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Abstract

We consider an elementary nonparametric (revealed preference) method which will partition consumer

microdata into the minimal number of preference types such that the data are perfectly rationalisable by

standard utility theory. This provides a simple, theory-driven way of investigating unobserved preference

heterogeneity in such data, and easily extends to any choice model which has a nonparametric (revealed

preference) characterisation. We illustrate the approach using survey data and �nd that the number of types

is remarkably few relative to the sample size.
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1 Unobserved Heterogeneity in Microdata

One of the most striking features of consumer microdata is the great heterogeneity in choice behaviour which

is evident, even amongst economic agents which are otherwise similar in observable respects. This presents

researchers with a di¢ cult problem - how to model behaviour in a way which accommodates this heterogeneity

and yet preserves theoretical consistency and tractability.

One rather robust response is to demand that everything should be explainable by the theory in terms of

observables alone. This view is typi�ed by Becker and Stigler (1977):

�Tastes neither change capriciously nor di¤er importantly between people.�G. Becker and G. Stigler

(1977) De Gustibus Non Est Disputandum, AER, 1977

The research agenda which follows from this view is one which tries to explain di¤erences in observed

behaviour without recourse to unobserved heterogeneity in tastes, but instead purely in terms of the theory and

1



observable di¤erences in constraints, characteristics of market goods and characteristics of agents. From this

point of view, resorting to unobserved preference heterogeneity in order to rationalise behaviour is a cop-out;

it is an admission of failure on the part of the theory.

From this perspective it is therefore a matter for some regret that measures of �t in applied work on

microdata are typically very low - that is, the theory performs poorly. As a result, the belief that unobserved

heterogeneity is an inescapable and essential part of the modeling problem has become the dominant view in

the profession. This approach was summarised by the joint 2000 Nobel laureates as follows.

�In the 1960�s, rapidly increasing availability of survey data on individual behavior ... focussed

attention on the variations in demand across individuals. It became important to explain these

variations as part of consumer theory, rather than as ad hoc disturbances". D. McFadden (2001),

Nobel Lecture

�Research in microeconometrics demonstrated that it was necessary to be careful in accounting for

the sources of manifest di¤erences among apparently similar individuals. ... This heterogeneity has

profound consequences for economic theory and for econometric practice.�J. Heckman (2001), Nobel

Lecture

In applied microeconometrics, the standard approach has been to pool data across agents and to model the

behaviour of individuals as a combination of a common component and an idiosyncratic component which re�ects

unobserved heterogeneity. In its least sophisticated form, this amounts to interpreting additive error terms as

unobserved preference heterogeneity parameters. Recently, it has become clear that such an approach typically

requires a combination of assumptions on the functional form of the statistical model and the distribution

of unobservable heterogeneity. Contributions here include McElroy (1987), Brown and Walker (1989), Lewbel

(2001) and Lewbel and Pendakur (2008). Broadly, the current consensus on unobserved heterogeneity is that: it

is a fundamental feature of consumer microdata; if neglected it makes econometric estimation and identi�cation

di¢ cult; and it is rather hard to deal with convincingly, especially in non-linear models and where heterogeneity

is not additively separable.

Whilst the dominant empirical methods, by and large, proceed by pooling agents, the approach which

we develop here is based on partitioning. We work from the basis of revealed preference (RP) restrictions

(developed �rst in Afriat 1967, Diewert 1973 and Varian 1982). At heart, revealed preference restrictions

are sets of inequality restrictions on observables (prices and demands), which provide necessary and su¢ cient

conditions for the existence of an unobservable (a well behaved utility function representing the consumer�s

preferences which rationalises the data). RP restrictions are usually applied to longitudinal data on individual

consumers and are used to check for the existence and stability of well-behaved preferences. In this paper we

apply this kind of test to cross-section data on many di¤erent consumers (though, as we describe below, our

idea applies to many contexts with optimising agents). In this context, RP restrictions are interpretable as a

check for the commonality of well-behaved preferences.1

1Our methods can easily be extended to cover panel data contexts. We discuss this in the Appendix.
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Of course, this is a rather simplistic idea. The very notion that such a check might pass and that the choices

of all of the consumers in a large microeconomic dataset could be explained perfectly by a single common utility

function is, as Lewbel (2001) points out, �implausibly restrictive�. The real problem is what to do if (or more

likely when) the data do not satisfy the RP restrictions. Dean and Martin (2010) provide one type of solution:

they show how to �nd the largest subset of the data that do satisfy (some of) the RP restrictions. However,

their approach leaves some of the data as unexplained by the optimising model.

The contribution of this paper is to provide a di¤erent (and complementary) set of strategies for the case

where the pooled data violate the RP restrictions. Here, some amount of preference heterogeneity is necessary

in order to model those data� we need more than just one utility function. The question is how many do we

need? Is it very many (perhaps as many as there are observations), or just a few? This paper shows how to

�nd out the minimum number of types (utility functions) neccessary to fully explain all observed choices in a

data set.

In seeking the minimum number of utility functions necessary to rationalise behaviour, we keep with Fried-

man�s (1957) assertion that we don�t want the true model, which may be unfathomably complex; rather, we

want the simplest model that is not rejected by the data. Ockham�s Razor applies here: "[Heterogeneity] must

never be posited without necessity". We know that we may be able fully to explain behaviour with a model

in which every agent is arbitrarily di¤erent from every other, but that model is not useful for modeling or

predicting behaviour. Instead, we want to pool agents to the maximum possible degree that is consistent with

our theoretical model. If the minimum number of types (utility functions) is very large relative to the number

of observations, then modeling strategies with a continuum of types, or with one type for each agent (such as

�xed e¤ects models), might be appropriate. In contrast, if the minimum number of types is small relative to

the number of observations, then modeling strategies with a small number of discrete types, such as those found

in macro-labour, education choice, and empirical marketing models, might be better.

We argue that our approach o¤ers three bene�ts which may complement the standard approaches to unob-

served heterogeneity in empirical work. Firstly, it provides a framework for dealing with heterogeneity which is

driven by an economic model of interest. Secondly, it is elementary: our approach does not require statements

about the empirical distributions of objects we can�t observe or functional structures about which economic

theory is silent. This contrasts with the standard approach of specifying a priori both the distribution of unob-

served preference heterogeneity parameters and its functional relationship with observables. Thirdly, it provides

a practical method of partitioning data so that the observations in each group are fully theory-consistent. This

contrasts with approaches wherein only part of the model (the part which excludes the unobserved heterogene-

ity) satis�es the theory.

We implement our strategy with cross-sectional dataset consumer microdata. These data happen to record

milk purchases but, importantly, they have individual-level price, quantity and product characteristics informa-

tion, and so are ideal for the application of RP methods. We �nd that at the number of types needed to explain

completely all of the observed variation in consumption behaviour is few relative to the number of observations

in our data.

The paper is organised as follows. We begin with a description of the cross-sectional data on household
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expenditures and demographics which we use in this study. We then investigate whether these data might be

rationalised by partitioning on observables which form the standard controls in microeconometric models of

spending patterns. We then set out a simple method for partitioning on unobservables, and consider whether

the results from these partitioning exercises can be a useful input to econometric modelling of the data. We

then consider the problem of inferring the number of types in the population from which our sample is drawn.

The �nal section draws some conclusions.

2 The Data

In this paper we focus on the issue of rationalising cross-sectional household-level data on spending patterns

with the standard static utility maximisation model of rational consumer choice. This approach can readily be

extended to other more exotic economic models which have a nonparametric/revealed preference characterisation

(examples are given in the discussion and in the Appendix). The data we use are on Danish households and

their purchases of six di¤erent types of milk. These households comprise all types ranging from young singles

to couples with children to elderly couples. The sample is from a survey of households which is representative

of the Danish population. Each household keeps a strict record of the price paid and the quantity purchased as

well as the characteristics of the product. We aggregate the milk records to a monthly level, partly to minimise

the computational burden and partly to allow us to treat milk as a non-durable, non-storable good, so that

the intertemporally separable model which we are invoking is appropriate. An attractive feature of these data

is that there is variation in prices in the cross section which is not due to unobserved di¤erences in product

qualities. Our full dataset has information on 1,917 households. Since some of the following calculations are

computaitonally quite expensive we begin by drawing a smaller random sample of 500 households from our

data. In section 6 we return, gradually, to the full original sample.

Descriptive statistics are given in Table 1. In what follows let I = fi : i = 1; :::; 500g denote the index set
for these observations and let fpi;qigi2I denote the price-quantity data. We will also make use of a list of
observable characteristics of each household and these are represented by the vectors fzigi2I .
Given these data the question of interest is whether it is possible to rationalise them with the canonical

utility maximisation model. The classic result on this issue is provided by Afriat�s Theorem (see especially

Afriat (1967), Diewert (1973) and Varian (1982, 1983a)). Afriat�s Theorem shows that the generalised axiom

of revealed preference (GARP) is a necessary and su¢ cient condition for the existence of a well-behaved utility

function u (q) which exactly rationalises the data in the sense that u (qi) � u (q) for all q such that p0iqi � p0iq.
That is, if p0iqi � p0iqj , qiR

0qj denotes a direct revealed preference relation and R is the transitive closure

of R0 then GARP is de�ned by the restriction that qiRqm ) p0iqi � p0iqm. If observed demands fpi;qigi2I
satisfy these GARP inequalities, then there is a single utility function (preference map) that can rationalise all

observed demands. If not, then there is not.2

2This discussion assumes that consumers are perfect optimisers. Our methods can easily be adapted to the situation where
they are imperfect optimisers, see the Appendix.
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Table 1: Descriptive Statistics

Mean Min Max Std. Dev

fwigi=1;::;500 Budget Shares
Conventional Full Fat 0.1688 0 1.0000 0.3158

Conventional Semi-skimmed 0.4255 0 1.0000 0.4102

Conventional Skimmed 0.1521 0 1.0000 0.2932

Organic Full Fat 0.0374 0 1.0000 0.1394

Organic Semi-skimmed 0.0977 0 1.0000 0.2237

Organic Skimmed 0.1185 0 0.9951 0.2669

Total Expenditure (DK)
Total Expenditure 66.1986 4.8222 345.1279 58.5765

fpigi=1;::;500 Prices (DK litre)

Conventional Full Fat 6.1507 3.3068 11.3289 0.4652

Conventional Semi-skimmed 5.4104 4.0919 7.9567 0.4304

Conventional Skimmed 5.1524 4.1619 6.2075 0.1814

Organic Full Fat 7.3335 6.1188 8.6597 0.1860

Organic Semi-skimmed 6.4968 5.0565 8.5374 0.2187

Organic Skimmed 6.2679 5.5312 7.9684 0.1501

fzigi=1;::;500 Demographics
Singles f0; 1g 0.3260 0 1.0000 0.4692

Singles Parents f0; 1g 0.0420 0 1.0000 0.2008

Couples f0; 1g 0.3500 0 1.0000 0.4774

Couples with children f0; 1g 0.2300 0 1.0000 0.4213

Multi-adult f0; 1g 0.0520 0 1.0000 0.2222

Age (Y ears)) 47.8600 18.0000 87.0000 15.5240

Male HoH f0; 1g 0.92 0 1.0000 0.27156

We checked the data for consistency with GARP and it failed. No single utility function exists which can

explain the choices of all of these households� Lewbel�s (2001) warning seems to be justi�ed. So we now turn to

the question: how many well-behaved utility functions are required to rationalise these price-quantity microdata?

Obviously 500 utility functions, each one rationalising each observation,will be over-su¢ cient. The next two

section explore the idea of conditioning on observables and unobservables in order to �nd a minimal necessary

partition of these data.

3 Partitioning on Observables

The aim of this section is to use nonparametric (revealed preference) methods to partition the data into a

mutually exclusive, exhaustive set of types such that the preferences of all of the households of a given type can
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be represented by a single utility function. This involves simply stratifying the data according to observables

and running RP tests within observable groups, then re�ning the strati�cation on observables until the RP test

for commonality of preferences within observable types is satis�ed. To this end we �rst strati�ed the data into

groups according to household structure and created 5 groups: single person household, single parents, couples,

couples with children and multi-adult households. The partition was insu¢ cient to be able to rationalise the

data within these groups.

We next ordered the household of each structure by the age of the head of household and, beginning with

the youngest, we sequentially tested the RP condition in order to see whether we could rationalise behaviour

by a further partition on age into contiguous bands. This too proved impossible because there were instances

of households with the same structure whose heads of household were the same age whose behaviour was not

mutually rationalisable. Having �rst split by household structure, and then split by age and not yet found a

rationalisation for the data we further split by region (there were nine regional indicators in the data). This

too failed to rationalise the data as there were instances of households with identical structure and age living

in the same region who were irreconcilable with a common utility function. We then looked at the gender of

the household head. This, �nally, produced a rationalisation of the data with 46 types de�ned by household

structure/age/region/gender.

The left hand panel of Figure 1 shows the distribution of group sizes with the groups ordered largest to

smallest. This shows that the largest groups consist of approximately 5% of the data (there are two such groups)

whilst the smallest (the 44th, 45th and 46th on the left of the histogram) consist of singletons. The right hand

panel of Figure 1 shows the cumulative proportion of the data explained by the rising numbers of types. The

�rst ordinate shows that approximately 5% of the data are rationalisable by one type (the most numerous) and

approximation 10% by two most numerous types. Ten types are needed to rationalise half the data.

Figure 1. Partitioning on observables
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We draw the following lessons from this exercise. Firstly the resulting partition is dependent upon the order

in which one takes the observables - the method is path dependent. Secondly the partition is not parsimonious

- each type only accounts for around 2% of the data on average.
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4 Partitioning on Unobservables

In this section we consider partitioning on unobservables. As before we are interested in trying to split the data

into as few (and as large) groups as we can such that all of the households within each group can be modelled as

having a common well-behaved utility function. However this time we will not use observables like those used

above to guide/constrain us. The simplest �brute force�approach would be to check the RP restrictions within

all of the possible subsets of the data and retain those which form the minimal exclusive exhaustive partitions

of the data. This is computationally infeasible as there are 2500 such subsets. Instead we have designed two

simple algorithms which will provide two-sided bounds on the minimal number of types in the data.The details

of the algorithms need not detain us here (they are described in the Appendix).

We ran the algorithm on our data and found that the minimal number of types was between 4 and 5. That

is one needs at least 4, and not more than 5, utility functions to completely rationalise all the observed variation

in choice behaviour observed in these data in terms of income and substitution e¤ects. For our upper bound of 5

types our algorithm also delivers a partition of the data into the groups, such that within-groups a single utility

function is su¢ cient to rationalise all the observed behaviour. Table 2 gives the average budget shares for each

group delivered by our upper bound algorithm and Figure 2 shows the distribution of types and gives the same

information as Figure 1 on the same scale for ease of comparison and in order to emphasise how parsimonious

this partition is in comparison.

Figure 2. Partitioning on unobservables
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Our expectation was that the observable characteristics of households would be the crucial determinants

of type-membership. However, a multinomial logit model of group membership conditional on demographic

characteristics (age and sex of household head, number of members, number of children, geographic location,

etc) has a (McFadden unadjusted) pseudo-R2 of only 5.4%. That is, observable characteristics of households are

essentially uninformative regarding which of the �ve types to which a household is assigned. The implication
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here is that, in a framework where we want to use the minimum number of types, unobserved preference

heterogeneity is vastly more important than observed demographic heterogeneity.

Table 2: Average Budget Shares Across Types

Conventional Milk Organic Milk

Sample Means Group N Full-fat Semi Skim Full-fat Semi Skim

pooled 500 0.168 0.425 0.152 0.037 0.097 0.118

Type 1 321 0.160 0.496 0.143 0.024 0.075 0.100

Type 2 100 0.155 0.285 0.205 0.070 0.121 0.162

Type 3 53 0.239 0.351 0.074 0.044 0.144 0.147

Type 4 18 0.134 0.256 0.148 0.032 0.258 0.170

Type 5 8 0.292 0.195 0.357 0.128 0.017 0.009

5 Estimation of Preferences

The incorporation of unobserved preference heterogeneity into demand estimation is a theoretically and econo-

metrically tricky a¤air. Matzkin (2003, 2011) proposes a variety of models and estimators for this application,

all of which involve nonlinearly restricted quantile estimators, and most of which allow for unobserved hetero-

geneity which has arbitrary (but monotonic) e¤ects on demand. These models are di¢ cult to implement, and,

as yet, only Matzkin (2003) and Briesch, R., P. Chintagunta, R. Matzkin (2010) have implemented them. Lew-

bel and Pendakur (2009) o¤er an empirical framework that incorporates unobserved preference heterogeneity

into demand estimation that is easy to implement, but which requires that unobserved preference parameters

act like �xed e¤ects, pushing the entire compensated budget share function up or down by a �xed factor.

Given the di¢ culty of incorporating unobserved preference heterogeneity beyond a �xed e¤ect, it is in-

structive to evaluate how our 5 utility functions di¤er from each other. Since group 5 has only 8 observations

assigned to it, we leave it out of this part of the analysis. For the remaining groups we estimate group-speci�c

demand systems. Since we know that, within each type, there exists a single preference map which rationalises

all of the data we need not worry about unobserved heterogeneity in our estimation. We know that there is

a single integrable demand system which exactly �ts the data for each group. The problem we face is that

we do not know the speci�cation of that demand system so our main econometric problem is �nding the right

speci�cation. We take the simplest possible route at this point and estimate a demand system with a �exible

functional form - the Quadratic Almost Ideal (QAI) demand system (Banks, Blundell and Lewbel 1997)). The

idea is that such a model should be �exible enough to �t the mean well and that the interpretation of the

errors is solely speci�cation error3 . By estimating budget-share equations for each of our four largest groups

we characterise what their Engel curves look like and test whether or not including group dummies in budget

share equations (as in Lewbel and Pendakur (2009)) is su¢ cient to absorb the di¤erences across these utility

functions.
3Measurement error is much more cumbersome to consider in a revealed-preference context, so we do not consider it here.
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Table 3: QAI Estimates of levels at median constraint

Conventional Milk Organic Milk

Group Group N Full-fat Semi Skim Full-fat Semi Skim

pooled 500 0.154 0.400 0.163 0.041 0.100 0.0142

0.018 0.024 0.017 0.008 0.013 0.015

group 1 321 0.155 0.434 0.173 0.020 0.085 0.133

0.022 0.030 0.021 0.007 0.014 0.017

group 2 100 0.153 0.287 0.194 0.089 0.092 0.184

0.032 0.044 0.041 0.021 0.028 0.032

group 3 53 0.195 0.330 0.091 0.070 0.130 0.184

0.055 0.064 0.033 0.027 0.036 0.041

group 4 18 0.084 0.171 0.295 0.052 0.209 0.190

0.061 0.075 0.079 0.028 0.061 0.057

Table 3 gives predicted budget-shares for each group, evaluated at a common constraint de�ned by the

vector of median prices and the median milk expenditure level. (These are the level coe¢ cients in the QAI

regressions for each group, where prices and expenditures are normalised to 1 at the median constraint.) The

point estimates di¤er quite substantially across groups, and a glance at the estimated standard errors shown in

italics shows that the hypothesis that these point estimates are the same value is heartily rejected.

The estimated linear and quadratic terms are also quite di¤erent across group, but these are estimated with

rather large standard errors. We do not present these coe¢ cients, but rather focus on tests of whether or not

the coe¢ cients are the same across groups. The joint hypothesis that all these groups have the same linear

and quadratic terms is rather weakly rejected� the sample value of the test statistic is 45:4, and under the Null

it is distributed as a �230 with a p-value of 3:5%. Individually, only groups 2 and 4 show evidence that they

di¤er from group 1 in terms of the total expenditure responses of budget shares (they test out with p-values of

8% and 1%, respectively).

In contrast, the estimated price responses of budget shares di¤er greatly across groups. The test that they

share the same price responses has a sample value of 382, is distributed under the Null as a �245 with a p-value

of less than 0:1%. Further, any pairwise test of the hypothesis that two groups share the same price responses

rejects at conventional levels of signi�cance.

One can also test the hypothesis the heterogeneity across the types can be aborbed into level e¤ects. Not

surprisingly, given that we reject both the hypotheses that total expenditure e¤ects are identical and that

price e¤ects are identical, this test is massively rejected. The test statistic has a sample value of 405, and is

distributed under the Null as a �275 with a p-value of less than 0:1%.

One problem with using the QAI demand system to evaluate the di¤erences across groups is that there is

no reason to think that the functional structure imposed by the QAI demand system is true. An alternative

approach is to use nonparametric methods. These methods have the advantage of not imposing a particular

functional form on the shape of demand. They have the disadvantage of su¤ering from a severe curse of
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dimensionality, because in essence one needs to estimate the level of the function at every point in the support

of possible budget constraints. The dimensionality problem is that this support grows fast with the number of

goods in the demand system. A nonparametric approach that does not su¤er from the curse of dimensionality

is to try to estimate averages across the support of budget constraints.

In the top panel of Table 4, we present the average over all observed budget constraints of the nonparametric

estimate of budget shares for each group. For the nonparametric analysis, we study only the 3 largest groups,

totaling 474 observations. For each group, we nonparametrically estimate the budget share function evaluated

at each of the 474 budget constraints, and report its average over the 474 values, as well as a simulated standard

error in italics.4

Table 4: Nonparametric Estimates, averaged over all constraints

Conventional Milk Organic Milk

Group Group N Full-fat Semi-fat Skimmed Full-fat Semi-fat Skimmed

Average Levels

group 1 321 0.157 0.465 0.158 0.027 0.078 0.115

0.015 0.020 0.014 0.006 0.014 0.013

group 2 100 0.168 0.292 0.191 0.074 0.092 0.184

0.022 0.035 0.029 0.013 0.015 0.028

group 3 53 0.201 0.362 0.073 0.034 0.128 0.201

0.056 0.056 0.019 0.017 0.032 0.056

Average Semi-Elasticity wrt Expenditure

group 1 321 -0.020 0.013 0.003 -0.001 -0.016 0.022

0.022 0.028 0.016 0.007 0.009 0.014

group 2 100 -0.048 0.068 -0.084 -0.010 0.000 0.074

0.028 0.061 0.040 0.013 0.025 0.050

group 3 53 0.028 -0.074 -0.029 -0.002 -0.054 0.132

0.082 0.094 0.027 0.017 0.035 0.099

The top panel of Table 4 shows average levels that are broadly similar to the sample averages reported in

Table 2. However, those reported in Table 4 di¤er in one important respect: whereas those shown in Table

2 are averages across the budget constraints in each group, those reported in Table 4 are averages across the

budget constraints of all groups. That is, whereas the sample averages in Table 2 mix the e¤ects of preferences

4Nonparametric estimates on each budget constraint (before averaging) are computed following Haag, Hoderlein and Pendakur
(2009). It is well-known that average derivative estimators su¤er from boundary bias. Although the estimates in Table 4 do not
trim near the boundaries, estimates which do trim near the boundaries yield the same conclusions.
Standard errors are simulated via the wild bootstrap using Radamacher bootstrap errors. Nonparametric estimators only

su¤er from speci�cation error in the small sample. Such error disappears as the sample size gets large. Further, unobserved
heterogeneneity need not cause a deviation from the regression line, because such heterogeneity is not necessary after our grouping
exercise. Thus, the wild bootstrap, which bases simulations on resamples from an error distribution, is actually an odd �t to the
application at hand. An alternative is to resample from budget constraints (rather than from budget shares) to simulate standard
errors. These simulated standard errors are much smaller, and make the groups look sharply di¤erent from each other in terms of
both average levels and average slopes.
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and constraints, the nonparametric estimates in Table 4 hold the budget constraints constant. These numbers

suggest that there is a quite a lot of preference heterogeneity. For example, Group 1 and Group 2 have

statistically signi�cantly di¤erent average budget shares for most types of milk.

Given that unobserved heteregeneity which can be absorbed through level e¤ects can �t into recently pro-

posed models of demand, it is more important to �gure out whether or not the slopes of demand functions

di¤er across groups. The bottom panel of Table 4 presents average derivatives with respect to the log of

expenditure (that is, the expenditure semi-elasticities of budget share functions), again averaged over the 474

observed budget constraints, with simulated standard errors shown in italics.

Clearly, the estimated average derivatives are much more hazily estimated than the average levels. But,

one can still distinguish groups 1 and 2: the skimmed conventional milk budget share function of group 2

has a statistically signi�cantly lower (and negative) expenditure response than that of group 1. No other

pairwise comparison is statistically signi�cant. However, the restriction that the average derivatives are the

same across groups combines 10 t-tests like this, two restrictions for each of the 5 independent equations. One

can construct a nonparametric analogue to the the joint Wald test of whether or not the three groups share

the same expenditure responses in each of the 6 equations. This test statistic has a sample value of 24:3 and

is distributed as a �210 with a p-value of 0:7%.
5

The picture we have of the heterogeneity in the consumer microdata is as follows. First, we can completely

explain all the variation of observed behaviour with variation in budget constraints and 4 or 5 preference maps

(ie. ordinal utility functions). Second, the groupings are not strongly related to observed characteristics of

households. That is, the primary heterogeneity here is unobserved. Third, the groups found by our upper

bound algorithm are very di¤erent from each other, mainly in terms of how budget shares respond to prices,

but also in expenditure responses. That the budget-share equations of the groups di¤er by more than just level

e¤ects suggests that unobserved preference heterogeneity may not act like �error terms�in regression equations,

and thus may not �t into models recently proposed to accomodate preference heterogeneity in consumer demand

modeling.

6 How Many Types in the Population?

Up to now, we have concerned ourselves with the question of how many types are needed to characterise

preferences in a sample of micro-economic choice data. This begs the question of how many types are needed

to characterise preferences in the population from which the sample is drawn. This is similar in some ways

to the famous coupon collector�s problem (see, e.g., Erd½os and Rényi (1961)) and other classical problems in

probability theory like the problem of estimating how many words Shakespeare knew, based on the Complete

Works (see, e.g., Efron and Thisted (1975)). It is also a di¢ cult problem to answer credibly - especially when

the unseen types in the population are not abundant and there is consequently a high probablity that you will

miss them in any given sample.

5 If we use the alternative resampling strategy which provides tighter standard errors (outlined in the previous footnote), then
the test that the average derivatives are the same for all 3 groups is rejected in each of the 5 independent equations, and, not
surprisingly, rejected for all 5 together.
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Biologists have long concerned themselves with a question which is closely analogous to ours, that of the

number of species which exist in the population of animals. Biostatisticians have developed a variety of estima-

tors for this object. Most are based on the �frequency of frequencies�of species in a sample (see, e.g., surveys

by Bunge and Fitzpatrick (1993) and Colwell and Coddington (1994)). The frequency of frequencies records

the number of singletons, de�ned as species observed only once in a sample, the number of doubletons, de�ned

as the number of species observed twice, and so on.

Perhaps the simplest of these estimators is that of Chao (1984) who proposes a lower bound estimator of

the number of species equal to nobs + s2=2d, where nobs is the number of species observed in the sample, s is

the number of singletons, and d is the number of doubletons. This estimator has the property that it equals

nobs when there are no singletons (s = 0). A variety of other (nonparametric) estimators have been proposed

since Chao (1984), but all those we found have this same property regarding the dependence on the number of

singletons. As shown in the previous section we did not �nd any singletons in our dataset of 500 observations.

Another approach is to characterise the number of species via extrapolation of the number of species observed

in increasingly large samples from a �nite population (Colwell and Coddington (1994) survey this literature).

The idea is intuitively appealing: if the graph of nobs(N), the number of observed species as a function of

sampling e¤ort measured by the sample size N , asymptotes to a �xed number, then this may be taken as an

estimate of the number of species in the population.

The analogy between animal species and preference types is worth considering for a moment. Whether or

not two individuals could have the same utility function, and thus could be of the same type, is observable (via

RP tests). However, when revealed preference restrictions are used to identify types, it is often possible to �t

individuals into more than one type. That is to say that the de�nition of a type is not "crisp" and the allocation

for individuals to types is not unique: it may be that persons A and C violate an RP test when pooled together

so have di¤erent preferences, but that B passes an RP test when combined with either - where should we put

B?. In assessments of biodiversity which apply the statistical methods described above, the literature proceeds

as if there is no such uncertainty as to which species an observation should be assigned. It is worth pointing

out that biologists know that this is not entirely true. There exist "ring species" (the Ensatina salamanders

which live in the Central Valley in California are the famous example) where (sub)species A and C cannot

breed successfully, but species B can breed with either A�s or C�s - where should B lie in the taxonomy? The

biostatistics literature treats this as an ignorable problem. It may or may not be an ignorable problem for

economists. Nonetheless we too will ignore it.

Since the frequencies of frequencies approach cannot be applied fruitfully in our data� it will simply give an

estimate of the enumber of types in the population equal to the number of types in the sample� we adopt the

idea of plotting nobs(N) and extrapolating. From the full data set of 1917 observations, we took random sub-

samples of sizes 250,500,...,1750, and the full sample of 1917 observations, and ran our upper and lower bound

algorithms to determine bounds on the minimum number of types neccessary to rationalise all the observed

choices in each sample. Figure 3 shows results for nobs(N): the upper line traces out the upper bound, and

the lower line traces out the lower bound. Figure 4 shows the ratio of types to sample size: nobs(N)=N .
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Figure 3. The number of types against sample size
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Examination of Figure 3 does not immediately suggest an asymptote for nobs(N). However, it is clear from

Figure 4 that the number of types rises slower than linearly with the number of observations in the sample.

Because the number of observations in the sample does not get anywhere near the size of the population (about

2.5 million, the number of households in Denmark), we cannot pick out this asymptote in a nonparametric way.

Raaijmakers (1987) suggests the use of the parametric Eadie-Ho¤stee equation (nobs(N) = npop�Bnobs(N)=N ,
where npop and B are unknown parameters) to estimate the asymptote, and provides a maximum likelihood

estimator for the asymptote npop, which may be taken as the estimated number of species in the population.

Implementation of this estimator using the upper bound on the number of types results in an estimate of 13:0

with a standard error of 0:5. This suggests that the number of types in the population is at most 14.

Figure 4. The number of types against sample size
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7 Discussion

We consider an elementary method of partitioning data so that it can be explained perfectly, and in a way

which admits the minimal necessary heterogeneity. We argue that our approach o¤ers three bene�ts which may

complement the more established microeconometrics treatment of unobserved heterogeneity. Firstly it provides

a framework in which to study heterogeneity which is driven by the economic model of interest. Secondly

it does not require statements about the distributions of objects we can�t observe or functional structures

about which economic theory is silent. Thirdly it provides a practical method of partitioning data so that

the observations in each group are precisely theory-consistent rather than just approximately so. This allows

researchers to estimate group-speci�c demand models without fear of the complications which arise in the

presence of unobserved heterogeneity.

Throughout this paper we have focused on consumer data and on the canonical utility maximisation model.

This is mainly for expositional reasons and it is important to point out what we are proposing can easily be

applied to the analysis of heterogeneity in any microeconomic model of optimising behaviour which admits

a RP-type characterisation. This is an increasingly wide class which includes pro�t maximisation and cost-

minimisation models of competitive and monopolistic �rms, models of intertemporal choice, habits, choice

under uncertainty, collective household behaviour, characteristics models, �rm investment as well as special

cases of all of these models which embody useful structural restrictions on preferences or technology (e.g. weak

separability, homotheticity and latent separability)6 . To adapt our approach to any of those models, one simply

replaces the GARP check in all the algorithms with the appropriate RP check (see the Appendix). The point

is that our strategy for assessing heterogeneity in the consumer demand framework is in principle applicable to

any environment where agents are assumed to be optimising something.

In the empirical illustration we characterise the amount of heterogeneity necessary to completely rationalise

the observed variation in consumer microdata. We �nd that very few types are su¢ cient to rationalise observed

behaviour completely. Our results suggest that Becker and Stigler had it wrong in De Gustibus ..: preferences do

indeed di¤er both capriciously and importantly between people. The capriciousness is that although in the three

decades since Becker and Stigler�s assessment, we have learned much about how to deal with preference hetero-

geneity that is correlated with observables, it seems that the more important kind of heterogeneity is driven by

unobservables. Our results also suggest that models which use a small number of heterogeneous types� such

as those found in macro-labour models, education choice models, and a vast number of empirical marketing

models� may in fact be dealing with unobserved heterogeneity in a su¢ cient fashion. In contrast, models like

Lewbel and Pendakur (2009), in which unobserved preference heterogeneity is captured by a multidimensional

continuum of unobserved parameters could well be overkill.

6Afriat (1967), Diewert (1973), Varian (1982, 1983a, 1983b, 1984), Hanoch and Rothschild (1972), Browning (1989), Bar-Shiva
(1992), Cherchye, De Rock and Vermuelen (2007),Blow et al (2008),
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Appendix
Partitioning Algorithms
Notation: For an arbitrary set A, P (A) denotes the power set (set of all subsets) of A The number of elements
of A is denoted by jAj. For arbitrary sets A and B; AnB denotes A minus B: all elements from A that are not
in B:

Brute Force Algorithm
Inputs: I; fpi;qigi2I : Outputs: N and G.

1. If fpi;qigi2I satis�es RP set N = 1; G = I and goto (6).
2. Set H =

�
h : h 2 P (I) ; fpi;qigi2h satis�es RP

	
3. Set J = fj : j 2 P (H) ; j = Ig
4. N = min fjjj : j 2 Jg :
5. Set G = fj : j 2 J; jjj = Ng :
6. End.

The outputs of the �Brute Force�algorithm are N = the number of types and G = a set containing all of
the exclusive and exhaustive partitions of the data into N subsets such that the data in each type satisfy RP.
This algorithm works by simply enumerating all of the subsets of the data, chekcing RP conditions within those
subsets and then �nding the minimal partition based on those subsets which satisfy RP.

Upper Bound Algorithm.
Inputs: I; fpi;qigi2I . Outputs: N and G

1. If fpi;qigi2I satis�es RP set N = 1; G = I and goto (8).
2. Select i 2 I with uniform probability, set I = Ini:
3. Set G1 = fig, set G =

�
G1
	

4. If I 6= ?, select i 2 I with uniform probability, set I = Ini,
set E = G: Else if I = ? goto (8)

5. If E 6= ?, select g = argmax
�
jgj : g 2 G

	
, set E = Gng: Else goto (8)

6. If fpj ;qjgj2fg;ig satis�es RP set G = Gng, set g = g [ i,
set G = G [ g and goto (4); else goto (7).

7. Set GjGj+1 = fig, set G = G [GjGj+1, goto (4).
8. N = jGj
9. Stop.

The outputs of the Upper Bound algorithm are N = the upper bound on the number of types and G =
a set containing an exclusive and exhaustive partition of the data into N subsets such that the data in each
type satisfy the RP conditions. The algorithm works on the principle of randomly ordering the data and trying
to construct groups which satisfy RP conditional on that ordering. As new observations are drawn it tries to
add them to the existing partition and starts by placing them in the largest group available. If an observation
cannot be added to an existing group it is used to initialise a new group. The upper bound algorithm begins
by picking a single observation at random without replacement. This forms the basis for the �rst group. It
then chooses the next observation at random also without replacement and tests whether the two satisfy RP.
If they do they are placed together in the �rst group. If they don�t the new observation is used to begin a new
group. The next observation is then drawn and, starting with the largest existing group an RP test is used to
determine whether it can by placed in that group. It is placed into the �rst group where it satis�es RP. If no
such group can be found amongst the exists groups the observation is used to start a new group. The algorithm
continues in this way until the dataset is empty and all observations have been assigned to groups. Since this
algorithm relies on a random ordering of the data we run it a number of times and retain the minimum partition
over these independent runs.
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Lower Bound Algorithm.
Inputs: I; fpi;qigi2I .. Output: N

1. If fpi;qigi2I satis�es RP set N= 1; g = 1 and goto (6).
2. Select i 2 I randomly with uniform probability, set I = Ini and g = i
3. If I 6= ?, select j 2 I with uniform probability, set I = Inj,
else if I = ? goto (6)

4. If the dataset fpj ;qj ;pi;qig8j;i2fj;gg violates RP set g = g [ j. Goto (3).
5. N= jgj
6. Stop.

The output of the Lower Bound algortihm is N = the lower bound on the number of types. This algorithm
works on the principle that if we can �nd N observations which violate RP in all pairwise tests conducted
between themselves, then there muct be at least N groups (since none of these observations could ever be
placed in the same group). It begins by selecting an initial observation at random without replacement. It
then picks another observation without replacement and tests RP. If the pair satisfy RP the second observation
is dropped and a new observation selected. However if the pair violate RP the new observation is retained.
We now have two observations which violate RP. A third observation is now selected from the data without
replacement. This is tested against each of the observations currently held. If it violates in pairwise tests
against all of them then it is retained. Otherwise it is dropped. The algorithm continues in this way until the
dataset is exhausted. At the end of the process the algorithm has collected together a set of observations which
all violate pairwise RP test conducted between each of them. The number of these observations gives the lower
bounds N: As before the algorithm is reliant on a random ordering of the data. We therefore run the process
a number of times and retain the maximum value of N we �nd.

Allowing for Optimisation Errors
So far we have treated the data as error free. We now consider optimising error by consumers. Our treatment
of this issue is not original to this paper7 . The point of this section is merely to show, brie�y, that this
�rmly-established treatment can be applied in our context.
Afriat (1967) interpreted RP checks as a con�ation of two sub-hypotheses: theoretical consistency and the

idea that economic agents are e¢ cient programmers. If the data violate the conditions then it may be that
some consumers have made optimisation errors. His suggestion was that, instead of requiring exact e¢ ciency, a
form of partial e¢ ciency is allowed. This is achieved by introducing a parameter e 2 [0; 1] (the Afriat e¢ ciency
parameter) such that

ep0tqt � p0tqs , qtR
0
eqs

The weaker form of GARP is then
qjReqi ) ep0iqi � p0iqj

where Re is the transitive closure of R0e. The interpretation of e is as the proportion of the consumer�s budget
which they are allowed to waste through optimisation errors. This parameter is used to modify the restrictions
of interest to allow for a weaker form of consistency (see Afriat (1967)). To admit optimisation error into
the partitioning approach all we need to do is to specify a level for e in advance and insert the modi�ed RP
restriction into the algorithms at the appropriate steps (step (2) in the exact algorithm, step (6) in the upper
bound and step (4) in the lower bound algorithm). It is then straightforward to examine how the results vary
with the required e¢ ciency level.
The e¤ects of allowing for optimisation errors is to reduce the amount of heterogeneity which is needed

to rationalise the data. Admit enough error and it is possible to rationalise almost anything. As a result,
running the algorithms without these adaptations will give a �worst-case�assessment, delivering the �maximum
minimum�number of groups.
We implemented this methodology with our sample of 500 observations of household milk demands. Clearly

if there is enough optimisation error, then one can explain any behaviour with just one utility function. This
is what we observe for e � 0:781. For e greater than this, more than one utility function may be required to
explain the variation in behaviour that we observe. For e � 0:90, more than one utility function is de�nitely
required to explain the variation in observed behaviour.

7The treatment of optimisation errors in RP tests is due to Afriat (1967) and that of measurement error is due to Varian (1985).
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Table A.1: Bounds and Afriat E¢ ciency
e Bounds
0.78 1
0.80 [1,2]
0.85 [1,2]
0.90 [2,3]
0.95 [3,4]
1.00 [4,5]

Panel Methods
So far we have considered cross-section data. Clearly in cross section data, where each consumer is observed
pnly once, some degree of commonality in preferences is necessary in order to make progress in applied work.
However panel data generally holds out the hope of identifying more about individuals than is possible with
cross section data. Indeed panel data has two important features in terms of identifying types in our framework.
Firstly, repeated observation on individuals allows them to distinguish their type more clearly through their
behaviour. Secondly, repeated observations mean that stability of preferences becomes an important factor.
Recalling our main question: how many sets of preferences are needed to rationalise the data? a natural

way to proceed is to �rst check GARP for each individual consumer and then to seek to allocate consumers
into type groups. Given a set of individually GARP-consistent consumers, the algorithms described above can
be applied almost without modi�cation.
Of course some consumers will individually fail GARP and the question arises what to do with them. One

answer is to simply set them aside as their behaviour is not rationalisable with the model of interest. However,
this would not be in the spirit of taking rationality as a maintained assumption. A second possibility is to
allow for enough optimisation errors in the way we describe above. However, this strategy would also a¤ect the
grouping of people (because admitting optimisation error would tend to decrease the amount of RP violations).
Thirdly, we could consider alternative models for their intertemporal behaviour.
People change. Although economists like to invoke immutable preferences, we all know that our preferences

can change, sometimes in a dramatic fashion. So, a �nal alternative is to allow for "multiple personalities". By
that we mean that we can take the data on an individual and search within it for contiguous sub-periods during
which their behaviour is rationalisable. We can then treat each of these sub-periods as a separate individual
(which they are in the sense that each one potentially requires a di¤erent utility function to model it) and run
the partitioning algorithms as before. Because this approach sits wholly inside our basic framework, without
the need for discarding data, including optimisation errors or writing down a dynamic structure for utility
functions, it is in some sense the simplest option, and therefore our preferred one.

Panel Results

We use the same 500 households as in our cross-sectional analysis, but use a sequence of up to 24 months of
milk consumption data for each household. Using the "multiple personality" mentioned above, which preserves
all of the data from our 500 households, we implement our model. The number of groups needed to completely
rationalise these data is at least 12 and not more than 31. This is quite surprising. After all the standard
approach to panel data in applied econometric analysis is to use "�xed e¤ects", which in this context would
imply 434 groups. Our results show that this is at least 15 times as many groups as are really necessary, and
therefore is radically overspeci�ed.
Fixed e¤ects are a bad match to these data for 2 more important reasons. First, Blundell, Duncan and

Pendakur (1998) show that �xed e¤ects in budget shares are consistent with rationality restrictions only if
budget shares are linear in the natural logarithm of total expenditure. Second, in our exploration of cross-
sectional data above, we showed that both levels and derivatives of budget-share equations vary across groups.
Thus, �xed level e¤ects do not adequately capture the di¤erences across groups.

Other Contexts
The RP methods outlined in this paper can be easily adapted to other optimising models. The table below
gives RP restrictions corresponding to utility maximisation (Afriat 1967, Diewert 1973, Varian 1982, 1983a,
1983b, 1984), pro�t maximisation (Hanoch and Rothschild 1972) and cost minimisation (Hanoch and Roth-
schild 1972; Cherchye, De Rock and Vermuelen 2008). Corresponding restrictions are available for models
of intertemporal choice (Browning 1989), habits (Crawford 2010), choice under uncertainty (Bar Shira 1992),
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collective household behaviour (Cherchye, De Rock and Vermuelen 2007), characteristics models (Blow et al
Crawford 2008), as well as special cases of all of these models which embody useful structural restrictions on
preferences or technology (e.g. weak separability, homotheticity and latent separability). In order to apply our
methods to another optimising model, one simply replaces the GARP restrictions used in the body of this paper
with the corresponding restrictions on optimising behaviour driven by the model of interest. Below, we brie�y
demonstrate how this works by applying our methods to a model of �rm cost minimisation. Instead of seeking
the minimum number of distinct preference maps necessary to rationalise observed consumption choices, we
seek the minimum number of distinct technologies necessary to rationalise the observed input demand choices.
Here we provide an illustration of the application of partitioning to �rm data. The data relate to 281

Danish Farms observed in 1990. These are Danish Farm Association Service data gathered through a voluntary
consultancy scheme and for each farm the data includes detailed annual accounts of variable costs and earnings
for each production line with corresponding accounts measures of most inputs and outputs. We measure �ve
outputs {milk, two types of beef, and two types of crops} and we observed 46 inputs - like fodder, cattle,
fertiliser, pesticides, and the services from labour, land, building and machine capital. The farms recorded the
transactions prices for each of their inputs and outputs. In this application we are interested in unobserved
technological heterogeneity and the economic model of interest is the canonical cost minimisation model:

min
x

w0
ix subject to x is in V (qi)

where qi denotes a vector recording the quantities of the outputs of �rm i and xi is a vector recording the
quantities of the �rm�s inputs. Technology is denoted by the input requirement set V (qi) which is a closed,
non-empty, monotonic, nested and convex set which consists of all input vectors x that can produce at least
the output vector qi.The observable consequences of this model are summarised in the following theorem.

Theorem: (Hanoch and Rothschild (1972), Diewert and Parkan (1983), Varian (1984)). The following condi-
tions are equivalent:
(1) there exists a family of nontrivial, closed, convex, positive monotonic input requirement sets fV (q)g such
that the data fqt;wt;xtg solves the problem minx w

0
ix subject to x is in V (qi) for each i = 0; 1; :::; N:

(2) if qj � qi then w0
ixj � w0

ixi for all i and j.

The condition in (2) is the Weak Axiom of Cost Minimisation (Varian, 1983) and it provides the partitioning
criteria: if the data for two �rms are such that (2) does not hold then the two �rms concerned cannot have the
same technology. We simply replace GARP with WACM in the algorithms described in the paper and �nd the
following bounds on the number of technological types:

3 � NG � 4
It appears that very few production technologies are required to model (precisely) these very disaggregated
data in which �rms are able to choose from many inputs and produce several outputs. Furthermore as with the
consumer cross section data it turns out that a single production technology will �t the majority of the data:

Table A.2: The cumulative distribution of technological types
Number of Types 1 2 3 4
Percent of Sample Explained 80% 94% 98% 100%
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