Good for the Environment, Good for Business: Foreign Acquisitions and Energy Intensity

Arlan Brucal, Beata Javorcik and Inessa Love

May 2019

Motivation

- FDI is widely perceived as a source of growth and development
 - Foreign ownership leads to more sales, higher TFP and more innovation
 - Arnold & Javorcik (JIE 2009), Guadalupe et al. (AER 2012)

• But what about its impact on natural environment?

Anecdotal evidence is mixed

• Foreign-owned textile firms dumping pollution in Citarum River, Bandung, Indonesia

• Haze crisis resulting from increased palm oil production in Indonesia

Anecdotal evidence is mixed

• Resource Conservation

- PepsiCo initiated **energy conservation programs** that have saved more than 4.6 mn kWh of electricity since their inception
- Baxter International installed **energy-saving lighting systems** in 59 of its 97 worldwide sites by 1996, saving 30-40% of the energy used five years earlier
- Collaboration with external stakeholders on environmental improvement projects.
 - Goodyear helps design community-based recycling programs
 - Texaco provides managers and staff to **train employees** of Caltex Pacific in Indonesia in sound environmental practices.
- Internally-oriented Social Responsibility Practices
 - MNCs certify their environmental management systems into **ISO 14001** guidelines. e.g. Sony Corporation (1998), ABB (1997), and Goodyear (1997).
 - Unilever companies have environmental certification programs for their suppliers

Examines the impact of foreign acquisitions on plant-level energy intensity and CO_2 emissions associated with energy use

Why would we expect foreign affiliates to be more energy efficient?

- Larger scale of production => more worthwhile to incur the cost of energy saving investment
- Access to better technologies
- Better management
- Reputational reasons
- Requirements of export markets

- Foreign acquisitions increase production volume, which in turn increases energy use and emissions
- But they reduce energy and CO₂ emission intensities
- FDI contributes to aggregate improvements in energy efficiency

Outline

- Data
- Empirical strategy
- Foreign acquisitions
- Digging deeper
- Foreign divestments
- Are these effects visible at the aggregate level?

Focus on Indonesia, 1983-2001

- Large FDI inflows from the early 1980s to the late 1990s
- No significant environmental policies implemented during that time

Focus on Indonesia, 1983-2001

- Large FDI inflows from the early 1980s to the late 1990s
- No significant environmental policies implemented during that time

Data: Indonesian Census of Manufacturing

- Includes manufacturing plants with 20 or more employees
- Detailed information on energy inputs, both in terms of expenditure and physical units
- More than 300,000 plant-year observations for more than 40,000 plants
- Foreign acquisition defined as the change in foreign equity share to over 20%

Distribution of foreign equity pre- and post-acquisition

Distribution of foreign acquisitions by industry

11 / 56

Distribution of foreign acquisitions by year

Energy inputs and conversion metrics

Input	Conversion Factor	Source
	Conversion to Energy	(in MBTUs)
Gasoline	1 barrel = 5.600 MBTUs	Silverman, D.; University of California, Irvine)
Diesel	1 barrel = 5.825 MBTUs	US Energy Information Administration (EIA)
Fuel Oil/ Bunker Oil	1 barrel $pprox$ 6.287 MTBUs	EIA
Kerosene	1 barrel = 5.670 MBTUs	EIA
Lubricants	$1 \; barrel = 6.065 \; MBTUs$	EIA
Coal	1 short ton $=$ 21.090 MBTUs	EIA (average between sub- to bituminous coal)
Coke	1 short ton $=$ 24.800 MBTUs	EIA
Public Gas	$1~{\it ft}^{f 3}pprox 0.001~{\sf MBTUs}$	US Bureau of Mines
Liquefied Petroleum Gas	1 barrel = 3.861 MBTUs	US Environmental Protection Agency (EPA)
Firewood	1 cord = 20 MBTUs	Silverman, D.; University of California, Irvine
Charcoal	$1 \mid b = 0.128 \text{ MBTUs}$	Oak Ridge National Laboratory
Electricity	1 kWh $pprox$ 0.101 MBTUs	EIA (assumes coal-fired generation)
	Conversion to Carbon Dio	xide (in kgCO2)
Gasoline	$1 \text{ MBTU} = 71.26 \text{ kgCO}_2$	EIA
Diesel	$1 \text{ MBTU} = 71.80 \text{ kgCO}_2$	EPA
Fuel Oil/ Bunker Oil	$1 \text{ MBTU} = 78.80 \text{ kgCO}_2$	EPA
Kerosene	$1 \text{ MBTU} = 72.31 \text{ kgCO}_2$	EPA
Lubricants	$1 \text{ MBTU} = 74.20 \text{ kgCO}_2$	EIA
Coal	$1 \text{ MBTU} = 95.25 \text{ kgCO}_2$	EIA
Coke	$1 \text{ MBTU} = 114.10 \text{ kgCO}_2$	EIA
Public Gas	$1 \text{ MBTU} = 53.06 \text{ kgCO}_2$	EIA
Liquefied Petroleum Gas	$1 \text{ MBTU} = 62.28 \text{ kgCO}_2$	EIA
Firewood	$1~{ m MBTU}pprox$ 96.62 kgCO $_2$	Partnership for Policy Integrity

Within-plant output and energy use changes

- One-to-one Propensity Score Matching based on pre-acquisition characteristics
- Matching within year-industry (4-digit) groupings
- Differences-in-differences on matched pairs

Empirical strategy

Within-plant output and energy use changes

- One-to-one Propensity Score Matching based on pre-acquisition characteristics
- Matching within year-industry (4-digit) groupings
- Differences-in-differences on matched pairs

 $y_{it} = \alpha_i + \gamma Post_t + \beta (Post_t * Acquired_i) + \varepsilon_{it}$

where *i* denotes plant and *t* is the year. We consider two periods, i.e., t = T - 1, T + s where T is the acquisition year and s = 0,1,2. A separate model is estimated for each *s*.

Balancing test

-

-

	Matched sample				
Variables	(210 treated vs 210 controls)				
	Treated	Control	p-value		
Used in matching					
Log (Real output)t-1	9.89	9.88	0.951		
Log (Energy expenditure/output)t-1	-3.87	-3.83	0.752		
Log (Real output)t-2	9.74	9.74	0.997		
Log (Energy expenditure/output)t-2	-3.93	-3.86	0.574		

Balancing test

	Matched sample			
Variables	(210 treated vs 210 controls)			
	Treated	Control	p-value	
Unused in matching			-	
Log (Energy expenditure)t-1	6.02	6.04	0.868	
Log(Energy use)t-1	8.95	9.00	0.779	
Log (CO2 emissions)t-1	13.33	13.38	0.760	
Log (Employment)t-1	5.18	5.29	0.338	
Exporter dummy t-1	0.19	0.18	0.706	
Share of imported materials t-1	0.26	0.19	0.050	
Share of skilled workers t-1	0.24	0.22	0.291	
Log(Investment in machinery)t-1	8.19	7.80	0.105	
Log(Energy use/output)t-1	-0.94	-0.87	0.645	
Log(CO2 emissions/output)t-1	3.44	3.50	0.612	
Log(Energy exp /materials exp)t-1	-2.87	-3.07	0.201	
Delta Log (Real output)t-1	0.15	0.14	0.893	
Delta Log (Energy expenditure)t-1	0.21	0.17	0.644	
Delta Log (Energy use)t-1	0.22	0.20	0.887	
Delta Log (CO2 emissions)t-1	0.21	0.20	0.857	
Delta Log (Energy expenditure/output)t-1	0.06	0.03	0.684	
Delta Log(Energy use/output)t-1	0.06	0.06	0.975	
Delta Log(CO2 emissions/output)t-1	0.06	0.05	0.938	
Delta Log(Energy exp /materials exp)t-1	0.02	0.04	0.842	

→ Full Balancing

Foreign acquisition increase the production scale and hence the total energy use and CO_2 emissions

Output

Energy Expenditure

CO₂ Emissions

PSM-DID on matched sample: Output, Energy Use and Emissions

	Acquisition Year	1 Year Later	2 Years Later
Post*Acquired R-sq. (within)	0.838*** (0.113) 0.203	Log(Output) 1.047*** (0.117) 0.240	1.013*** (0.122) 0.229
No. of Obs.	840	840	840
Post*Acquired	Log (Ene 0.567***	ergy Expenditure 0.773***	in Rps) 0.705***
R-sq (within) No of Obs	0.145 838	0.178 838	0.163 835
	Log(E	nergy Use in ME	BTUs)
Post*Acquired	0.539***	0.770***	0.664***
R-sq. (within) No. of Obs.	(0.118) 0.138 838	(0.130) 0.178 838	(0.136) 0.168 835
Post*Acquired	Log 0.562*** (0.120)	g (CO ₂ Emission 0.792*** (0.130)	0.673*** (0.137)
R-sq (within) No of Obs	0.150 838	0.188 838	0.176 835

Foreign acquisition decrease energy and emission intensity

Average Energy Expenditure/Output

Average Energy Use (MBTUs) / Output

Average CO₂ Emissions / Output

Energy and Emission Intensities

	Acquisition Year	1 Year Later	2 Years Later			
	Log (Energy Expenditure/Output)					
Post*Acquired	-0.276**	-0.282**	-0.326**			
	(0.119)	(0.118)	(0.127)			
R-sq. (within)	0.013	0.014	0.016			
No. of Obs.	838	838	835			
	Log (Energy Use/Out	tput)			
Post*Acquired	-0.304**	-0.285**	-0.367***			
	(0.120)	(0.125)	(0.137)			
R-sq. (within)	0.015	0.014	0.019			
No. of Obs.	838	838	835			
	Log (CC	O ₂ Emissions/O	utput)			
Post*Acquired	-0.282**	-0.262**	-0.357***			
	(0.119)	(0.124)	(0.136)			
R-sq. (within)	0.014	0.015	0.021			
No. of Obs.	838	838	835			

Excluding the effect of potential local competition

• matching outside the county (Kabupaten) • Results

Removing the effect of potential changes in markups

Excluding the 1997-1998 Financial Crisis

- Dropping years beyond 1997 Results
- Longer Time Horizon
 - Extending to 5 years after acquisition Results

Different Matching Procedures

- Coursened Exact Matching * Balancing * Results
- Inverse Probability Weights Palancing Results

Evidence of reallocation across energy sources

Reallocation across energy sources

	Acquisition Year	1 Year Later	2 Years Later
Post*Acquired	Log(Total fue 0.343** (0.165)	el expenditure, in 0.513*** (0.173)	n MBTUs) 0.547*** (0.189)
R-sq (within) No of Obs	0.028 812	0.045 815	0.045 806
	Log(Electricit	y expenditure, in	n MBTUs)
Post*Acquired	0.781*** (0.201)	0.818*** (0.208)	0.679*** (0.219)
R-sq (within)	0.099	0.137	0.142
No. of Obs.	714	713	711
	Log(To	tal fuel use/Out	put)
Post*Acquired	-0.471***	-0.535***	-0.428**
Pag (within)	(0.164)	(0.171)	(0.182)
No. of Obs	812	815	806
	L og(Fle	ctricity use/Out	
Post*Acquired	-0.083	-0.300	-0.406*
R-sq (within) No of Obs	-0.001 714	0.015 713	0.025

Is it all about scale?

Energy intensity vs Scale

➡ Regression Table: Scale

Evidence of structural change

	Acquisition Year	1 Year Later	2 Years Later
	Log(Capital-Labor ra	itio)
Post*Acquired	0.349**	0.406**	0.449**
·	(0.145)	(0.174)	(0.201)
R-sq. (within)	0.034	0.030	0.030
No. of Obs.	658	644	627
	Log(Inv	estment in mac	hinery)
Post*Acquired	0.745***	0.729***	0.861***
	(0.178)	(0.202)	(0.245)
R-sq. (within)	0.087	0.070	0.067
No. of Obs.	650	637	620

Is it all about changes to the product mix?

Plants with little change in the product mix

Log (Energy Expenditure/Output)							
Acquisition Year 1 Year Later 2 Years Late							
Post*Acquired	- 0.548**	- 0.528*	- 0.442*				
	(0.276)	(0.285)	(0.254)				
R-sq. (within)	0.036	0.033	0.035				
No. of Obs	222	222	222				
	Acquisition Year	1 Year Later	2 Years Later				
Post*Acquired	- 1.854***	- 1.727**	- 1.503**				
	(0.676)	(0.718)	(0.680)				
$Post^*Acquired^*log(Predicted energy intensity_{t-1})$	0.023*	0.021	0.019				
	(0.013)	(0.013)	(0.012)				
R-sq. (within)	0.072	0.061	0.062				
No. of Obs	222	222	222				

Plants with little change in the product mix

Log (Energy Expenditure/Output)				
	Acquisition Year	1 Year Later	2 Years Later	
Post*Acquired	-1.590**	-1.465**	-1.116	
	(0.705)	(0.729)	(0.699)	
Post*Acquired*log(Predicted energy intensity $_{t-1}$)	0.019	0.018	0.014	
	(0.013)	(0.013)	(0.012)	
Log (Output)	-0.205	-0.179	-0.221	
	(0.163)	(0.153)	(0.148)	
R-sq. (within)	0.103	0.084	0.105	
No. of Obs	222	222	222	
	All years	All years	ll years	
Post*Acquired	-0.078	-1.694**	-1.516**	
	(0.258)	(0.670)	(0.665)	
Post*Acquired*log(Predicted energy intensity $_{t-1}$)		0.021*	0.018	
		(0.012)	(0.012)	
Log (Output)			-0.119	
			(0.087)	
R-sq. (within)	0.025	0.048	0.062	
No. of Obs	444	444	444	

Do divestments have the opposite effect?

- Defining divestments
 - Consider all plants with at least 20% of foreign equity
 - Define divestment as a drop in foreign equity to less than 20%
 - that remained below this threshold for at least three years

Variables	Unmatched sample (597 Divested vs 42,084 Foreign)			Matched sample (256 treated vs 256 controls		
	Divested	Foreign	p-value	Treated	Control	p-value
Used in matching						
$Log (Real output)_{t-1}$	9.56	7.91	0.00	10.94	10.96	0.87
Log (Energy expenditure/output) _{t-1}	-4.04	-3.84	0.00	-4.21	-4.19	0.86
$Log (Real output)_{t-2}$	9.57	7.96	0.00	10.83	10.76	0.60
$Log (Energy expenditure/output)_{t-2}$	-3.97	-3.83	0.04	-4.13	-4.08	0.68

Balancing test

	Unmatched sample (597 Divested vs 42,084 Foreign)		Matched sample (256 treated vs 256 contro		ole controls)	
	Divested	Foreign	p-value	Treated	Control	p-value
Unused in matching						
Log (Energy expenditure) $_{t-1}$	5.60	4.15	0.00	6.72	6.76	0.79
$Log(Energy use)_{t-1}$	8.51	7.11	0.00	9.66	9.69	0.80
$Log (CO2 emission)_{t-1}$	12.91	11.49	0.00	14.05	14.08	0.82
$Log (Employment)_{t-1}$	5.03	4.19	0.00	5.76	5.69	0.46
Exporter dummy $_{t-1}$	0.24	0.10	0.00	0.33	0.35	0.64
Share of imported materials $_{t-1}$	0.26	0.10	0.00	0.30	0.36	0.05
Share of skilled workers $t-1$	0.20	0.14	0.00	0.22	0.21	0.39
$Log(Investment in machinery)_{t-1}$	7.79	5.66	0.00	8.84	8.96	0.55
$Log(Energy use/output)_{t-1}$	-1.13	-0.88	0.00	-1.28	- 1.26	0.87
$Log(CO2 emission/output)_{t-1}$	3.27	3.51	0.00	3.11	3.13	0.89
$Log(Energy exp /materials exp)_{t-1}$	-3.22	-3.00	0.00	-3.54	- 3.37	0.19
Δ Log (Real output) _{t-1}	0.10	0.05	0.13	0.11	0.19	0.24
Δ Log (Energy expenditure) _{t-1}	0.03	0.06	0.49	0.03	0.08	0.51
Δ Log (Energy use) _{t-1}	0.03	0.08	0.23	0.02	0.10	0.40
Δ Log (CO2 emission) _{t-1}	0.03	0.08	0.23	0.02	0.10	0.43
Δ Log (Energy expenditure/output) $_{t-1}$	-0.06	0.01	0.09	-0.09	-0.11	0.78
$\Delta Log(Energy use/output)_{t-1}$	-0.07	0.02	0.03	-0.09	-0.09	0.95
$\Delta Log(CO2 emission/output)_{t-1}$	-0.07	0.03	0.03	-0.09	-0.10	0.91
Δ Log(Energy exp /materials exp) $_{t-1}$	-0.05	0.01	0.21	-0.11	-0.13	0.77

Do divestments have the opposite effect?

	Acquisition Year	One Year Later	Two Years Later
Post*Acquired	-0.318*** (0.081)	Log(Output) -0.397*** (0.092)	-0.313*** (0.091)
R-sq. (within) No. of Obs.	0.030 1024	0.038 1024	0.035 1024
	Log (E	nergy expenditure/	Output)
Post*Acquired	0.296***	0.406***	0.290**
	(0.099)	(0.108)	(0.121)
R-sq. (within)	0.021	0.035	0.016
	1022	1022	1022
	Lo	g (Energy use/Out	put)
Post*Acquired	0.296***	0.454***	0.258**
_ /	(0.106)	(0.119)	(0.126)
R-sq (within)	0.019	0.036	0.017
No. of Obs.	1022	1022	1022
	Log	(CO2 emissions/O	utput)
Post*Acquired	0.289***	0.453***	0.249**
·	(0.106)	(0.120)	(0.126)
R-sq (within)	0.019	0.036	0.018
No of Obs	1022	1022	1022

Aggregate effects

Decomposition of aggregate energy intensity

Following Olley and Pakes (Econometrica, 1996):

$$\underbrace{W_{t} = \sum_{i} s_{it} \ InEIP}_{\substack{i \\ Aggregate \ weighted \\ energy \ intensity}} = \underbrace{\overline{InEIP}_{\substack{Unweighted \ average \\ energy \ intensity}} + \underbrace{\sum_{i} (s_{it} - \overline{s}_{t})(InEIP_{it} - \overline{InEIP})}_{Covariance}$$

Decomposition of aggregate energy intensity

Following Olley and Pakes (Econometrica, 1996):

$$\underbrace{W_{t} = \sum_{i} s_{it} \text{ InEIP}}_{\substack{i \\ \text{Aggregate weighted} \\ \text{energy intensity}}} = \underbrace{\overline{\text{InEIP}}_{\substack{\text{Unweighted average} \\ \text{energy intensity}}} + \underbrace{\sum_{i} (s_{it} - \overline{s}_{t})(\text{InEIP}_{it} - \overline{\text{InEIP}})}_{Covariance}$$

$$Y_{jst} = \beta Foreign_{jt} + \gamma_j + \lambda_{st} + \varepsilon_{jst}$$

where *Foreign_{jt}* is the number of foreign affiliates or their industry output share, and *j* denotes 4-digit industry (79), *s* 2-digit sector (9) and *t* year (19).

Decomposition of aggregate energy intensity

	Measure based on number of FAs			Measure	based on out	put share of FAs
	Wt	InEIP	Covariance	Ŵt	InEIP	Covariance
Log (Energy Expenditure/Output)						
Foreign Affiliates	-0.226***	-0.086**	-0.140***	-0.772*	-0.552**	-0.219
	(0.041)	(0.034)	(0.044)	(0.410)	(0.276)	(0.318)
Adj. R-sq.	0.853	0.829	0.774	0.842	0.827	0.764
Observations	1408	1408	1408	1408	1408	1408
Log (Energy Use/Output)						
Foreign Affiliates	-0.215***	-0.070**	-0.146***	-0.740*	-0.490*	-0.250
0	(0.039)	(0.034)	(0.040)	(0.401)	(0.271)	(0.336)
Adj. R-sq.	0.859	0.852	0.784	0.850	0.851	0.775
Observations	1408	1408	1408	1408	1408	1408
Log (CO2 Emissions/Output)						
Foreign Affiliates	-0.217***	-0.077**	-0.140***	-0.761*	-0.521*	-0.239
-	(0.039)	(0.035)	(0.040)	(0.405)	(0.277)	(0.328)
Adj. R-sq.	0.853	0.834	0.783	0.844	0.833	0.775
Observations	1408	1408	1408	1408	1408	1408
No. of industries (4-digit ISIC)	79	79	79	79	79	79
No. of sectors (2-digit ISIC)	9	9	9	9	9	9
No. of years	19	19	19	19	19	19

Decomposition of aggregate energy intensity (Different normalization)

	Measure b	ased on nun	nber of FAs	Measure	based on out	put share of FAs
	Wt	InEIP	Covariance	W _t	InEIP	Covariance
Log (Energy Expenditure/Materials)						
Foreign Affiliates	-0.254***	-0.093**	-0.161**	-0.822*	-0.698**	-0.125
	(0.061)	(0.043)	(0.065)	(0.454)	(0.307)	(0.381)
Adj. R-sq.	0.873	0.874	0.789	0.863	0.874	0.779
Observations	1407	1407	1407	1407	1407	1407
Log (Energy Use/Materials)						
Foreign Affiliates	-0.243***	-0.076*	-0.167***	-0.788*	-0.628**	-0.160
0	(0.058)	(0.041)	(0.060)	(0.444)	(0.299)	(0.392)
Adj. R-sq.	0.881	0.882	0.804	0.872	0.883	0.794
Observations	1407	1407	1407	1407	1407	1407
Log (CO2 Emissions/Materials)						
Foreign Affiliates	-0.244***	-0.082**	-0.162***	-0.804*	-0.657**	-0.147
-	(0.057)	(0.041)	(0.060)	(0.450)	(0.301)	(0.386)
Adj. R-sq.	0.877	0.872	0.805	0.868	0.873	0.796
Observations	1407	1407	1407	1407	1407	1407
No. of industries (4-digit ISIC)	79	79	79	79	79	79
No. of sectors (2-digit ISIC)	9	9	9	9	9	9
No. of years	19	19	19	19	19	19

Conclusions

- Foreign acquisitions increase production volume, which in turn increases energy use and CO₂ emissions
- But they reduce energy and emission intensities by 28 and 30%, respectively
- Foreign divestments have the opposite effect
- FDI contributes to **aggregate improvements** in energy efficiency, both through **within-plant improvement** and **reallocation**

Thank you!

APPENDICES

Robustness Check: Matches from Another Kabupaten

	Acquisition Year	1 Year Later	2 Years Later			
Post*Acquired	0.829*** (0.114)	Log(Output) 1.037*** (0.116)	1.008*** (0.123)			
R-sq. (within) No. of Obs.	0.199 836	0.238 836	0.225 836			
	Log (Energy Expenditure in Rps)					
Post*Acquired	0.573***` (0.118)	0.758*** (0.126)	0 7Ó1*** (0 134)			
R-sq. (within) No. of Obs.	0 145 834	0.173 834	0.161 831			
	Log (Ene	rgy Expenditure,	/Output)			
Post*Acquired	-0.262**` (0.119)	-0.286**	-0.324** (0.128)			
R-sq (within) No of Obs	0.012 834	0.015 834	0.016 831			

Is it just about markups?

	Acquisition Year	1 Year Later	2 Years Later
Post*Acquired	Log(Energy Exp -0.310** (0.123)	oenditure/Mater -0.266** (0.128)	ials Expenditure) -0.382** (0.147)
R-sq. (within) No. of Obs.	0.021 808	`0.011´ 810	0.018 807
	Log(En	ergy Expenditure	e/Output)
Post*Acquired	-0.266** (0.117)	-0.290** (0.117)	-0.331*** (0.126)
Export share	-0.002	0.001	0.001
R-sq. (within) No. of Obs.	(0.002) 0.016 838	(0.002) 0.015 838	(0.002) 0.016 835
Post*Acquired	Log(En - 0.317**	ergy Expenditure -0.382***	e/Output) -0.406***
Export share	-0.003 (0.002)	(0.130) -0.001 (0.002)	(0.140) -0.001 (0.002)
Post*Acquired*Export share	0.003	0.004 (0.003)	0.004 (0.003)
R-sq (within) No of Obs.	0.018 838	0.023 838	0.021 835

Matched Sample: Dropping years beyond 1997

	Acquisition Year	1 Year Later	2 Years Later			
Post*Acquired	0.793***	Log(Output) 0.777*** (0.134)	0.798***			
R-sq (within) No of Obs	0.236 714	0.281 654	0.291 614			
	Log (Energy expenditure in Rps)					
Post*Acquired	0.519***	0.647***	0.492***			
R-sq. (within) No. of Obs.	(0.133) 0.134 714	(0.152) 0.174 654	(0.184) 0.136 613			
	Log (Ene	rgy expenditure/	Output)			
Post*Acquired	-0.273**` (0.131)	-0.130 (0.130)	-0.310* (0.160)			
R-sq. (within) No. of Obs.	0.019 714	0.012 654	0.031 613			

	Acquisition Year	1 Year Later	2 Years Later	3 Years Later	4 Years Later 5
Post*Acquired	0.728***	0.839***	Log(Ou 0.813***	utput) 1.033***	1.104***
R-sq. (within) No. of Obs.	(0.135) 0.247 462	(0.139) 0.316 462	(0.150) 0.281 462	(0.170) 0.299 462	(0.180) 0.292 462
		Log	g (Energy Exp	enditure in Rp	s)
Post*Acquired	0.430*** (0.152)	0.593*** (0.159)	0.500*** (0.183)	0.306	0.420** (0.186)
R-sq. (within) No. of Obs.	0.124 454	0.184 454	0.141 454	0.138 454	0.206 454
		Log	(Energy Expe	nditure/Outpu	it)
Post*Acquired	-0.308** (0.134)	-0.272** (0.126)	0.345** (0.161)	-0.718*** (0.157)	_0.675*** (0.155)
R-sq. (within) No. of Obs.	0.025 454	0.024 454	`0.019´ 454	`0.087' 454	0.084 454

Balancing Test: Variables used in matching

	CEM		PSM (no same county)			IPTW		
Variables	(N=440)		(N=418)			(N=143,216)		
	Treated	Control	p-value	Treated	Control	p-value	F-Stat	p-value
Used in matching								
Log (Real Output)	9.03	9.03	0.99	9.86	9.86	0.90	4.43	0.04
Log (Energy Expenditure/Output)	-3.71	-3.71	0.99	-3.82	-3.82	0.65	0.80	0.37
Log (Real Output)	9.59	9.62	0.90	9.86	9.86	0.90	5.91	0.02
Log (Energy Expenditure/Output)	-3.77	-3.79	0.92	-3.82	-3.82	0.65	0.02	0.89

Balancing Test: Variables NOT used in matching

		CEM		PSM (i	no same o	county)	IP.	τw
Variables	(N=440)			(N=418)			(N=143,216)	
	Treated	Control	p-value	Treated	Control	p-value	F-Stat	p-value
Unused in matching								
Log (Energy Expenditure)	5.33	5.33	0.99	6.03	6.03	0.84	6.23	0.01
Log (Energy Use)	8.25	8.26	0.95	8.99	8.99	0.77	5.42	0.01
Log (CO2 Emissions)	12.65	12.66	0.94	13.36	13.36	0.78	0.02	0.02
Log (Employment)	4.85	4.72	0.26	5.26	5.26	0.40	4.59	0.00
Exporter Dummy	0.15	0.18	0.30	0.18	0.18	0.80	14.42	0.03
Share of Imported Materials	0.20	0.18	0.56	0.19	0.19	0.05	12.14	0.00
Share of Skilled Workers	0.19	0.20	0.63	0.21	0.21	0.25	17.91	0.00
Log(Investment in Machineries)	7.15	6.93	0.43	7.86	7.86	0.20	0.61	0.00
Log(Energy Use/Output)	-0.80	-0.79	0.93	-0.87	-0.87	0.56	0.22	0.43
Delta Log (Energy Expenditure)	0.14	0.08	0.19	0.15	0.15	0.55	0.03	0.90
Delta Log (Energy Use)	0.17	0.09	0.19	0.18	0.18	0.72	0.00	0.87
Delta Log (CO2 Emissions)	0.17	0.09	0.22	0.18	0.18	0.70	10.36	0.97
Log(CO2 Emissions/Output)	3.61	3.62	0.92	3.51	3.51	0.57	7.45	0.64
Log(Energy Exp./Materials)	-2.80	-2.81	0.93	-3.03	-3.03	0.32	0.39	0.01
Delta Log (Real Output)	0.13	0.05	0.14	0.14	0.14	0.86	2.05	0.53
Delta Log (Energy Expenditure/Output)	0.02	0.03	0.81	0.02	0.02	0.60	1.93	0.15
Delta Log(Energy Use/Output)	0.05	0.04	0.87	0.04	0.04	0.81	1.48	0.16
Delta Log(CO2 Emissions/Output)	0.04	0.04	0.96	0.04	0.04	0.78	1.66	0.22
Delta Log(Energy Exp./Materials)	0.08	-0.02	0.08	0.04	0.04	0.81	0.00	0.20

Coarsened Exact Matching-DID Estimates

	Acquisition Year	1 Year Later	2 Years Later
Post*Acquired R-sq. (within)	1.392*** (0.141) 0.350 876	Log(Output) 1.499*** (0.144) 0.383 876	1.530*** (0.148) 0.392 876
		ergy Expenditure	in Rns)
Post*Acquired	1.012***	1.189*** (0 140)	1.159***
R-sq. (within) No. of Obs.	0.221 871	0.248 868	0.253 868
	Log (Ene	rgy Expenditure,	/Output)
Post*Acquired	-0.372*** (0.113)	-0.297** (0.121)	-0.382*** (0.123)
R-sq. (within) No. of Obs.	0.059 871	0.054 868	0.048 868

IPW-DID Estimates

06***
. 221) .809 .8750
;) 00***
220)
.800
8008
t)
16***
.159)
.038 8008

Regression Result: Scale Effect

Dependent Variab	le: Log(Energ	gy Expenditure	e)	
	All	All Sample		d Sample
	(1)	(2)	(3)	(4)
Acquired	0.836**	2.334***	0.997**	1.931***
n(output)	(0.329) 0.571*** (0.005)	(0.250)	(0.404) 0.621*** (0.040)	(0.462)
ln(output)t-1	()		()	0.250***
Acquired*In(output)	-0.060**	(0.005)	-0.086**	(0.040)
Acquired* n(output)t-1	(0.050)	-0.176*** (0.022)	(0.030)	-0.144*** (0.043)
Firm fixed effect Year-fixed effect	Yes Yes	Yes Yes	Yes Yes	Yes Yes
R-sq. (within) No. of Obs.	0.261 255450	0.097 228733	0.389 2994	0.134 2571

Back to "Energy Intensity vs Scale"