Climbing the Rungs of the Quality Ladder: FDI and Domestic Exporters in Romania

Matej Bajgar ¹ Beata Javorcik ²

¹OECD

²University of Oxford and CEPR

May 10, 2017

Upgrading of export quality and sophistication

- correlated with economic growth (Schott, 2004; Hausmann et al., 2007; Hidalgo and Hausmann, 2009)
- precondition for successful exporting and participation in GVCs (Brooks, 2006;
 Hallak and Sivadasan, 2013; Sutton, 2012; Iacovone and Javorcik, 2012)
- objective of industrial policies
 - "Given the competitiveness squeeze that South African industry finds itself in, industrial upgrading is a logical progression in order to avoid cut-throat price competition as certain parts of manufacturing becoming increasingly commoditised, particularly due to a combination of global trade liberalisation and pressure from Chinese and Indian firms in particular." South African National Industrial Policy Framework

Upgrading of export quality and sophistication

- correlated with economic growth (Schott, 2004; Hausmann et al., 2007; Hidalgo and Hausmann, 2009)
- precondition for successful exporting and participation in GVCs (Brooks, 2006;
 Hallak and Sivadasan, 2013; Sutton, 2012; Iacovone and Javorcik, 2012)
- objective of industrial policies
 - "Given the competitiveness squeeze that South African industry finds itself in,
 industrial upgrading is a logical progression in order to avoid cut-throat price
 competition as certain parts of manufacturing becoming increasingly commoditised,
 particularly due to a combination of global trade liberalisation and pressure from
 Chinese and Indian firms in particular." South African National Industrial Policy
 Framework
- How can countries promote export upgrading?

What drives export upgrading?

- trade liberalisation (Amiti and Khandelwal, 2013)
- exchange rate devaluation (Verhoogen, 2008)
- management practices (Atkin et al., 2017)

What drives export upgrading?

- trade liberalisation (Amiti and Khandelwal, 2013)
- exchange rate devaluation (Verhoogen, 2008)
- management practices (Atkin et al., 2017)
- presence of multinational enterprises (MNEs)?

MNEs are special

- MNEs are active in R&D and skilled labor intensive sectors (Markusen 1995)
- MNEs are more productive than other firms (Helpman, Melitz and Yeaple 2004)
- MNEs have outsize role in global R&D performance
 - Foreign affiliates account for >50% of business R&D in Belgium and Czech Republic (OECD, 2017)

Research questions

- Do exporters in an emerging economy improve...
 - within-product quality of their exports
 - sophistication or diversification of product and destination mix
- ...as a result of MNE presence in...
 - downstream sectors?
 - upstream sectors?
 - the same sector?

How can MNE presence affect the quality of exports?

Downstream FDI

- Incentive to upgrade or develop new products to become a supplier
- Help from MNEs to suppliers
- Reputation facilitating access to new markets

Upstream FD

- Higher quality inputs lead to higher quality output (Kugler and Verhoogen, 2012)
- If there is fixed cost of importing, smaller firms may be unable to access imported inputs

Own-sector FD

- Demonstration effects
- Worker flows (Poole, 2012)

Improvements undertaken by Czech firms in order to supply MNEs

Source: Javorcik (2008).

How can FDI affect the quality of exports?

Downstream FDI

- Incentive to upgrade or develop new products to become a supplier
- Help from MNEs to suppliers
- Reputation facilitating access to new markets

Upstream FD

- Higher quality inputs lead to higher quality output (Kugler and Verhoogen, 2012)
- If there is fixed cost of importing, smaller firms may be unable to access imported inputs

Own-sector FD

- Demonstration effects
- Worker flows (Poole, 2012)

Assistance received by Czech firms from MNEs

Source: Javorcik (2008).

How can FDI affect the quality of exports?

Downstream FDI

- Incentive to upgrade or develop new products to become a supplier
- Help from MNEs to suppliers
- Reputation facilitating access to new markets

Upstream FDI

- Higher quality inputs lead to higher quality output (Kugler and Verhoogen, 2012)
- If there is fixed cost of importing, smaller firms may be unable to access imported inputs

Own-sector FDI

- Demonstration effects
- Worker flows (Poole, 2012)

How can FDI affect the quality of exports?

Downstream FDI

- Incentive to upgrade or develop new products to become a supplier
- Help from MNEs to suppliers
- Reputation facilitating access to new markets

Upstream FDI

- Higher quality inputs lead to higher quality output (Kugler and Verhoogen, 2012)
- If there is fixed cost of importing, smaller firms may be unable to access imported inputs

Own-sector FDI

- Demonstration effects
- Worker flows (Poole, 2012)

Results consistent with...

- Romanian exporters upgrading the within-product quality of export products thanks to
 - supplying downstream MNEs
 - access to inputs from upstream MNEs

Results consistent with...

- Romanian exporters upgrading the within-product quality of export products thanks to
 - supplying downstream MNEs
 - access to inputs from upstream MNEs
- no positive effect of MNE presence on sophistication of product or destination mix

Literature

- Export upgrading Imbs and Wacziarg (2003), Schott (2004), Hausmann et al. (2007), Hidalgo and Hausmann (2009), Mattoo and Subramanian (2009), Goldberg et al. (2010)
- Productivity spillovers from FDI Javorcik (2004), Blalock and Gertler (2008), Javorcik and Spatareanu (2008, 2011), Havranek and Irsova (2011)
- Exporting and FDI Aitken et al. (1997), Greenaway et al. (2004), Kneller and Pisu (2007)
- Export upgrading and FDI Chen and Swenson (2007), Swenson (2008), Harding and Javorcik (2012), Javorcik et al. (2016)

Talk outline

- Motivation
- Data and context
- Methodology
- Results: Within-product quality
- 5 Results: Product and destination portfolio sophistication
- Conclusion

- Motivation
- Data and context
- Methodology
- Results: Within-product quality
- Results: Product and destination portfolio sophistication
- Conclusion

Firm panel, 2005-2010

- \bullet All firms with $>\!\!20$ employees, sample of smaller firms
- \bullet 15,000 domestic and 5,000 foreign manufacturing firms

Firm panel, 2005-2010

- All firms with >20 employees, sample of smaller firms
- 15,000 domestic and 5,000 foreign manufacturing firms

Customs data, 2006-2011

 \bullet Exports by firm, year, 8-digit CN product and destination

Firm panel, 2005-2010

- All firms with >20 employees, sample of smaller firms
- 15,000 domestic and 5,000 foreign manufacturing firms

Customs data, 2006-2011

 \bullet Exports by firm, year, 8-digit CN product and destination

Estimation sample

- 4500 domestically-owned manufacturing exporters
- 150,000 firm-product-destination-year observations

Firm panel, 2005-2010

- All firms with >20 employees, sample of smaller firms
- 15,000 domestic and 5,000 foreign manufacturing firms

Customs data, 2006-2011

• Exports by firm, year, 8-digit CN product and destination

Estimation sample

- 4500 domestically-owned manufacturing exporters
- 150,000 firm-product-destination-year observations

Input-output table

• 58 manufacturing industries

Examples of CN 8-digit products

- 0401 10 10 Milk and cream, not concentrated nor containing added sugar or other sweetening matter; of a fat content, by weight, not exceeding 1%; In immediate packings of a net content not exceeding two litres
- 0401 20 91 Milk and cream, not concentrated nor containing added sugar or other sweetening matter; of a fat content, by weight, exceeding 1% but not exceeding 3%;
 In immediate packings of a net content not exceeding two litres

Romania (2005-2010)

- ullet Manufacturing 30% of value added
- \bullet GDP p.c. PPP 36% of EU average
- FDI inflows 5.5% of GDP

Romania (2005-2010)

- Manufacturing 30% of value added
- \bullet GDP p.c. PPP 36% of EU average
- FDI inflows 5.5% of GDP
- Foreign share of output in average manufacturing industry
 - 2005 55%
 - 2010 62%

Romania (2005-2010)

- Manufacturing 30% of value added
- ullet GDP p.c. PPP 36% of EU average
- FDI inflows 5.5% of GDP
- Foreign share of output in average manufacturing industry
 - 2005 55%
 - 2010 62%
- Median unit values of domestic exporters relative to EU15 (%)
 - 2006 74%
 - 2011 87%

Industries with largest changes in foreign presence (2005-2010)

Industries with largest changes in unit values relative to EU15 (2005-2010)

Romania - consultants' reports

"Biggest challenge in this sector is quality and skills to enable Romanian companies to join supply networks."

Romania - consultants' reports

- "In order to be accredited as official suppliers, firms need to satisfy quality requirements for all the firms plants throughout Europe."
- "Renault has 'local integration' targets 80% of inputs to be purchased from local country or region."

Romania - consultants' reports

"New technology and modern machinery available only from Western Europe or Japan."

Data and context

Methodology

4 Results: Within-product quality

Results: Product and destination portfolio sophistication

Conclusion

Specification

$$\begin{split} \Delta \textit{Y}_{\textit{i}(\textit{p})(\textit{c})t} &= \delta_1 \Delta \textit{OwnFDI}_{\textit{s},t-1} + \delta_2 \Delta \textit{UpstreamFDI}_{\textit{s},t-1} + \delta_3 \Delta \textit{DownstreamFDI}_{\textit{s},t-1} \\ &+ \pi_{\textit{rt}} + \pi_{\textit{sr}} + \eta_{\textit{ipt}} \end{split}$$

- Depending on outcome variable, observations defined by
 - firm-year-product-destination
 - firm-year-destination
 - firm-year-product
- Domestic manufacturing exporters
- Clustering by industry-year

Outcome variables

Within product quality

- Log(unit values of exports) Schott (2004); Hummels and Klenow (2005); Hallak (2006, 2010)
- Log(export quality) Khandelwal (2010); Amiti and Khandelwal (2013);
 Khandelwal et al. (2013)
- Log(unit values of imports) Kugler and Verhoogen (2012); Manova and Zhang (2012)

Outcome variables

Within product quality

- Log(unit values of exports) Schott (2004); Hummels and Klenow (2005); Hallak (2006, 2010)
- Log(export quality) Khandelwal (2010); Amiti and Khandelwal (2013);
 Khandelwal et al. (2013)
- Log(unit values of imports) Kugler and Verhoogen (2012); Manova and Zhang (2012)

Product portfolio sophistication

- Product skill, R&D and advertising intensity (Ma et al., 2014)
- # of products

Outcome variables

Within product quality

 Log(unit values of exports) - Schott (2004); Hummels and Klenow (2005); Hallak (2006, 2010)

Log(export quality) - Khandelwal (2010); Amiti and Khandelwal (2013);

- Khandelwal et al. (2013)
- Log(unit values of imports) Kugler and Verhoogen (2012); Manova and Zhang (2012)

Product portfolio sophistication

- Product skill, R&D and advertising intensity (Ma et al., 2014)
- # of products

Destination portfolio sophistication

- Mean log destination GDP p.c.
- Share of exports to rich destinations
- # of destinations

Estimating quality - Khandelwal et al. (2013)

- quality = ability to sell at high quantity for a given price
- estimated as residual (as in TFP estimation)

$$\log q_{\textit{ipct}} + \sigma_{\textit{s}} \log p_{\textit{ipct}} = \alpha_{\textit{p}} + \alpha_{\textit{ct}} + \sigma_{\textit{s}} \alpha_{\textit{ct}} + e_{\textit{ipct}}$$

- ullet 2-digit-sector-specific σ_s from Broda and Weinstein (2006)
- ullet Fan et al. (2015) find assumed and estimated σ lead to similar results

Measuring FDI presence

Own-industry foreign share

$$\bullet \ \mathit{FDI}_{\mathsf{st}}^{\mathit{own}} = \frac{\sum_{j \in \mathit{s}} \mathit{f}_{jt} \mathit{Y}_{jt}}{\sum_{j \in \mathit{s}} \mathit{Y}_{jt}}$$

• FDI_{st} = share of sectoral output due to foreign-owned firms

Measuring FDI presence

Own-industry foreign share

•
$$FDI_{st}^{own} = \frac{\sum_{j \in s} f_{jt} Y_{jt}}{\sum_{j \in s} Y_{jt}}$$

 \bullet $FDI_{st}^{own} =$ share of sectoral output due to foreign-owned firms

Downstream-industry foreign share

•
$$FDI_{st}^{down} = \sum_{d} \alpha_{sd} FDI_{dt}^{own}$$

 $oldsymbol{\circ}$ $lpha_{sd}=$ share of intermediate inputs sales by sector s sold to sector d

Measuring FDI presence

Own-industry foreign share

•
$$FDI_{st}^{own} = \frac{\sum_{j \in s} f_{jt} Y_{jt}}{\sum_{j \in s} Y_{jt}}$$

 \bullet $FDI_{st}^{own} =$ share of sectoral output due to foreign-owned firms

Downstream-industry foreign share

- $FDI_{st}^{down} = \sum_{d} \alpha_{sd} FDI_{dt}^{own}$
- $oldsymbol{\circ}$ $\alpha_{sd}=$ share of intermediate inputs sales by sector s sold to sector d

Upstream-industry foreign share

•
$$FDI_{st}^{up} = \sum_{u} \alpha_{us} FDI_{ut}^{own}$$

• $\alpha_{us} =$ share of intermediate inputs sector s buys from sector u

- Motivation
- Data and context
- Methodology
- Results: Within-product quality
- 5 Results: Product and destination portfolio sophistication
- Conclusion

Presence of MNEs and export unit values/quality

	(1)	(2)	(3)	(4)	(5)
	Levels	First diff.	Second diff.	Third diff.	Fourth diff.
			A. Unit value	s	
(Δ) Downstream FDI (s,t-1)	0.637***	0.797***	1.061***	0.856*	2.276***
	(0.196)	(0.269)	(0.331)	(0.435)	(0.396)
(Δ) Upstream FDI (s,t-1)	0.332***	0.272**	0.245	0.689***	0.283
	(0.092)	(0.123)	(0.167)	(0.234)	(0.187)
(Δ) Own FDI (s,t-1)	-0.243***	-0.178	-0.409***	-0.051	-0.364*
	(0.093)	(0.114)	(0.151)	(0.288)	(0.200)
R-squared	0.059	0.010	0.011	0.007	0.007
			B. Quality		
(Δ) Downstream FDI (s,t-1)	0.630**	0.704**	1.387***	1.100*	2.057***
	(0.256)	(0.346)	(0.483)	(0.626)	(0.622)
(Δ) Upstream FDI (s,t-1)	0.338***	0.511***	0.425**	0.605**	0.657***
	(0.119)	(0.144)	(0.192)	(0.282)	(0.239)
(Δ) Own FDI (s,t-1)	-0.215*	-0.229	-0.280	-0.083	-0.533*
	(0.129)	(0.175)	(0.280)	(0.505)	(0.272)
R-squared	0.008	0.003	0.005	0.004	0.002
N	146760	49598	28558	16766	9281

Magnitudes

- The average increase in FDI^{down} in 2005-2010 of 6.2 percentage points implies
 4-13% increase in quality
- The average increase in FDI^{up} in 2005-2010 of 6.5 percentage points implies 2-4% increase in quality

Strict exogeneity test

	(1)	(2)
	Unit values	Quality
Δ Downstream FDI (s,t-1)	0.369	0.596
	(0.377)	(0.407)
Δ Downstream FDI (s,t)	0.577	1.186**
	(0.489)	(0.552)
Δ Downstream FDI (s,t+1)	-0.241	0.001
	(0.322)	(0.369)
Δ Upstream FDI (s,t-1)	0.281**	0.594***
	(0.118)	(0.139)
Δ Upstream FDI (s,t)	-0.310*	-0.064
	(0.166)	(0.181)
Δ Upstream FDI (s,t+1)	0.014	-0.202
	(0.197)	(0.219)
Δ Own FDI (s,t-1)	-0.217	-0.546**
	(0.179)	(0.222)
Δ Own FDI (s,t)	-0.278	-0.485*
	(0.225)	(0.261)
Δ Own FDI (s,t+1)	0.087	-0.018
	(0.190)	(0.226)
R-squared	0.013	0.002
N	31108	29551

^{*** 99%, ** 95%, * 90%.} Strict exogeneity test described by Wooldridge, 2010.

Alternative explanations

	(1)	(2)	(3)	(4)
	Price control	Demand control	Import control	Cont. firms
	A. Unit values			
Δ Downstream FDI (s,t-1)	0.800***	0.865***	0.859***	1.006***
	(0.268)	(0.229)	(0.281)	(0.224)
Δ Upstream FDI (s,t-1)	0.272**	0.192*	0.186	0.286**
	(0.123)	(0.112)	(0.124)	(0.125)
Δ Own FDI (s,t-1)	-0.179	-0.162	-0.177	-0.351***
	(0.115)	(0.104)	(0.118)	(0.115)
Δ Log UV of EU exports (p,t)	-0.001			
	(0.003)			
Δ Log downstr. demand (s,t-1)		0.207***		
		(0.059)		
Δ Log industry imports (st)			0.072***	
			(0.024)	
R-squared	0.010	0.010	0.010	0.010
		B. Qu	ality	
Δ Downstream FDI (s,t-1)	0.713**	0.771**	0.737**	0.761**
	(0.346)	(0.320)	(0.352)	(0.299)
Δ Upstream FDI (s,t-1)	0.510***	0.444***	0.461***	0.590***
	(0.143)	(0.141)	(0.155)	(0.154)
Δ Own FDI (s,t-1)	-0.232	-0.218	-0.228	-0.419**
	(0.176)	(0.166)	(0.180)	(0.190)
Δ Log UV of EU exports (p,t)	-0.002			
	(0.003)			
Δ Log downstr. demand (s,t-1)		0.168*		
		(0.087)		
Δ Log industry imports (st)			0.043	
			(0.031)	
R-squared	0.003	0.003	0.003	0.003
N	49597	49598	49598	34780

By stage of production

- MNE presence in sectors supplying inputs => impact on the quality of intermediate and final goods
- $\bullet \ \mathsf{MNE} \ \mathsf{presence} \ \mathsf{in} \ \mathsf{sectors} \ \mathsf{buying} \ \mathsf{inputs} => \mathsf{impact} \ \mathsf{on} \ \mathsf{the} \ \mathsf{quality} \ \mathsf{of} \ \mathsf{intermediates}$

By stage of production

- MNE presence in sectors supplying inputs => impact on the quality of intermediate and final goods
- \bullet MNE presence in sectors buying inputs => impact on the quality of intermediates

	Unit values		Quality	
	(1)	(2)	(3)	(4)
	Non-final	Final	Non-final	Final
Δ Downstream FDI (s,t-1)	1.452***	-0.148	0.987*	0.104
	(0.359)	(0.241)	(0.509)	(0.484)
Δ Upstream FDI (s,t-1)	0.463**	0.197	0.534**	0.614***
	(0.222)	(0.121)	(0.250)	(0.166)
Δ Own FDI (s,t-1)	-0.694***	0.293**	-0.489	0.049
	(0.243)	(0.126)	(0.297)	(0.169)
R-squared	0.009	0.016	0.004	0.003
N	20830	29381	19805	28479

*** 99%, ** 95%, * 90%,

Presence of MNEs and import unit values

- Higher-quality output requires higher-quality inputs
- Complementarity between domestic and imported inputs
- Competitive pressure leads to importing cheaper inputs

Presence of MNEs and import unit values

- Higher-quality output requires higher-quality inputs
- Complementarity between domestic and imported inputs
- Competitive pressure leads to importing cheaper inputs

	(1)	(2)	(3)
	Exporters	All firms	Imports & exports
Δ Downstream FDI (s,t-1)	0.354*	0.313*	0.294*
	(0.189)	(0.171)	(0.172)
Δ Upstream FDI (s,t-1)	0.317***	0.323***	0.256***
	(0.083)	(0.076)	(0.092)
Δ Own FDI (s,t-1)	-0.253**	-0.236**	-0.174*
	(0.122)	(0.111)	(0.091)
R-squared	0.004	0.004	0.002
N	125444	139565	5045

- Motivation
- Data and context
- Methodology
- Results: Within-product quality
- 5 Results: Product and destination portfolio sophistication
- Conclusion

Changes in product porfolio (firm-destination-year level, 1st diff.)

	(1)	(2)	(3)	(4)
	Skill	R&D	Advertising	# products
Δ Downstream manuf. FDI (s,t-1)	-0.088***	0.000	-0.001	-0.014
	(0.027)	(0.002)	(0.001)	(0.195)
Δ Upstream manuf. FDI (s,t-1)	-0.014	0.000	0.001	0.249
	(0.018)	(0.001)	(0.001)	(0.180)
Δ Own FDI (s,t-1)	0.017	-0.003***	0.000	-0.194
	(0.020)	(0.001)	(0.001)	(0.141)
R-squared	0.002	0.000	0.001	0.010
N	22791	22791	22791	22791

^{*** 99%, ** 95%, * 90%.}

Changes in destination portfolio (firm-product-year level, 1st diff.)

	(1)	(2)	(3)
	Mean log GDP p.c.	Share of rich	# destinations
Δ Downstream manuf. FDI (s,t-1)	-0.171	-0.087	-0.123
	(0.266)	(0.121)	(0.156)
Δ Upstream manuf. FDI (s,t-1)	0.007	-0.010	0.062
	(0.157)	(0.068)	(0.107)
Δ Own FDI (s,t-1)	0.181	0.024	0.058
	(0.153)	(0.059)	(0.105)
R-squared	0.003	0.002	0.004
N	32035	32783	32783

^{*** 99%, ** 95%, * 90%.}

- \bullet Results consistent with exporters upgrading the quality of export products thanks to
 - supplying downstream MNEs
 - access to inputs from upstream MNEs

- \bullet Results consistent with exporters upgrading the quality of export products thanks to
 - supplying downstream MNEs
 - access to inputs from upstream MNEs
- No evidence of positive effect of MNE presence on sophistication of product and destination portfolio

- Results consistent with exporters upgrading the quality of export products thanks to
 - supplying downstream MNEs
 - access to inputs from upstream MNEs
- No evidence of positive effect of MNE presence on sophistication of product and destination portfolio
- Presence of MNEs does not affect what local firms do but how.
 - MNEs strength in standards and procedures

- Results consistent with exporters upgrading the quality of export products thanks to
 - supplying downstream MNEs
 - access to inputs from upstream MNEs
- No evidence of positive effect of MNE presence on sophistication of product and destination portfolio
- Presence of MNEs does not affect what local firms do but how.
 - MNEs strength in standards and procedures
- New policies for quality upgdading?
 - FDI promotion
 - facilitation of supplier-buyer relationship with MNEs

- Amiti, Mary and Amit K, Khandelwal, "Import Competition and Quality Upgrading," The Review of Economics and Statistics, May 2013, 95 (2), 476-490. Atkin, David, Amit K, Khandelwal, and Adam Osman, "Exporting and Firm Performance: Evidence from a Randomized Trial," Quarterly Journal of
- Broda, Christian and David E. Weinstein. "Globalization and the Gains From Variety*." The Quarterly Journal of Economics, May 2006, 121 (2), 541.
- Brooks, Eileen L., "Why Don't Firms Export More? Product Quality and Colombian Plants," Journal of Development Economics, 2006, 80, 160-178,
- Fan, Haichao, Yao Amber Li, and Stephen R. Yeaple, "Trade Liberalization, Quality, and Export Prices," The Review of Economics and Statistics, December 2015, 97 (5), 1033-1051.
- Hallak, Juan Carlos, "Product Quality and the Direction of Trade," Journal of International Economics, January 2006, 68 (1), 238-265.
- _____, "A Product-Quality View of the Linder Hypothesis," The Review of Economics and Statistics, 09 2010, 92 (3), 453-466.

Economics, 2017.

- and Jagadeesh Sivadasan, "Product and Process Productivity: Implications for Quality Choice and Conditional Exporter Premia," Journal of International Economics, 2013, 91 (1), 53-67.
- Hausmann, Ricardo, Jason Hwang, and Dani Rodrik, "What You Export Matters," Journal of Economic Growth, 2007, 12 (1), 1-25.
- Hidalgo, Cesar A. and Ricardo Hausmann, "The Building Blocks of Economic Complexity," Proceedings of the National Academy of Sciences, 2009, 106 (26), 10570-10575.
- Hummels, David and Peter J. Klenow, "The Variety and Quality of a Nation's Exports," American Economic Review, June 2005, 95 (3), 704-723.
- lacovone, Leonardo and Beata Javorcik, "Getting Ready: Preparation for Exporting," Centre for Economic Policy Research Discussion Paper 8926, April 2012.
- Khandelwal, Amit, "The Long and Short (of) Quality Ladders," Review of Economic Studies, October 2010, 77 (4), 1450-1476.
- Khandelwal, Amit K., Peter K. Schott, and Shang-Jin Wei, "Trade Liberalization and Embedded Institutional Reform: Evidence from Chinese Exporters," American Economic Review, October 2013, 103 (6), 2169-95.
- Kugler, Maurice and Eric Verhoogen, "Prices, Plant Size, and Product Quality." The Review of Economic Studies, 2012, 79 (1), 307-339.
- Ma. Yue, Heiwai Tang, and Yifan Zhang. "Factor Intensity, product switching, and productivity: Evidence from Chinese exporters," Journal of International Economics, 2014, 92 (2), 349-362,
- Manova, Kalina and Zhiwei Zhang, "Export Prices Across Firms and Destinations," The Quarterly Journal of Economics, February 2012, 127 (1), 379-436.
- Schott, Peter K., "Across-product Versus Within-Product Specialization in International Trade." The Quarterly Journal of Economics. May 2004, 119 (2). 646-677.
- Sutton, John, Competing in Capabilities: The Globalization Process, Oxford: Oxford University Press, 2012.
- Verhoogen, Eric A., "Trade, Quality Upgrading, and Wage Inequality in the Mexican Manufacturing Sector," The Quarterly Journal of Economics, May 2008, 123 (2), 489-530.