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Abstract

“Only entropy comes easily” - Anton Chekhov

Various methods have been used to overcome the point identification problem inherent
in the linear age-period-cohort model. This paper presents a set-identification result for
the model and then considers the use of the maximum-entropy principle as a vehicle
for achieving point identification. We present two substantive applications (US female
mortality data and and UK female labor force participation) and compare the results from
our approach to some of the solutions in the literature.
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1 Introduction

The age-period-cohort (henceforth apc) model is used widely in number of disciplines such as

sociology, demography, economics and epidemiology. It aims to separate, for some outcome

of interest, those influences associated with the process of aging, from those influences asso-

ciated with the date at which subjects are observed, from those influences associated with a

subject’s date of birth. That the three effects can be conceptualized as distinct was argued at

least as far back as Ryder (1965); different age groups within the population are at different

stages of life relating to education, work and fertility; at various dates individuals are exposed

to different events which have population-wide effects such as famines, wars, recessions and
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epidemics; successive date-of-birth cohorts experience different histories, institutions and peer-

group socialization. Thus, it is argued, age, period and cohort all have distinctive influences

on individuals and groups of individuals. The apc model aims to disentangle these influences.

Unfortunately, the linear apc model suffers from a well-known fundamental identification

problem, namely that there is a perfect linear relationship between these effects: period equals

year of birth plus age. It is impossible therefore to observe independent variation in these

conditioning variables and hence standard linear regression techniques cannot separate them.

The perfect multicollinearity in these variables makes point identification of the separate effects

impossible.

Undeterred, researchers have held to the view that these influences are both important and

distinct and so a large literature going back to the 1970s has grown up around the problem

of identifying apc models; see, for example, Mason et al. (1973), Glenn (1976), Fienberg

and Mason (1979), Kupper et al. (1985)1. At heart the apc model poses an ill-posed inverse

problem and so most solutions proceed by using assumptions or prior information to transform

it into a well-posed problem which can be solved by standard statistical methods. In this vein

a number of solutions have been put forward: one is to re-specify the model and to either

make it non-linear or to estimate it in differences; another is to impose a parameter restriction

of some kind (one is enough); a fourth is to replace the dummies which capture one of the

effects with data which reflect a causal mechanism. Recently an alternative generic - context

independent - solution has been suggested by Yang et al. (2004, 2007, 2008) who introduced

the intrinsic estimator. This approach does not use regularizing identifying assumptions in the

usual sense, but does impose some requirements on the geometric orientation of the parameter

vector in the parameter space.

1Examples of applied work include developments in social changes such as marriage (Hernes 1972), trends
in mortality (Case 1965; Collins 1982; Cayuela et al. 2004), developments in income and wealth (Kapteyn et
al. 2005), (female) labor force participation (Contreras et al. 2005; Euwals et al. 2011; Balleer et al. 2009),
wages (Meghir and Whitehouse 1996; Kalwij and Alessie 2007), and savings behavior (Attanasio 1998).
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This paper suggests another generic approach to apc models. We first show that in cases

in which the range of the dependent variable is bounded in the population (for example, when

it measures a binary event) the model is partially identified in the sense of Manski (2003): the

parameters of the model can be shown to be confined to a closed, convex set.

For some purposes it may be sufficient to work with the identified set. Often, however,

we seek a point within that set; we propose using a maximum entropy estimator to point

identify the apc parameters. This approach has its roots in statistical mechanics and later

information theory2. It proceeds by representing uncertainty about some object of interest

(in this case the coefficient vector of the apc model) in terms of a probability distribution

(where probability is interpreted as a measure of a state of knowledge rather than a limiting

frequency). It then focusses on this probability distribution and considers how to arrange this

distribution in a way that best represents the current state of knowledge as revealed by, and

consistent with, the data at hand. The criterion function used to select the probabilities is

an entropy measure which Shannon (1948) showed was identified (up to a constant) by the

requirements that any measure of uncertainty should be continuous, symmetric (with respect

to reordering of the outcomes), maximized when all events are equiprobable and additively

decomposable (so that the total amount of uncertainty in a process is independent of how

the process might be regarded as being divided into parts). The entropy measure we use is,

in fact, a special case of the more general cross-entropy criteria suggested by Good (1963)

and Kullback (1959) which includes prior information on the probability distribution. Both

the maximum cross-entropy estimator and the maximum entropy estimators are therefore

examples of shrinkage estimators (see for example Stein (1981) and Denzau et al. (1989)).

Maximum entropy estimation methods are now quite well established (see Golan et al. 1996)

but their use in this context is, as far as we know, novel. As we show in this paper these

2Boltzman (1872), Jaynes (1957a, 1957b), Shannon (1948).
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methods are straightforward to apply and produce results which compare plausibly with those

derived through other methods.

The paper is organized as follows. Section 2 explains the identification problem. Section

3 describes the partial identification of the apc coefficients when the dependent variable has a

known support in the population and presents the maximum entropy based approach. Section

4 gives a brief overview of some existing strategies designed to deal with the identification

problem. Section 5 describes the information-based approach to point identification. Section

6 offers two empirical examples and section 7 concludes.

2 The Problem

Suppose that we have panel data (or quasi-panels) on a group of subjects. For person h in

period t we observe age (at the end of the survey year), denoted aht, from which we can

construct a year of birth (cohort) variable, ch = t − aht. We also observe some variable of

interest Yht. It is often of interest to describe the evolution of this variable by a decomposition

into additive age, period and cohort (apc) components3. Since all the right hand side variables

are discrete, we can take a ‘nonparametric’/local averaging approach:

Yht =
∑

a

αad
a
ht +

∑

t

πtdt +
∑

c

γcd
c
ht + εht (1)

where daht is a dummy variable that is set to one if person h is aged a at the end of survey

year t; dch is set to one if person h was born in year c and dt is set to one if Yht was recorded

for person h in period t. The sums are taken over all possible values of the three variables.

This formulation brings out clearly that the additivity imposes quite strong restrictions on

the description of the evolution of the variable of interest since all ‘cross terms’ (for example,

dahtdt) are dumped into the residual term εht.

3 In this note we take this as given. The strength of an additive decomposition is that it is purely statistical
(or mechanical); the weakness (apart from the non-identification) is that it does not ‘explain’ the sources of
any effects it uncovers.
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In our discussion of the identification of apc effects we shall consider a simple sampling

scheme in which two cohorts (c = 1, 2) are followed for three periods (t = 3, 4, 5) so that age

ranges from 1 to 4 (a = 1, 2, 3, 4) . We have:

Yht = α1d
a=1
ht +α2d

a=2
ht +α3d

a=3
ht +α4d

a=4
ht + π3d3 + π4d4 + π5d5 + γ1d

c=1
h + γ2d

c=2
h + εht (2)

Two sets of identification problems arise. The first is that each of the sets of dummies sums

to one. This is easily dealt with by, for example, setting the coefficients for the youngest age

and the most recent cohort (α1, γ2) to zero and interpreting the rest of the effects relative to

this normalization.

Yht = α2d
a=2
ht + α3d

a=3
ht + α4d

a=4
ht + π3d3 + π4d4 + π5d5 + γ1d

c=1
h + εht (3)

Thus, the coefficient on the first period gives the expected outcome for the reference age-

period-cohort which are those individuals who were born in period 2, observed in year 3, at

the age of 1. The second identification issue is much more serious. Even with the normalization

adopted here, the linear relationship between age, period and cohort (period equals year of

birth plus age) imposes a linear relationship on the dummy variables in equation (3). In the

present context this relationship is:

−da=2ht − 2da=3ht − 3da=4ht + d4 + 2d5 + d
c=1
ht = 0 (4)

Solving (4) for da=2ht and substituting into (3) gives the reduced form

Yht = b1d
a=3
ht + b2d

a=4
ht + b3d3 + b4d4 + b5d5 + b6d

b=1
ht + εht (5)

where the matrix of regressors has full column rank and so the parameters of (5) can be

estimated by ordinary least squares. The relationship between the reduced form parameters

5



and the parameters of interest may be written as






b1
b2
b3
b4
b5
b6






=






−2 1 0 0 0 0 0
−3 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 1 0 0
2 0 0 0 0 1 0
1 0 0 0 0 0 1











α2
α3
α4
π3
π4
π5
γ1






(6)

or, more succinctly:

b= Aβ (7)

This describes a linear simultaneous equation system with seven unknowns and six equations

and serves to emphasis the ill-posed inverse problem at the heart of the apc model. Whilst we

may estimate the six reduced form parameters b = [b1, ..., b6]
′ we are unable, as it stands, to

recover from them the seven parameters of interest β = [α2, α3, α4, π3, π4, π5, γ1]
′. The system

is under-determined: there are an infinity of solutions given by

β = A+b−
(
I7 −A

+A
)
q (8)

where A+ is the Moore-Penrose inverse of A and q is an arbitrary seven-vector. We have

no constructive basis for selecting, from this uncountably infinite feasible set, a particular

solution vector for β.

3 Set identification

We now show that although the parameters β are not point identified, they are set identified

if the support of Y is bounded. The apc model is a fully saturated regression model in which

all of the regressors are dummy variables and sums of regression coefficients correspond to

conditional (cell) means. Set identification follows since if the outcome variable has a bounded

range in the population then by the law of iterated expectations all of its conditional means

are necessarily bounded. To see this, without loss of generality, consider again our simple

sampling scheme in which two cohorts are followed for three periods so that age ranges from
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1 to 4 and consider our equation of interest (3):

Yht = α2d
a=2
ht + α3d

a=3
ht + α4d

a=4
ht + π3d3 + π4d4 + π5d5 + γ1d

c=1
h + εht

Then sums of the apc coefficients correspond to conditional expectations for all observable

and unobservable/counterfactual combinations of age, period and cohorts as follows:






E (Y |a = 1, p = 3, c = 2)
E (Y |a = 2, p = 3, c = 2)
E (Y |a = 3, p = 3, c = 2)
E (Y |a = 4, p = 3, c = 2)
E (Y |a = 1, p = 3, c = 1)
E (Y |a = 2, p = 3, c = 1)
E (Y |a = 3, p = 3, c = 1)
E (Y |a = 4, p = 3, c = 1)
E (Y |a = 1, p = 4, c = 2)
E (Y |a = 2, p = 4, c = 2)
E (Y |a = 3, p = 4, c = 2)
E (Y |a = 4, p = 4, c = 2)
E (Y |a = 1, p = 4, c = 1)
E (Y |a = 2, p = 4, c = 1)
E (Y |a = 3, p = 4, c = 1)
E (Y |a = 4, p = 4, c = 1)
E (Y |a = 1, p = 5, c = 2)
E (Y |a = 2, p = 5, c = 2)
E (Y |a = 3, p = 5, c = 2)
E (Y |a = 4, p = 5, c = 2)
E (Y |a = 1, p = 5, c = 1)
E (Y |a = 2, p = 5, c = 1)
E (Y |a = 3, p = 5, c = 1)
E (Y |a = 4, p = 5, c = 1)






=






0 0 0 1 0 0 0
1 0 0 1 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 1 0 0 1
1 0 0 1 0 0 1
0 1 0 1 0 0 1
0 0 1 1 0 0 1
0 0 0 0 1 0 0
1 0 0 0 1 0 0
0 1 0 0 1 0 0
0 0 1 0 1 0 0
0 0 0 0 1 0 1
1 0 0 0 1 0 1
0 1 0 0 1 0 1
0 0 1 0 1 0 1
0 0 0 0 0 1 0
1 0 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 0 1 0
0 0 0 0 0 1 1
1 0 0 0 0 1 1
0 1 0 0 0 1 1
0 0 1 0 0 1 1











α2
α3
α4
π3
π4
π5
γ1






which we will write more compactly as y = Bβ. We first show set identification of β if the

conditional expectations are between zero and unity; that is y ∈ [0, 1]24. The identification in

the more general case in which Y is bounded follows using the obvious transformation.

Lemma. If Y ∈ [0, 1] then βk ∈ [−1, 1] for all k.

Proof. We can write the equality restrictions y = Bβ ∈ [0, 1]24 as the matrix
inequality Dβ ≤ C where D = [B′ : −B′]′ and C=[1′24 : 0

′
24]
′. We can also write

the range restriction relating to β ∈ [−1, 1]7 as Eβ ≤ F where E = [I7 : −I7]
′ and

F = [114]. We need to show that D β ≤ C implies E β ≤ F. The condition under
which this is the case is given in Rockafellar (1970, p. 199, Theorem 22.3) and it is
that there exists a real non-negative matrix λ such that D′λ = E′ and C′λ ≤ F′.
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The problem of deciding whether a suitable λ vector exists can be determined by
running Phase 1 of the Simplex algorithm which will find, in a finite number of
steps, a feasible vector iff such a vector exists. In the appendix we construct a
suitable λ matrix which satisfies the condition. Consequently we have D β ≤ C.�

For cases in which the dependent variable is bounded in the population Y ∈ [Ymin, Ymax] then

we can transform it such that Ỹ = (Y − Ymin) /(Ymax−Ymin) so that Ỹ ∈ [0, 1] and apply the

above arguments. Transforming back using

Y = Ymin + (Ymax − Ymin) Ỹ (9)

we have the result:

Corrolary If Y ∈ [Ymin, Ymax] then βk ∈ [Ymin − Ymax, Ymax − Ymin] for all k.

This partial identification result shows that, when the dependent variable has a known

closed support in the population, the apc coefficient vector β lies in a closed, convex parameter

space given by the hypercube B, centered at zero with each side of length 2 [Ymax − Ymin].

4 Some point identifying assumptions

Various solutions to the apc problem have been suggested. Most of them use assumptions

or prior information to transform the underlying ill-posed inverse problem into a well-posed

problem which is amendable to solution via standard maximum likelihood methods. One such

is to abandon the ‘nonparametric’ model and to parameterize one or more of the explanatory

variables with, for example, a polynomial and impose that (at least) one of the linear effects is

zero (e.g. Fitzenberger et al. 2004). Another solution, along the same lines, is to proxy one of

the variables with something meaningful in the context. For example, if the outcome of interest

is household consumption and the time effects are there to reflect common macroeconomic

effects then it has been suggested to proxy them with a macroeconomic time series.4 One

4This approach is, among others, used by Heckman and Robb (1985), Kapteyn et al. (2005), Winship and
Harding (2005), Portrait et al. (2010), Euwals et al. (2011).
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can also assume away one of the factors (for example, Firebaugh and Davis 1988; Myers and

Lee 1998; Van der Schors et al. 2007). This will allow the others to be recovered but is

vastly over-sufficient, since we only need one restriction to achieve identification no matter

how many years, ages and cohorts we have as long as the additional restriction is not a

linear combination of those already embodied in (7). Dropping one of the effects altogether

generally results in over-identification which gives testable restrictions. Since we only need

one restriction to identify all the parameters this suggests that we may be able to get away

with weaker assumptions, for example, that the effects of two adjacent ages are the same. If

we use this to augment A and b then A−1 exists and the system can be solved uniquely. This

commonly used method was introduced by Mason et al. (1973). Another approach which also

just identifies is the suggestion of Hanoch and Honig (1985) and Deaton and Paxson (1994)

which involves detrending such that the period effect is orthogonal to a trend and sums to

zero. However, it is important to note that, as Deaton (1997, p. 126), points out

“This procedure is dangerous when there are few surveys, where it is difficult to

separate trends from transitory shocks.... Only when there are sufficient years

for trend and cycle to be separated can we make the decomposition with any

confidence.”

This points to a general issue, not one which pertains only to the Deaton and Paxson nor-

malization: credible identifying assumption must be justified in each new context - there is

no universally credible assumption. Furthermore, coefficient estimates are very sensitive to

the choice of the identifying constraint, even if one chooses only one of these (to give a just

identified model); we illustrate this below. For identifying the apc problem, the main problem

is that the a priori information needed for reasonable identifying constraints is scarce (Glenn,

1976).

An alternative approach due to Fu (2000) and Yang et al. (2004, 2008) suggests the use of

the ‘intrinsic estimator’. This corresponds to the first term in the general solution (8). The
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argument for focussing on this component appears to be that the second term is arbitrary (due

to the random vector q) so should not play a role whereas the first term is a deterministic

(intrinsic?) component of all possible solutions. This deterministic component provides a

solution for β which has minimum Euclidean norm among all solutions - it is in this sense

the smallest solution, and this may be a desirable property (see Yang et al. (2008) for a

better explanation of the intrinsic estimator, its properties and arguments for focussing on the

solution with q = 0). An application of the intrinsic estimator can be found in Yang (2008).

Another approach is due to Kuang et al. (2008). They reiterate the point that β cannot, in

general, be point identified from the data alone and suggest, entirely sensibly, that researchers

focus instead on those features of the model which can be identified from the data. They come

up with a reparameterization of the model which allows the effects of second differences to be

estimated and the model to be used for forecasting.

Our approach, whilst different from Kuang et al. (2008a,b), is in sympathy with their

general philosophy: there is no way to point-identify the apc model, yet the data do tell us

something, so we should therefore try to find ways of making best use of the information in

the data.

5 An Information Based Approach

We propose using the maximum-entropy principle to address the problem. We stress that this

is not really a solution to the apc problem. In our view the problem has no unique solution

- there is not enough information in the data to provide one. Whilst the data do convey

a certain amount of information about the apc decomposition, over and above this we must

remain uncertain as to the precise solution. Rather than trying to solve the point identification

problem directly, the maximum entropy principle5 provides a framework within which we can

5For a full exposition of the maximum-entropy approach see Mittelhammer et al. (2000).
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formalize this uncertainty.

The essential idea is due to Jaynes (1957a, 1957b) who suggested that one should reparame-

terize the object of interest (in this case the apc coefficient vector β) in terms of a probability

distribution over the set of possible solutions, and then select the probability distribution

which reflects the level of one’s uncertainty given the information available in the data. In

order to do this, the method uses a measure of information entropy due to Shannon (1948)

which is a special case of the Kullback-Leibler6 distance. By choosing to use the probability

distribution over the set of possible outcomes which has the maximum entropy allowed by the

data, the argument goes, we are choosing the most uninformative distribution possible. To

choose a distribution with lower entropy would be to assume information which we do not

possess. To choose a distribution with higher entropy would violate the constraints provided

by the information which we do possess from the data. Thus the maximum entropy distri-

bution over the possible solutions best represents the current state of knowledge. That, at

least, is the argument. Various authors7 have attempted to show that choosing probabilities

in order to maximize entropy (as measured by this class of functions) is the uniquely correct

method of making inferences which satisfy the information in the data. Whether or not they

have been entirely successful is an open question (see, for example, Uffink 1995). In our view

the maximum entropy principle is plausible, but not completely compelling. Justifying the

principle is, however, not the object of this paper. The purpose of this paper is to illustrate its

application to a long standing and thorny inverse problem which has long troubled sociologists,

demographers, epidemiologists and, occasionally, economists.

There is, however one important limitation: the maximum entropy approach is best applied

in situations in which the set of possible solutions is bounded and this is not the case with

6Kullback and Leibler (1951), Kullback (1959).
7For example, Shore and Johnson (1980), Tikochinsky et al. (1984), Skilling (1989), Paris and Vencovska

(1990), Csiszár (1991).
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the apc problem in general. This limits the range of applications of the approach to those

where we have a partial identification result like the one described in the previous section.

Nonetheless, in many demographic, economic and sociological applications where the apc

decomposition is of interest the outcome variable is naturally bounded and in these cases

maximum entropy methods are very easy to apply. We therefore restrict our attention to this

class of problems and we will describe the application of maximum entropy methods to the

apc problem. After deriving the maximum entropy estimate we illustrate using two examples

in which the dependent variable is suitably bounded: a demographic model of US mortality

rates and a socioeconomic model of female labor force participation in the UK.

We begin by representing the identified set given by the hypercube B by:

B = {β|β = Sp} (10)

where S = [s1, s2, ..., sJ ], the sj are vectors representing the vertices of the cube and p is a

vector of non-negative weights which sum to one and which are used to form all of the convex

combinations of the vertices. Using this reparameterization means that β can be expressed as

a convex combination of the extreme points of B we can insert (10) into (7) and rewrite it as

b = ASp (11)

The problem of solving (7) for β, is now reformulated as the problem of solving (11) for p

Of course, whilst we have reparameterized the problem in (11), we have got no closer to

solving it as the system is still under-determined (since J > 6). However, we are now able to

reinterpret the problem in a way which allows us to use maximum entropy methods. Since

the pj ’s have all of the necessary characteristics of probabilities (in this context probability

is interpreted as a measure of a state of knowledge rather than a limiting frequency), we

can treat the p vector as a discrete probability distribution over the J multivariate outcomes

represented by the columns of the matrix S. In other words, the solution of (11) requires us
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to supply a constructive principle for choosing one probability distribution over another rather

than choosing one parameter vector over another. We therefore need a principle which allows

us to claim that one probability distribution is “better” in some respect or other than another

probability distribution.

The principle which we adopt was suggested by Jaynes (1957a, 1957b) and is an extension

of LaPlace’s principle of insufficient reason8 to situations in which some information about the

problem is available from data. The idea is that one should choose a distribution which does

not unduly favor one outcome over another subject to the requirements that the probabilities

are non-negative, sum to one and satisfy any data-based restrictions one might have (in this

case the reduced form estimates). In the present context this means that the probability

distribution must satisfy equation (11). A natural objective function which will achieve this

is the entropy function

H (p) = −p′ lnp (12)

where in the case of elements of p with zero probability, 0 ln (0) ≡ 0. The function (12) was

suggested by Shannon (1948) as a measure of uncertainty9. It is maximized when the prob-

abilities are uniform (all outcomes are equally likely which is interpreted as being maximally

uncertain), and it is minimized if the probability distribution is degenerate on a particular

outcome (interpreted as perfect certainty about that outcome). The constrained optimization

problem is therefore the maximum entropy problem:

max
p≥0, 1′p=1

−p′ lnp subject to b = ASp (13)

This is a straightforward nonlinear optimization problem with a unique solution. Because the

p∗ which solves this problem is interpretable as a vector of probabilities over support points,

8That, unless there is a reason for believing otherwise, each possible outcome should be regarded as equally
likely. The PIR has, justifiably, had a bad press. The maximum entropy principle avoids many of the pitfall
which beset the PIR. See Uffink (1995) for a discussion.

9The base of the logarithm used only affects the units. If log
2
is used then the information uncertainty is

measured in “bits”, if the natural log is used it is measures in “nats”.
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and the expectation operator for a discrete random variable is a probability-weighted convex

combination of support points the apc coefficients β∗= Sp∗ satisfy the data constraints in (7)

exactly and can be interpreted as the expected value of a discrete multidimensional random

variable consistent with the entropy maximizing choice of underlying probability distribution.

If the researcher has non-sample or pre-sample prior information on the probability dis-

tribution of the coefficient vector represented by the vector q, then the objective function

can be reformulated to minimize the probabilistic divergence between the probabilities which

are consistent with the data p, and the prior probabilities q (see Kullback and Leibler 1951;

Kullback 1959; Good 1963). This modifies the objective function which becomes the Kullback-

Leibler/cross-entropy measure

−p′ lnp− p′ lnq (14)

The cross-entropy (14) can be interpreted as a measure of the new information on the coeffi-

cients provided by the data relative to the prior distribution. When the prior is uniform over

the hypercube then qj = 1/J and (14) measures the additional information reflected in p rel-

ative to the maximally uninformative distribution and the resulting maximum cross-entropy

solution is also then the maximum entropy solution. We also note that a priori restrictions

(e.g. that certain effects may be monotone) can be included as additional constraints to the

maximization equation (13) - linear, nonlinear, equality or inequality constraints can all be

imposed easily.

To summarize: when the outcome variable is bounded in the population the apc problem

can be reformulated in terms of an unknown probability distribution over a convex set. We

use the maximum entropy principle to select a probability distribution which is as flat as

possible over the set, subject to the informational constraints provided by the reduced form

estimates and the requirement that the probabilities are non-negative and sum to one. We can

then recover the expected values of the parameters of interest consistent with the maximum
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entropy probability distribution. By construction, these values satisfy the data constraints (7)

exactly whilst at the same time the associated probability distribution reflects, in a precise

sense, the uncertainty which remains after the estimation of the reduced form.

6 Empirical Examples

In this section we present two applications. The first concerns an analysis of mortality data

for females in the US, the second looks at labor force participation by women in the UK. It

is important to understand that it is not possible to argue that the maximum entropy results

correctly capture the true values of the apc coefficients. After all, the whole point of the apc

problem is that a unique solution, true or not, does not exist. We can, and do, however argue

that the maximum entropy approach represents a coherent and logically-consistent approach

to the ill-posed inverse problem and we can compare the results it produces to those alternative

solutions which the literature has suggested. In each case (with the exception of the intrinsic

estimator) the existing solutions make an additional assumption which renders the problem

well-posed and amenable to unique solution by standard statistical methods. The identifying

assumption in each case might be somewhat arbitrary, but greater confidence about the result-

ing apc profiles is gained if the results from each approach exhibit common, plausible features

(the claim would be that the identifying assumption, though arbitrary, “does not seem to mat-

ter much”). Similarly, the empirical plausibility of the maximum entropy partially depends

on whether they also capture some of the same features which emerge from existing methods

- the approach may be logically impeccable, but if the results are wildly dissimilar from those

produced by standard methods with which researchers are more familiar and comfortable then

it is unlikely to catch on.
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6.1 US Female Mortality

For this first example we use mortality data for U.S. females between 1933 and 2007.10 The

data contain cohorts born between 1823 and 2007. Figure 1 shows the raw data - in each panel

we have plotted every tenth age/period/cohort so that the features of the data are easier to

pick out.

As the figure shows, mortality rates increase with age (actually, the change between two

ages in the bottom left figure are age-period effects, since age, period, and cohort effects

cannot be identified in the figure). Furthermore, in general younger cohorts seem to have

lower mortality rates than older cohorts. Typically the interpretation is that age effects relate

to the biological process of aging, whereas period effects contain historical events such as wars,

famines, and infectious diseases (Yang 2008). Improvements in the medical technology affect

mortality and may also be regarded as period effects as far as these medical breakthroughs

reduce mortality rates in all age groups. Cohort effects may reflect early life conditions that

influence mortality later in life, such as the presence of a famine in early childhood, and

different levels of hygiene. In addition, different cohorts accumulate different environmental

and socioeconomic experiences during their life that may affect their mortality later in life.

We begin with the results which are produced by normalizing, in turn, the age, period and

cohort effects to zero (figure 2)11. Normalizing age effects to zero is clearly a bizarre assumption

in this context and it results in some implausible period effects where the mortality rates are

increasing year-on-year. Nonetheless, and partly as a result of the period effects having this

pattern, the cohort effects do not seem ridiculous with younger cohorts enjoying successively

lower mortality rates. Relaxing the restriction on age effects (either by imposing it on the

period or the cohort effects instead) results in much more plausible age effects which rise with

10These data can be downloaded from the Berkeley Human Mortality Database: www.mortality.org.
11We have omitted confidence intervals from the profile figures so that the patterns are easier to see. Full

results are available from the authors.

16



age and which also show an increase at zero years consistent with elevated infant mortality

rates relative to those of young children. Setting the period effects to zero effectively removes

the possibility of population-wide effects related to common exposure to epidemics, medical

improvements etc. It results in a patterns of cohort effects which indicate worsening mortality

rates for cohorts born up until the mid 1800’s in the US with improvements thereafter. This

may actually be plausible as the mid 1800’s were a bad time to be in the US and an especially

bad time to be in the US and young - there were epidemics of cholera in North America

in 1848-9, yellow fever in the US in 1850, influenza in North America in 1850-1 and further

more localized epidemics of cholera and yellow fever in 1851-2 in population centres in Illinois,

the Great Plains, Missouri and New Orleans. Removing these cohort effects by assumption

produces the period effects seen in the final set of diagrams in figure 1. This shows a noisy but

declining trend. Doubtless there were improvements in public health during the period covered

(1933-2007) but Haines (2008), for example, argues that the most significant improvements in

public health and sanitation and in particular the increased availability of clean water supplies

and effective sewage treatments took place in the late 1800’s and therefore pre-date this period.

These major improvements may have influenced earlier date of birth cohorts but since such

effects are excluded by assumption it is possible that the estimated effect on the period profile

exaggerates this improving trend. To summarize: none of these three normalizations seem

quite right. Zeroing out age effects is clearly inappropriate but dropping cohort effects when

we know from the historical record that certain birth cohorts were exposed to epidemics of

particularly nasty diseases in infancy seems implausible as well, whilst removing period effects

also removes a role for the public health improvements which may have occurred over the

period.

Normalizing a pair of adjacent cohort effects to be the same is a standard assumption in

the apc analysis of mortality data (see Mason et al. 1973). On the face of it seems reasonable -
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why, after all, should the mortality rates of those born a year apart be markedly different? The

difficulty arises in deciding exactly which cohort-pairs to normalize. The effects of different

choices (all equally plausible but none especially compelling) are illustrated in figure 3. The

profiles (even for the age effect which is the most robust relatively) are all over the place: the

period effects could be increasing, decreasing or approximately flat according to taste.

Figure 4 reports the results using the Hanoch and Honig/Deaton and Paxson normalization

in which the period effects are constructed to be orthogonal to a linear trend. This makes

the period effects cyclical and this probably accounts for this normalization’s popularity with

economists where time effects reflect common, population-wide macroeconomic effects - for

example, “the business cycle”. As noted above (Deaton 1997, p.126) this approach only works

when the data cover a long enough span to include a full cycle. The cyclical period effects

seen in figure 3 are therefore a necessary consequence of the normalization. In the present

context it may not be appropriate to assume that period effects on female mortality in the

US are essentially flat over the period - some improvement is to be expected. Nonetheless the

age and cohort effects which the normalization produces do seem to be plausible - age effects

are increasing after the subject survives infancy and cohort effects seem to fit what we know

from the historic record.

The results from the intrinsic estimator of Yang et al. (2004) are shown in figure 5. Recall

that this estimator uses the Moore-Penrose inverse in equation (8) with the random vector q

set to zero. This estimator therefore does not rely on a normalization to regularize the apc

model’s inverse problem. Neither, therefore, does it force any particular properties on the age,

period and cohort profiles which emerge. The profiles which are recovered by this method

are interesting. The age profile shows what we, by now, take to be the robust pattern with

a drop in mortality after the first year of life followed by year-on-year increases. The cohort

profile also shows the oft-observed pattern wherein mortality rates peak in the mid-1800’s.
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The period effects look like they are following a cyclical, but slightly rising trend over the

period. However the increase is not statistically significant and the vertical scale is much

expanded so the period effects are really just small fluctuations around a flat profile - very

similar to the Deaton and Paxson normalization.

Figure 6 plots the maximum entropy estimates. The age effects are not quite monotonic

as they pick up the raised mortality rates in the first year of life, but thereafter mortality rates

increase with each year of life. The period effects reflect the influences on mortality rates

which bear equally on all ages and all data of birth cohorts. As can be seen, these effects

show a certain amount of year-to-year variability but are essentially flat. These effects are

probably what intuition would expect and seem to mirror what we see in the raw data when

we plot mortality rates by age against both cohort and period. The cohort effects are rather

interesting and echo what we have seen before: they too show the strong pattern in which

mortality rates first rise with date of birth (so that older cohorts have better mortality rates)

until around the 1850 cohort falling thereafter.

We see that the maximum entropy results mirror many of the features which crop up in

other normalizations. In particular we see that the maximum entropy estimates are qualita-

tively most similar to the intrinsic estimator and the Deaton and Paxson normalization - the

reason why the Deaton and Paxson method gives similar results may be that the identify-

ing assumption that period effects are mean-zero fluctuations around a straight line is, if the

maximum entropy results are to be believed, approximately correct for these data. As other

studies routinely find; the intuitively fairly weak requirement that the cohort effects for two

adjacent cohorts are equal can have profound influences on the estimated effects.
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6.2 UK Female Labor Force Participation

Our second example is a model of female labor force participation based on UK data. These

data are from the UK Family Expenditure Survey which is a long running cross sectional

dataset. The data record the labor market status of women in the surveyed households

over the 34 year period from 1974 to 2007. The raw data (once more, for a subset of the

age/period/cohort groups in the interests of visibility) are plotted in figure 7. The sub-panel

showing the labor force participation rates of different cohorts over the life-cycle (the top left

figure) exhibits vertical differences between the lines measuring ‘cohort-time’ effects. We use

this terminology to emphasize that it is not possible to disentangle age from cohort and time

effects in this figure. The raw data show a characteristic hump-shaped pattern in the labor

force participation over the life-cycle, with a marked drop at the retirement age across birth

cohorts.

In the context of the female labor force participation, age effects may include life-cycle

decisions such as the timing of education, children, and retirement. Period effects may include

business cycle effects or policy changes that effect the female labor force participation. Finally,

cohort effects may include the improved educational attainment and lower fertility rates of

younger cohorts, and changed social norms.

Figure 8 shows the profiles produced by setting age, period and cohort effects to zero in

turn. Once again omitting the age effects, this time in a model of labor force participation,

seems to be the wrong thing to do. Once age effects are admitted to the model they display

the expected “hump shape” where participation rates rise in early adulthood, level off in

middle age and drop abruptly at retirement age (until recently the state retirement age was

60 for women in the UK). Close inspection of the age profiles in the second two rows might

even suggest a hint of a levelling-off in the growth of participation rates in the late twenties

consistent with women leaving work to have children before re-entering the labor market at a
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slightly lower rate than before.

Omitting age effects produces estimates of period effects which decline over time whilst

the cohort effects seem to take on the hump shape which one would expect of age effects. Note

that the estimates for the youngest cohorts are unstable due to small numbers of observations

for these cohorts. Omitting period effects whilst allowing for a plausible age profile seems to

give declining cohort effects which is hard to reconcile with recent labor market history in the

UK where women in younger date-of-birth cohorts are generally more likely to work (at least

part time) rather than less likely. Again, the strategy of omitting either age, period or cohort

effects entirely does not seem in each case to produce estimates which are entirely plausible

The next set of results reports some experiments with setting two adjacent age effects to

be equal (figure 9). That two age groups separated by one year should have approximately

the same rate of labor force participation seems plausible, but we are agnostic about which

two ages to choose. We therefore have chosen three alternative normalizations at regular

intervals. Interestingly the period and cohort effects are qualitatively similar in each case.

The age effects are different however and only the 39=40 normalization appears to pick up the

hump shape we would expect to see - possibly because the normalization in this case is more

appropriate. In the other two normalizations, the retirement effect is only just discernible and

the overall pattern of age effects is far from what we might reasonably expect. Furthermore the

estimated effects in these two cases lie well outside the partial-identification bounds implying

that counterfactual participation rates for some combinations of age, period and cohort far

exceeds 100% in some cases and is much less than 0% in others.

Figure 10 shows the profiles which are derived through the Hanoch and Hoing/Deaton

and Paxson normalization. The hump-shaped age profile is evident with a steep drop in

participation around the state retirement age. The period effects are normalized to sum to

zero and to be orthogonal to a linear trend. This results in a noisy cycle rather then the
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declining period effects which all of the other normalizations have produced. This may be

evidence that, in this context, the cyclicality assumption is not appropriate. The cohort

effects seem to take on the declining pattern of the (omitted) period effects. Age effects aside,

these profiles are qualitatively different from most of those produced by other normalizations

- the most similar profiles are those of the “no period effects” model and this is, of course,

because the Hanoch and Hoing/Deaton and Paxson normalization is an approximate version

of the same idea.

The intrinsic estimator in figure 11 once again produces estimates which seem entirely plau-

sible. The age profile reflects what we now, through weight of evidence from the normalization-

dependent results, take as robust pattern. The cohort effects rise for successive date of birth

cohorts and the period effects show the declining pattern displayed by every normalization

which is able to allow for a profile which isn’t either flat or approximately so.

The Maximum Entropy estimates are illustrated in figure 12. They show a hump shape

in the age effects, and a retirement effect that is clearly present. The period effect shows a

mild decline over time. The cohort effect (excluding the final few cohorts which are afflicted

by small sample-sizes) shows a clear pattern in which women in younger cohorts participate

more often in the labor market. These results seem to display a set of features which are

common to the most plausible results derived from other methods based on normalizations

and are extremely close, by not identical to, those from the intrinsic estimator.

7 Conclusions

We present a new approach to the apc problem based on a maximum entropy method which

can be applied when the dependent variable has a finite support in the population. Whilst the

approach would require further development before it can be applied to unbounded outcome

data (see Golan et al. (1996) for a discussion of maximum entropy methods for outcomes with
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unbounded support) it does, as it stands, cover a great many cases of applied interest. We

also note that the method can be extended easily to include a prior probability distribution

on the parameter values (where such a prior is available to the researcher) by using the cross-

entropy criteria and further equality and inequality constraints on the moment conditions can

be built into the estimation procedure very easily. We also provide two illustrations of the

method applied to real data. These applications to female mortality in the US and female

labor force participation in the UK are of substantive interest in themselves. Nonetheless our

aim was principally to see whether or not the maximum entropy method could produce results

in which researchers could be confident - arguments in favor of the theoretical coherence may

or may not be successful but it seems to us to be essential that the estimator actual “works”.

To do this we compared the results from the maximum entropy approach to those produced

by a number of methods based on various normalization as well as the intrinsic estimator

of Yang et al. (2004, 2007, 2008). In both cases we found that the maximum entropy-based

method reproduced patterns in the age, period and cohort profiles which agreed with the most

plausible normalizations. It also agreed closely with the results from the intrinsic estimator

- which does not rely on a normalization in the usual sense - and therefore perhaps lends

further support to that particular method (and vice versa). We conclude that maximum

entropy methods provide a coherent and useful approach to the apc problem.
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Appendix - Partial Identification of the apc coefficients

λ =
1

12






0 0 0 12 0 0 0 2 2 2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 1
0 2 0 0 0 0 0 0 0 0 0 0 0 1
0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 2 2 0 0 0 0
2 0 0 0 0 0 1 0 0 0 0 0 0 0
0 2 0 0 0 0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 12 0 0 2 2 2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 1
0 2 0 0 0 0 0 0 0 0 0 0 0 1
0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 2 2 0 0 0 0
2 0 0 0 0 0 1 0 0 0 0 0 0 0
0 2 0 0 0 0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 12 0 2 2 2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 1
0 2 0 0 0 0 0 0 0 0 0 0 0 1
0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 2 2 0 0 0 0
2 0 0 0 0 0 1 0 0 0 0 0 0 0
0 2 0 0 0 0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 0 0 0 0 0
2 2 2 0 0 0 1 0 0 0 12 0 0 0
0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 1 0 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 2 0 0 0 0
2 2 2 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 2 0 0 0 0 0 1
0 0 0 0 0 0 0 0 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 2 0 0 0 1
2 2 2 0 0 0 1 0 0 0 0 12 0 0
0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 1 0 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 2 0 0 0 0
2 2 2 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 2 0 0 0 0 0 1
0 0 0 0 0 0 0 0 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 2 0 0 0 1
2 2 2 0 0 0 1 0 0 0 0 0 12 0
0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 1 0 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 2 0 0 0 0
2 2 2 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 2 0 0 0 0 0 1
0 0 0 0 0 0 0 0 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 2 0 0 0 1
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F	���� 1: US Female Mortality Data
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F	���� 2: Setting age (top), period (middle), cohort (bottom) effects to zero
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F	���� 3: Setting adjacent cohorts to be equal
(top: 1849=1850, middle 1899=1900, bottom: 1949=1950)
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F	���� 4: Hanoch and Honig/Deaton and Paxson normalization
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F	���� 5: The Intrinsic estimator
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F	���� 6: Maximum Entropy Estimates

0 20 40 60 80 100
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Age Effects

Age
1930 1940 1950 1960 1970 1980 1990 2000 2010
-5

0

5

10

15
x 10

-3 Period Effects

Period
1850 1900 1950 2000

0

0.02

0.04

0.06

0.08

0.1
Cohort Effects

Cohort

36



F	���� 7: UK Female Labor Force Participation Data
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F	���� 8: Setting age (top), period (middle), cohort (bottom) effects to zero
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F	���� 9: Setting adjacent ages to be equal
(top: 29=30, middle 39=40, bottom: 49=50)
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F	���� 10: Hanoch and Hoing/Deaton and Paxson normalisation
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F	���� 11: Intrinsic estimator
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F	���� 12: Maximum Entropy Estimates
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