1 = p0 we have that ST+1 is a singleton (by part 2 of proposition 2). Since ST is
convex and there are two distinct intersection points in ST , there are a continuum of points
in ST . Hence ST strictly includes ST+1.¥

Proof of Proposition 5.
1) We first show that intersection of the budget plane {pT+1, xT+1} with ST (p0, x0) implies
that ST+1 (p0, x0) ⊂ ST (p0, x0) . The definition of intersection between the new budget plane
{pT+1, xT+1} and ST (p0, x0) implies that qT+1 (x̃T+1)R0q0. Since q0 ∈ ST (p0, x0) the defi-
nition of an intersection demand implies q0R0qT+1 (x̃T+1). This gives a violations of SARP
in the dataset {pt,qt (x̃t)}t=0,...,T+1. Therefore q0 /∈ST+1 (p0, x0) and hence ST+1 (p0, x0) ⊂
ST (p0, x0).

2) We now show that ST+1 (p0, x0) ⊂ ST (p0, x0) implies intersection of the budget plane
{pT+1, xT+1} with ST (p0, x0) . Suppose ST+1 (p0, x0) ⊂ ST (p0, x0). This implies that there
exists at least one q0 ∈ ST (p0, x0) such that q0 /∈ST+1 (p0, x0). In the following R0 denotes
"not R0". Since {pt,qt (x̃t)}t=0,...,T satisfies SARP, and since q0R0 {qt (x̃t)}t=1,...,T by the defi-
nition of intersection demands, this implies that {qt (x̃t)}t=1,...,T R0q0. Since q0 /∈ST+1 (p0, x0)

the dataset {pt,qt (x̃t)}t=0,...,T+1 violates SARP. Given {qt (x̃t)}t=1,...,T R0q0 and the assump-
tion that ST+1 (p0, x0) 6= ∅ this violation must result from qT+1 (x̃T+1)R

0q0 ⇒ xT+1 ≥
p0T+1q0. Hence q0 must lie in the intersection of the convex set S

T (p0, x0) and the closed
half-space p0T+1q0 ≤ xT+1. If there exists some q0 ∈ ST (p0, x0) such that p0T+1q0 < xT+1
then there must also exist some q0 ∈ ST (p0, x0) such that p0T+1q0 = xT+1 and therefore the
new budget plane {pT+1, xT+1} intersects with ST (p0, x0).¥
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Appendix A2: Data Descriptives

Commodity Groups

“Food”: {bread,cereals,biscuits & cakes, beef, lamb, pork, bacon, poultry, other meats & fish,
butter, oil & fats, cheese, eggs, fresh milk, milk products, tea, coffee, soft drinks, sugar &
preserves, sweets & chocolate, potatoes, other vegetables, fruit, other foods, canteen meals,
other restaurant meals and snacks}.

“Non-durables”: {beer, wine & spirits, cigarettes, other tobacco, household consumables,
petcare, mens outer clothes, women’s outer clothes, children’s outer clothes, other clothes,
footwear, chemist’s goods, audio visual goods, records and toys,book & newspapers, gardening
goods}

“Services”: {domestic fuels, postage & telephone, domestic services, fees & subscriptions,
personal services, maintenance of motor vehicles, petrol and oil, vehicle tax and insurance,
travel fares, tv licences, entertainment}.

Table A1. Descriptive Statistics, 1975 to 1999

Budget Shares Total Exp. Prices Children n
F ND S F S

1975 0.3587 0.3166 0.3247 33.7838 1.0000 1.0000 1.9893 1873
1976 0.3577 0.3076 0.3347 32.5127 1.0881 1.0687 1.9702 1642
1977 0.3564 0.3124 0.3312 32.3477 1.1574 1.0447 1.9429 1770
1978 0.3556 0.3136 0.3308 32.5452 1.1067 1.0398 .1.8828 1681
1979 0.3458 0.3196 0.3346 36.4990 1.1457 1.0414 1.8893 1689
1980 0.3384 0.3208 0.3408 36.6857 1.1145 1.1061 1.8619 1781
1981 0.3363 0.3061 0.3576 35.7316 1.1056 1.1836 1.8751 1906
1982 0.3218 0.3101 0.3681 35.8705 1.1262 1.2199 1.8539 1876
1983 0.3214 0.3129 0.3657 35.6571 1.0775 1.2429 1.8571 1743
1984 0.3162 0.3151 0.3688 37.5016 1.1081 1.2492 1.8438 1671
1985 0.3081 0.3207 0.3712 37.8100 1.0759 1.2242 1.8323 1622
1986 0.3088 0.3221 0.3692 38.4100 1.0556 1.2239 1.8645 1587
1987 0.3043 0.3228 0.3730 39.0197 1.0819 1.2372 1.8713 1632
1988 0.3042 0.3278 0.3680 41.5325 1.0807 1.2512 1.8744 1648
1989 0.3054 0.3222 0.3724 41.5346 1.0786 1.2713 1.8662 1652
1990 0.3017 0.3129 0.3854 44.2983 1.1084 1.3150 1.8966 1538
1991 0.2972 0.3103 0.3925 42.6966 1.0839 1.3207 1.8351 1510
1992 0.2882 0.3121 0.3997 41.5212 1.0616 1.3445 1.9068 1578
1993 0.2866 0.3077 0.4057 41.3798 1.0332 1.3533 1.8895 1511
1994 0.2825 0.3029 0.4146 40.9660 1.0305 1.3748 1.8838 1489
1995 0.2912 0.2912 0.4176 39.6002 1.0439 1.3645 1.8622 1502
1996 0.2889 0.2999 0.4112 41.8850 1.0671 1.3491 1.8638 1476
1997 0.2741 0.3041 0.4218 45.2517 1.0655 1.4071 1.8410 1421
1998 0.2788 0.2981 0.4230 44.0626 1.0551 1.4102 1.9099 1432
1999 0.2722 0.3032 0.4245 47.1033 1.0918 1.4367 1.8774 1501

Notes: F=Food, ND=Non-durab les, S=Services
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Appendix A3: Moment Inequalities and Revealed Preference Conditions

First we show that in the current context SARP and GARP are equivalent. Since SARP
implies GARP, this requires us to show that GARP implies SARP. For intersection demands
q̃t and q̃s we always have that p0tq̃t 6= p0tq̃s for any s and t. Thus q̃t 6= q̃s and p0tq̃t < p0tq̃s
if p0tq̃t ≤ p0tq̃s. If we have two intersection demands q̃s and q̃t such that q̃sRq̃t then GARP
implies p0tq̃t ≤ p0tq̃s. This in turn implies that the SARP conditions hold. Note that if we
took demands that were not intersection demands then we might have p0tqt = p

0
tqs. This is

the case, for example, for the SMP paths described in Blundell et al (2003) which specifically
choose a sequence of demands with p0tqt = p

0
tqs. In this case the data might pass GARP but

reject SARP.
We now show that the GARP conditions can be written in ‘standard’ moment inequality

form, as in Andrews and Guggenberger (2007):

E (mk (Wi;θ0)) ≥ 0 for k = 1, ..K (13)

where E (.) is the expectations operator, Wi are independent observations and θ0 is the true
value for a vector of parameters. As given in Definition 3, the RP conditions consist of a
series of conditional statements that are not of the form given in (13). We now show how to
recast them in such a form.
Varian (1982) showed that the data {pt,qt}t=1,..T satisfy GARP if and only there exist 2T

scalars V1, ..VT and λ1, ..λT such that:

Vt − Vs + λtp
0
t (qs − qt) ≥ 0 for all s, t

λt ≥ 1 for all t (14)

Given parametric intersection demands qt (x̃t) = f (θt), define:

rts (θ) = p
0
t (f (x̃s;θs)− f (x̃t;θt)) (15)

Then the Afriat inequalities become:

Vt − Vs + λtrts (θ) ≥ 0 for all s, t
λt ≥ 1 for all t (16)

In general the Vt’s and λt’s will not be unique for any given set of rts’s. Varian (1982) provides
an algorithm that takes in T (T − 1) values for the rts’s and returns unique values for the Vt’s
and λt’s. The mapping is continuous. Using this algorithm, the Vt’s and λt’s are functions of
the parameters θ. The expected moment form for (16) is then:

E (Vt (θ)− Vs (θ) + λt (θ) rts (θ)) ≥ 0 for all s, t
E (λt (θ))− 1 ≥ 0 for all t (17)

which is of the form given in (13).

Appendix A4: Empirical results using a parametric Quadratic Engel Curve
specification for expansion paths.

In this appendix we present a comparison of the semiparametric Engel curve analysis
used for the empirical results presented in section 5 with a parametric analysis based on
the quadratic Engle curve specification underlying the QUAIDS model (see Banks, Blundell
and Lewbel (1997)). The Figure 14 below compares the estimated E-Bounds on the demand
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Figure 14: Constrained E-Bounds for Food: Nonparametric and Parametric Engel Curves

curve. The dashed bounds are for the semiparametric estimates and are the same as the
dashed bounds in Figure 8; they used the data from all of the periods together, are based
on the semiparametric Engel curve estimates described in section 3.2.1 and impose the RP
conditions on the intersection demands as discussed in section 5.1. The solid bounds are those
derived from the same procedure applied to parametric (quadratic) Engel curves estimated
from the same data and with the RP conditions similarly imposed.
We note that the bounds derived from the parametric Engel curve model are very sim-

ilar to those from the nonparametric model and show the same characteristic widening and
tightening according the local density of the price data. We also conduct a statistical test
of the RP conditions for the parametrically estimated intersection demands (identical to the
one we describe in the text for the semiparametric estimates) and, like the test based on the
semiparametric estimates, the data reject RP with a p-value very close to zero. This is not
surprising given the relative precision of parametric versus nonparametric estimates.
As in the semiparametric case in the text, we conducted a search for a set of years which

did not reject RP in the parametric model and derived the bounds from those intersection
demands. The result is shown in Figure 15 which is the bound recovered from the years
{78,79,84:87,93,94}, which give a p-value on the RP test of 0.03. The solid bounds are
those for all of the years (the same as Figure 14) whilst the dashed bounds are from the
RP-consistent subset.
As in the semiparametric case, using fewer years of data widens the bounds, although the

years which remain are informative enough that the bounds remain tight over a good range of
relative price changes. Figure 16 illustrates the bounds for the RP-consistent subset of period
alone.
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Figure 15: Constrained E-Bounds for Food: Parametric Engel Curves all periods and an
RP-consistent subset.
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Figure 16: Constrained E-Bounds for Food: Parametric Engel Curves using an RP-consistent
subset.
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