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Abstract

We show that knowledge creation, as measured by patents, is increasingly conducted in

cross-border collaborative teams of inventors. We document the importance of cross-

border communication costs by showing that a higher overlap in business hours is

associated with increased cross-border collaboration. This effect is distinct from the

effect of physical distance, which matters as well. It is stronger for technology classes

where lab experiments are involved and thus more frequent interactions may be re-

quired. Episodes of telecommunications liberalization (and the resulting decline in the

cost of international calls) lead to an increase in cross-border collaboration, partic-

ularly when the business hour overlap between the headquarters and a subsidiary is

larger. This effect is stronger for experiment-based technology classes. Less successful

inventors respond more than their most successful peers.
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1 Introduction

Knowledge creation and diffusion are the pillars of modern growth theory. Multinational

enterprises (MNEs) play a central role in both the creation and diffusion of knowledge across

international borders. According to conservative estimates of UNCTAD (2005), MNEs ac-

count for close to half of all global R&D expenditures and at least two-thirds of business

R&D expenditures.1

Despite the importance of R&D efforts undertaken by MNEs, there is little micro ev-

idence on this subject. Where do MNEs create knowledge? Is knowledge creation within

a multinational firm becoming more concentrated in a few geographic locations, or is there

more collaboration taking place across borders? What are the impediments to knowledge

creation inside the boundaries of the firm?

Due to its very nature, knowledge creation is difficult to measure. We use data on patents

and cross-border collaboration in inventor teams to capture the incidence of knowledge cre-

ation. We follow Kerr and Kerr (2018) in defining “global collaborative patents”. These

are innovations that involve at least one inventor located in the MNE home country and

at least one inventor located in another country. Our data cover the 1980-2014 period and

include geographic location of individual inventors within a team that obtained a patent.

Matching patent data with the Orbis database, we are able to observe links between various

establishments within a multinational firm.

In our analysis, we focus on three drivers of knowledge creation within an MNE: (i)

time zone differences that lead to heterogeneity in the business hour overlap, (ii) episodes

of telecom sector liberalization, which in the 1990s and the early 2000s resulted in a sudden

and substantial decline in the price of international calls, and (iii) the interaction between

the two.

Why should time zones matter for repeated interaction beyond the role of physical dis-

tance? Although much of physical production can be fragmented into individual stages and

carried out relatively independently, innovative activity involves exchange of knowledge that

is both tacit and strategic to firms. Sociological studies suggest that work practices in multi-

national organisations that involve knowledge work have evolved to demand greater hours,

commitment, and flexibility from their employees.2 In economics, Chauvin et al. (2020)

show that temporal distance stemming from time zone differences reduce synchronous and

1The European Commission estimates that, in 2007, foreign-owned firms accounted for 15% of all business
R&D in the United States; 20-25% in France, Germany, and Spain; 30%-50% in Canada, Hungary, Portugal,
the Slovak Republic, Sweden, and the United Kingdom (UK); and more than 50% in Austria, Belgium, the
Czech Republic, Malta, and Ireland (Dachs et al., 2012).

2For instance, Kvande (2009) discusses evidence from multinational law and computing firms that require
employees to adjust working hours to collaborate with international business partners.
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impromptu communication from first-best levels within a multinational organisation, pre-

senting costly frictions especially for the multinational’s knowledge-intensive work. Time

zones differences have been shown to be a barrier to women sharing in the benefits of activ-

ities by firms engaged in international trade (Bøler et al., 2018).

The last few decades have witnessed a dramatic decline in the price of international

calls (see Figure C.2). This was largely driven by the liberalization of telecommunications

markets, a process that started in 1984 in the US with the UK, Japan and New Zealand

following suit shortly and the reforms gaining speed in Europe in the 1990s. Lower prices

of international calls were accompanied by an increase in the volume of international calls,

which in turn facilitated cross-border cooperation, including cooperation in R&D.

In this study, we hypothesize that a decline in communicating costs facilitated cross-

border knowledge production between MNE establishments in home and host countries,

particularly when the time zone differential was not too large. Moreover, we hypothesize

that these factors were more important for experiment-based technology classes where more

frequent communications between inventors may be required. Finally, we explore the hetero-

geneous impact on inventors with different patenting histories. On the one hand, inventors

with lesser track records may stand to benefit more from international collaborations and

thus may be willing to incur the high costs of international communication and the inconve-

nience of time zone differential. On the other hand, the presence of such costs, which must

be partially born by their collaborators located in HQ, makes them less attractive as team

members. Thus, it is ambiguous a priori whether inventors with a lesser or with a stronger

track records would be affected more by a decline in communication costs.

In our core analysis, the outcome of interest is the share of patents produced by inventors

in a particular foreign affiliate of an MNE that involved cooperation with one or more

inventors from HQ. Our variables of interest include bilateral telecom liberalization between

the MNE home and host country and the interaction of liberalization with the business hour

overlap between the affiliate and the HQ. We define liberalization as both the home and the

host country having liberalized their markets, or explicitly focus on the cost of international

calls between the two countries. By considering the share of global collaborative patents in all

patents linked to a given foreign affiliate in a given time period, we are implicitly controlling

for all factors that drive the volume of innovative activity in each location. By controlling

for affiliate-HQ-technology fixed effects, we exploit the variation over time and thus abstract

from the possibly endogenous decision of where to locate a foreign subsidiary. We also control

for unobservable host-country-year hetorogeneity, and hence take into account factors that

may have driven liberalization as well as variation in the supply of potential inventors that

can be hired by an MNE in a given host country in a given year. Inclusion of these fixed
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effects means that our identification comes from comparing the impact of liberalization on

affiliates located in the same host country but differing in terms of business hours overlap

vis a vis their parent firm’s HQ. Finally, technology-specific shocks are accounted for by

technology-year fixed effects.

We extend the baseline analysis in three dimensions: (i) an event study focusing on

telecom liberalization episodes and comparing affiliates with high versus low time zone dif-

ferential vis a vis HQ; (ii) an examination of whether the size of inventor teams was affected

by telecom liberalization and time zone differential; and (iii) an inventor-level analysis al-

lowing for heterogeneous effects on inventors with different patenting histories.

Our econometric analysis produces three main sets of findings. First, in a simple cross-

sectional setting, we find that a greater overlap in business hours between MNE HQ and

affiliates leads to a higher incidence of inventor collaboration. For instance, an increase in

business hour overlap by eight hours is associated with a 39% increase in the probability

that a patent filed by inventors located in foreign affiliates involves HQ. In other words,

an inventor working for a Polish subsidiary of a German MNE is 33% more likely than an

inventor located in its Japanese subsidiary to collaborate on a patent with colleagues at the

firm’s HQ. The business hour overlap matters beyond the effect of physical distance, which

itself reduces the likelihood of cross-border collaboration (by 8% when comparing a Japanese

and a Polish subsidiary of a German MNE). It is also stronger for experimental technology

classes, where more frequent interactions are likely to be required.

Second, we show that episodes of telecom sector liberalization have led to an increase in

cross-border collaboration, particularly when the business hour overlap between the HQ and

a subsidiary was larger. The results are robust to using an indicator variable for liberalization

episodes or the cost of international calls between the two countries. Again we show that the

impact is stronger for experiment-based technology classes. These conclusions are confirmed

by event studies following the methodology by Borusyak et al. (2021) and comparing the

impact of telecom liberalization episodes on affiliate-HQ pairs with a large versus small

business hour overlap. Let’s stick with our example of a German MNE with a Polish and

a Japanese subsidiary to illustrate the magnitudes. Our results suggest that after telecom

liberalization, the share of patents based on collaboration with HQ filed by inventors located

in the Polish subsidiary will increase by 6.4pp (22%). In contrast, collaborative patents in

the Japanese subsidiary will go up by only 2.6pp (10%).

Third, one may expect to observe an increase in the inventor team size as the communi-

cation frictions decline. This is indeed what we find. We show that the number of inventors

listed on a patent increases after telecom liberalization, particularly in affiliates having a

larger business hours overlap with HQ. The effect is driven by inventors from HQs and not
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by inventors located in affiliates.

Finally, our inventor-level analysis confirms the earlier conclusions. It also indicates that

the impact of telecom liberalization in affiliates with high business hour overlap vis a vis HQ

is larger for inventors with lesser track records than for their colleagues. This is suggestive

of high costs of working across time zones. It is consistent with the scenario where high

monetary and inconvenience costs of working across time zones must be compensated by

high expected benefits of collaboration and thus favor collaboration with inventor with a

proven track record. Only when such costs decline, collaboration becomes worthwhile with

inventors from foreign affiliates who have less of a track record.

We contribute to several strands of literature. First, we contribute evidence to the litera-

ture on where and how knowledge work is conducted within the multinational firm. Canoni-

cal models of foreign direct investment (FDI) posit a distance-concentration trade-off, which

focus on trade in goods and do not take into account knowledge transfer (Helpman et al.,

2004). Recent studies differ on how R&D and knowledge production are incorporated into

models of FDI. Bilir and Morales (2020) model knowledge creation as concentrated in the

HQ country and exploited abroad. In Keller and Yeaple (2013), a distance-knowledge trade-

off emerges because it is more costly to transfer knowledge by direct communication than

by trading intermediates. Similarly, Gumpert (2018) models how communication costs limit

the ability of a firm’s establishments to access knowledge at the headquarters.

Our findings support the existence of substantial knowledge transfer costs, both due to

time zone differences and physical distance. They also show that multinationals increasingly

conduct their R&D operations outside their home countries and in collaborative teams of

inventors located in multiple countries. As such, the evidence is reminiscent of a vertical

model of FDI as in Antràs et al. (2006), who study the formation of cross-country teams

in production. It is also in line with a theory of the multinational firm as an organization

that specializes in the creation and transfer of knowledge across borders (Kogut and Zander,

1993).

Second, we contribute to the body of evidence documenting the importance of communi-

cation costs and time zone differences on multinational firm organization. Stein and Daude

(2007) find that differences in time zones negatively affect FDI, while Oldenski (2012) finds

that activities requiring complex within firm communication are more likely to occur at MNE

HQ. Closest to our study is Bahar (2020), who presents evidence of a trade-off between dis-

tance to the HQ and knowledge intensity of the affiliates’ industry. We extend this literature

by explicitly showing that a decline in international communication costs has differential

effects depending on the business hour overlap between the HQ and a foreign affiliate.3

3One proposed reason for the negative relationship between distance (both physical and cultural) and
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Third, we add to the literature on cross-border collaboration in knowledge work. Kerr and

Kerr (2018) find, in a sample of publicly listed companies from the United States (US), that

global collaborative patents are frequently observed when a firm enters a new foreign region

for innovative work, especially where intellectual property protection is weak. They also

find that collaborative patents are higher quality than patents produced by inventor teams

located only in the US, and employment of ethnic inventors at home is related to cross-border

collaboration.4 Catalini et al. (2020) show that travel costs constitute an important friction

to collaboration between inventors, especially for high-quality scientists. Similarly, using the

introduction of the jet engine to civil aviation in the 1950s as an exogenous reduction in travel

time, Pauly and Stipanicic (2021) find that a decrease in travel time between two cities lead

to an increase in patent citations between them. Our inventor-level analysis extends this

literature by pointing out how the interaction between a drop in communication costs and

the time zone differential affect collaborations of inventors with different track records. We

show that a decline in communication frictions tends to benefit inventors with lesser track

records more.

Recent research suggests that ideas are getting harder to find (Bloom et al., 2020).

Patents increasingly involve large research teams and evidence shows that interactions with

better inventors are strongly correlated with subsequent productivity (Akcigit et al., 2018).5

This increases the importance of collaboration across borders and ability of large teams of

inventors to work together, often facilitated by within-firm mobility. Our work sheds new

light on the determinants of cross-border collaboration.

Fourth, our paper adds to the literature on FDI and the geographic diffusion of knowledge

and technology (Keller, 2004). Keller (2002) finds that productivity effects of R&D are

declining in distance, while Bilir and Morales (2020) show that parent and affiliate R&D

activities are complementary. We contribute to this literature by documenting that a decline

in communication frictions lead to more R&D collaboration between HQ and MNE affiliates,

thus increasing their complementarity.

The remainder of this paper is structured as follows. We describe our data in Section

FDI is the difficulty of a parent firm to monitor the activities of its affiliates abroad (Blonigen et al., 2020).
Monitoring costs can be especially high in the context of innovative activity, where parent firms have an
incentive to protect the leakage of proprietary technology. Our results suggest that business hour overlap
may contribute to the difficulty of monitoring.

4Related, Foley and Kerr (2013) find that increases in the share of a US multinational’s innovation
performed by inventors of a particular ethnicity at home are associated with increases in the share of that
firm’s affiliate activity in countries related to that ethnicity.

5Akcigit et al. (2018) introduce an endogenous growth model with knowledge diffusion in which inventors
learn from each other via collaboration. They quantify the importance of interactions for growth by studying
the effects of reducing interaction costs, such as IT or infrastructure, on inventors’ learning and knowledge
accumulation.
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2. The subsequent section presents stylised facts. Section 4 contains our results on the

determinants of global collaborative patenting activity. Section 5 focuses on the telecom

liberalization episodes at the level of the establishment, while in section 6 we disaggregate

the analysis further down to the inventor level. Concluding remarks appear in Section 7.

2 Data

2.1 Patents

The main patent dataset underlying our analysis comes from USPTO’s (United States Patent

and Trademark Office) PatentsView project. PatensView covers the universe of US patents.

Crucially, it contains inventor identifiers resulting from a disambiguation exercise and infor-

mation on inventor location (at the city level). Inventor location allows us to pinpoint where

knowledge creation takes place, while the inclusion of identifiers allows us to track inventors

across time and space.

We combine the USPTO data with EPO’s PATSTAT (Spring 2021 edition) using pub-

lication numbers. PATSTAT is an effort to collect data on patent filings from all over the

world. Importantly, this provides us with patent filings at EPO and JPO, two important

patent offices other than the USPTO.

We focus on patent families, where a patent family is defined as a collection of patents

concerning the same invention in potentially multiple patent offices around the world. In

this way, we count a single invention only once and consider the date of its first filing as the

relevant date. Our analysis focuses on triadic patent families, which include patents granted

at all three of the patent offices mentioned earliers (USPTO, EPO, JPO).6 These patent

families capture the most important inventions relevant at a global level.7

2.2 Building our data set

The purpose of our analysis is to understand drivers of cross-border collaboration in innova-

tion within a multinational firm. This requires several ingredients.

First, we need to be able to match patents to a firm. A firm can register legal ownership

6Note that triadic patents are sometimes defined as patent families granted in the US and filed, but not
necessarily published, at EPO and JPO. We instead require the patent family to include a publication in all
three offices. This ensures a reasonable sample coverage.

7Note that EPO uses two different definitions of patent families: the simple (DOCDB) and the extended
(INPADOC) definition. We use the extended definition here which groups together all applications that have
at least one priority in common. In what follows, we use the terms ”patent” and ”invention” interchangeably,
both of which refer to the relevant patent family.
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of a patent in a subsidiary that is located in a country different to the firm’s HQ, different

to the location where the underlying technology was created (i.e. where inventors reside),

and different to the location where the intellectual property will be applied (Griffith et al.,

2014). Therefore, it is crucial that we accurately identify the firm that is the ultimate owner

of a patent and understand where exactly the invention was created. This requires assigning

patents to firms. To do so, we use the Orbis Intellectual Property (IP) database, provided by

Bureau van Dijk. Orbis IP sources its patents data from Lexis Nexis and maps the assignee

(or patent owner) names indicated on the patent to Orbis firm identifiers based on a textual

matching algorithm and extensive manual checks (see appendix A).

We then use Orbis’s data on ownership links to identify the global ultimate owner (GUO)

of the assignee. In the analysis below a GUO is our definition of a firm. The ownership links

were extracted in September 2020 and they reflect the state of the world at that point in time.

As we combine the data on ownership links with historical patent data, we may attribute

some patents and inventors to a firm that at the time of the patent filing were not part of

it, but that the firm subsequently acquired. We would then be confounding an effect that

operates through acquisition with an effect operating in a fixed network of establishments.

Our robustness check focusing only on foreign affiliates that already existed in the 1980s

alleviates this concern.

Second, we need to know where the innovative activity actually took place. We obtain

this information from the patent data, which give us the location of each inventor who

contributed to the patent.

Third, we need to define what we mean by cross-border collaboration within an MNE.

We focus on collaboration between inventors located in the MNE HQ country and those

located in its foreign affiliates. While we could potentially consider collaboration between

all pairs of entities within an MNE, this would result in a very large and sparse matrix. In

addition, innovation is likely to follow a hub-and-spoke model, i.e., most collaboration takes

place between an R&D hub in the home country and individual subsidiaries. We thus restrict

our analysis to HQ-subsidiary collaboration.8

Fourth, we need to decide which MNE establishments to consider. Given the nature of

the research question, we want to consider only establishments engaged in R&D, which in

our case means establishments where at least one inventor listed on a patent belonging to

an MNE was located. We define establishments based on patent data, using the information

8In our estimation sample of patents with at least one inventor based at a foreign affiliate, around 7.7%
of patents are affiliate-affiliate collaborations without HQ-involvement. 29.8% of patents are in collaboration
with HQ inventors (40.9% weighted by citations). Thus, collaboration indeed seems to follow a hub-and-
spoke model, especially for the patents of highest quality. Nevertheless, affiliate-affiliate collaborations are
also present in the data and should be studied further in future work.

7



on the inventors’ location of residence to identify the country and time zone where they are

located.9 Our definition of establishment comprises all inventors working for a given firm

while located in a particular country and time zone. This implies that countries with a single

time zone will have at most one establishment of a given firm, while countries with multiple

time zones can have multiple establishments belonging to the same MNE. In other words,

our approach amounts to pooling together patents for multiple establishments belonging to

a single MNE and located in the same time zone of a single country. But it also implies

that an MNE may have more than one establishment in its HQ country if the country has

multiple time zones.

Figure 1 below illustrates our approach in the context of Pfizer. Pfizer’s R&D HQ country

is the United States, where the company has establishments in each of the four time zones.

Thus when we consider cross-border collaboration between the US and Canada within Pfizer,

we will consider 12 cases of possible cooperation (4 Pfizer locations in the US x 3 Pfizer loca-

tions in Canada). We further consider collaborations between each of the 4 Pfizer locations

in the US and all other countries where Pfizer has foreign affiliates.

Figure 1: Pfizer’s establishments

Our final dataset includes 509,884 patent families that are matched to a firm. It accounts

for 83% of all granted triadic patents over the period 1980-2014 (or 84% when weighting by

citations). For more details, see appendix Sample Coverage.

9We use the R package lutz to infer the time zone from inventor locations.
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2.3 Variable Definitions

The following variables are used in our analysis.

• Collaboration: this is our outcome variable of interest. It captures the share of patents

obtained by inventors located in a given establishment that involve at least one inventor

based in the HQ country of the firm.

• Business Hour Overlap: We take the the difference in time zone between the HQ

location and the foreign establishment location. The maximum difference is 12 hours.

Then we define business hour overlap as 8 hours minus the time zone difference, setting

negative values to 0, so that our overlap variable ranges from 0 to 8 hours.

• Distance: The establishment location is defined as the centroid of the country-time

zone pair. The distance is the geodesic (or straight-line) distance between the two

establishment locations.

• Technology: Our definition of a technology corresponds to a 4-digit IPC class. There

are around 650 such classes.

• The year of liberalization of the market for international calls in a given country comes

from Table 1 in Boylaud and Nicoletti (2000).

• Bilateral data on prices of international calls were collected from OECD reports for

the years 1990, 1998 and 2003 (see OECD (1994), OECD (1999) and OECD (2003)).

These contain bilateral rates for international phone calls from country A to country

B at the peak hour. We convert these rates to a per-minute rate in 1990 US dollars.

The rates pertaining to calls from A to B and from B to A are typically not the same,

we consider the average or the minimum of the two in our analysis.

• Star inventors: We measure inventors’ initial productivity by computing the number of

all patents they filed prior to 1990, regardless of the firm filing the patent.10 We then

define as stars the top 25% of all inventors working in foreign establishments of a given

firm. In a robustness exercise, we also use the top 10% or the (log) number of patents

filed by an individual inventor before 1990. In yet another definition, we weight the

number of patents by citations received before 1990 and recompute the top 25%.

10We capture any patent that appears in the USPTO’s PatentsView data. This dataset contains patents
granted from 1976 onwards.
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2.4 Experiment-Intensive Technologies

In order to identify technologies that rely on high-intensity communication, we perform anal-

ysis on patent texts. We focus on the brief summary text provided by PatentsView for all

patent applications filed at the USPTO in the year 2000 and search for the words “experi-

ment” and “trial”. We compute the share of patents containing at least one of these terms

within each technology class and define a technology as experiment-intensive if this share is

higher than 35.7% (the median share in the regression sample). For around 5% of observa-

tions, we are not able to classify the technology class using the procedure outlined above, as

these technologies are not present in the sample of US patents we use for classification.

To get a sense of the broad fields in which our experiment-intensive technologies are

concentrated, table D.1 shows the share of experiment-intensive technologies (4-digit) within

each more aggregate technology grouping (1-digit). Among these technology groupings,

chemistry patents involve the most experimentation and electricity and fixed constructions

patents the least. Table D.2 displays the 15 most common 4-digit technology classes in our

sample and how they are classified. Again we see chemistry-related technology classes having

the largest share of experimental patents.

In figure C.1, we correlate the share of experimental patents by technology with other

patent classifications. We show that experimental technologies tend to be more process-

intensive (based on data from Ganglmair et al. (2022)) and more scientific (based on data

from Marx and Fuegi (2020)). We will show below that experimental technologies neverthe-

less capture something distinct that matters for communication frictions.

3 Stylized Facts

This section contains a few stylized facts to motivate our analysis.

A large share of patenting activity takes place outside of MNE HQ countries and is driven

by inventors located in foreign affiliates. Table 1 lists the top 10 HQ countries in our

sample in terms of the number of patent families attributed to MNEs. The most innovative

country in the sample, Japan, is the least collaborative: only around 11% of patents filed by

Japanese MNEs involved also inventors located outside of Japan. In contrast, around 39% of

all inventions filed by US MNEs involved at least one inventor from a foreign affiliate. Euro-

pean MNEs stand out when it comes to patenting innovations created outside HQ countries

and the incidence of HQ-affiliate collaboration. In German MNEs, 28% of patents involved

global collaboration. MNEs from the Netherlands and Switzerland have notably high levels
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of innovative activities abroad.

Table 1: Patent Families and Collaboration Patterns by Country

HQ Country Number of
patent families

Only HQ inven-
tors (in %)

Only foreign af-
filiate inventors
(in %)

HQ-affiliate
collaboration (in
%)

JP 110277 88.71 5.82 5.47
US 76772 60.60 16.33 23.06
DE 34077 58.63 12.92 28.45
FR 17353 50.81 24.91 24.28
KR 13555 77.29 6.54 16.17
GB 7031 34.79 32.20 33.01
SE 6384 48.29 26.10 25.61
IT 5311 55.71 13.22 31.07
NL 4796 8.42 48.81 42.76
CH 4571 5.73 55.83 38.44

Liberalization of the telecom sector has led to a rapid decline in the cost of international

calls and an exponential increase in the call volume. Table D.3 presents the results of

regressing call prices between country pairs on a binary variable that equals 1 if telecom

sectors in both countries are liberalized. We find that telecom prices declined between 30%

and 40% after liberalization11. Figure C.3 shows the sharply increasing call volumes during

the liberalization period12.

Collaboration of affiliate-based inventors with HQ has been on the rise, especially in

affiliates with a high overlap in business hours vis a vis the HQ. The share of cross-

border collaboration in patenting has doubled from 13.5% in 1980 to around 27.3% in 2014

for establishment pairs with a high overlap in business hours (see figure 2). For affiliates

located further away in terms of time zones, the increase in collaborations has been less

impressive, as such collaborations went from from 8.7% in 1980 to 13.4% in 2014. Thus

the temporal distance is alive and well, with the importance of time zone differences being

exacerbated by improved communication technology.

11In figure ?? we plot a histogram of bilateral price changes between 1990 to 2003.
12We do not have data on the bilateral volume of calls and can thus not rerun the price regression with

call volumes.
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Figure 2: Cross-border Collaboration over Time

Notes: This figure shows the share of patents filed by affiliate inventors that involve at least one HQ inventor.
High overlap contains affiliates having more than 4 business hours overlap with HQ.

The rise in cross-border collaboration has been stronger in experimental technology classes.

Inventors, located in affiliates with a high business hours overlap vis a vis MNE HQ,

increased collaboration with HQ-based inventors, particularly in experimental technology

classes. Their share of collaborative patents has tripled, increasing from 11.4% in 1980 to

36.4% in 2014. A much less pronounced rise has been registered in non-experimental tech-

nology classes or in affiliates with with a greater temporal distance to HQ (see figure 3).
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Figure 3: Cross-border Collaboration over Time by Technology

Notes: This figure shows the share of patents filed by affiliate inventors that involve at least one HQ inventor.
High overlap contains affiliates having more than 4 business hours overlap with HQ. Experimental technology
classes are defined as in section 2.4.

The rise in cross-border collaborations has been driven by less experienced inventors in

affiliates with greater business hour overlap with the HQ. Figure 4 shows a growing share

of collaborative patents involving affiliate inventors with lesser temporal distance to HQs.

This rise is particularly pronounced for non-star inventors, i.e., inventors with a lesser track

record.
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Figure 4: Cross-border Collaboration over Time by Inventor Type

Notes: This figure shows the share of patents filed by affiliate inventors that involve at least one HQ inventor.
High overlap contains affiliates having more than 4 business hours overlap with HQ. Star inventors are the
top 25% inventors that had filed the most patents in USPTO data up to the year 1989 (see section 2 for
details).

4 Cross-border Collaboration and Time Zones

In the first pass at the data, we abstract from the telecom liberalization and examine the

drivers of cross-border collaboration in a cross-sectional setting. We estimate the following

equation:

(1)Collaborationaht = α1Overlapah+α1Overlapah×Experimentalt+FEc(a)t+FEf(a)+ ϵaht

where Collaborationaht is the share of patents filed by inventors in foreign affiliate a in

technology t that are in collaboration with inventors located in HQ establishment h of the

same MNE.13 Focusing on the share of patents as our outcome variable implicitly controls

for all factors that may determine the scale of R&D activity in affiliate a or the likelihood

of R&D outputs being converted into patents.

The explanatory variables of interest are the overlap in business hours between the time

zone in which affiliate a is located and the time zone of the MNE’s HQ establishment h

(Overlapah) and its interaction with an indicator for experimental technology classes. The

13In the case of countries spanning multiple time zones, establishments located in different time zones will
enter the sample as separate observations.
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affiliate country-technology fixed effect captures unobservable heterogeneity related to inno-

vative prowess of the host country. Thus our identification relies on variation in business

hour overlap between foreign affiliates operating in country c and technology t and their

parent companies in various home countries. The MNE fixed effect captures the possibil-

ity of different firms having different willingness to engage in cross-border collaboration in

innovative activity. Standard errors are clustered at the location pair-technology level.14

We hypothesize that a high overlap in business hours reduces communication frictions

and thus increases collaboration (α1 > 1). In addition, we expect technology classes that

require a high frequency of interactions to be more sensitive to time zone differences. We

thus interact our main independent variable with an indicator variable that captures whether

t is an experimental technology class (Experimentalt) and expect α2 > 0.

The results presented in Table 2 confirm our hypothesis that business hour overlap fa-

cilitates cross-border collaboration. In all specifications, the coefficient on the business hour

overlap is positive and statistically significant at the 1 percent level. Inventors in experi-

mental technology classes benefit more from higher overlap in business hours, with the effect

statistically significant at the 1 and the 5 percent level in columns 2 and 4, respectively.

The magnitude of the estimated effects is economically meaningful. Column 1 implies

that an increase in business hour overlap by eight hours is associated with a 39% increase in

the probability of a patent involving HQ for inventors located at foreign affiliates. In other

words, an inventor working for a Polish subsidiary of a German multinational is 39% more

likely than an inventor located in its Japanese subsidiary to collaborate on a patent with

colleagues at the firm’s HQ.

There are several threats to our interpretation of the results. First, there may be other

variables correlated with business hour overlap. In particular, geographical distance may be

both correlated with temporal distance and important for collaboration patterns, e.g. be-

cause of increased travel time. In columns 3 and 4, we show that controlling for geographical

distance barely changes our estimated coefficients. As previous studies we find a negative

effect of geographical distance on collaboration. While an important determinant of collabo-

ration, we find that physical distance matters less than temporal distance. Inventors based in

Tokyo collaborate 8% less with their Berlin HQ than their colleagues in Warsaw. Finally, we

find no evidence that the effect of physical distance matters more for experimental technolo-

gies, suggesting that business hours overlap captures a distinct friction to communication

especially relevant for projects with a high frequency of interactions.

A second concern is that experimental technologies might feature other characteristics

that make collaboration difficult when temporal distance is high. In a robustness check (not

14The results are robust to clustering at the firm level.
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shown to save space), we classify technology classes by how much they rely on scientific

articles and by how process- rather than product-intensive they are. Controlling for the

interaction of these technology characteristics and business hour overlap barely affects the

baseline results. In addition, using a continuous measure of the share of experimental patents

by technology class yields a highly significant effect.

The cross-sectional analysis presented thus far provides suggestive evidence of a sub-

stantial effect of business hour overlap on collaboration patterns. Nonetheless, a causal

interpretation of the results remains difficult. Firms may anticipate the difficulty caused by

temporal distance and adapt the nature of investments they make. For example, a Ger-

man MNC may strategically locate tasks or personnel in Japan requiring little collaboration

whereas placing those with a high need for interaction in its Polish subsidiary. The fol-

lowing section addresses this concern by exploiting exogenous variation in communication

costs stemming from the liberalization of telecommunication sectors. By relying on temporal

variation with affiliate-HQ-technology cell, it abstracts from concerns about location of new

subsidiaries responding to telecom liberalization.

Table 2: Collaboration, Business Hour Overlap and Distance

Share Collaboration
(1) (2) (3) (4)

Overlap 0.0646∗∗∗ 0.0593∗∗∗ 0.0582∗∗∗ 0.0526∗∗∗

(0.0019) (0.0020) (0.0033) (0.0034)
× Experimental 0.0111∗∗∗ 0.0120∗∗

(0.0028) (0.0059)
log(distance) -0.0100∗∗∗ -0.0103∗∗∗

(0.0034) (0.0035)
× Experimental 0.0014

(0.0050)

Observations 316,875 316,875 316,875 316,875
R2 0.47 0.47 0.47 0.47
Dependent variable mean 0.36 0.36 0.36 0.36
Fixed Effects
GUO ✓ ✓ ✓ ✓
Host Country-Technology ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 1. Standard errors are clustered at the location
pair-technology level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.
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5 Liberalization of Telecommunication Markets

The next step in our analysis takes advantage of the temporal variation in the timing of tele-

com liberalization episodes across countries. The underlying intuition is that liberalization

of a telecom market brings competition and leads to a decline in the price of international

calls, which in turn boosts communications between affiliates and HQ and facilitates cross-

border cooperation. We hypothesize that the impact of liberalization will be increasing in

the business hour overlap between the affiliate and HQ. Put differently, we conjecture that

if a large time difference makes communications very inconvenient, a drop in the price of

international calls is not going to compensate fully for this inconvenience.

Table D.5 shows the year of telecom liberalization for OECD countries. Among them, only

the US, UK and Japan liberalized in the 1980s, followed by other Commonwealth countries

and Sweden in the early 1990s and Western Europe in 1998. Our empirical approach exploits

this staggered pattern of liberalization.

5.1 Baseline

To test our hypothesis we estimate the following equation:

(2)Collaborationahty = β1 × Liberalizationc(a)c(h)y + β2 × Liberalizationc(a)c(h)y ×Overlapah

+ FEaht + FEc(a)y + FEty + ϵahty

where Collaborationahty is the share of patents filed by inventors in foreign affiliate a in

technology t in year y that are in collaboration with inventors located in HQ establishment h

of the same MNE. Liberalizationc(a)c(h)y measures whether markets for international calls have

been liberalized in both the affiliate country c(a) and the HQ country c(h) in year y. Because

of the so called termination fees, the liberalization status of both markets matters. To study

whether the impact of liberalization varies with the type of communication required, we

estimate equation 2 for the full sample, and separately for experimental and other technology

classes.

We include several sets of fixed effects. First, all our specifications include establishment-

pair-technology fixed effects (aht), meaning a fixed effect for firm f ’s affiliates in a particular

time zone of host country c(a) and a particular time zone of home country c(h). This im-

plicitly requires firm f ’s presence in a particular time zone of country c both before and

after the two-sided liberalization of the telecom markets, thus eliminating the possibility

that our results are driven purely by entry of MNEs into a new location. This also elim-

inates any other time-invariant factors that may drive research collaboration between two

establishments, such as a common language or historical ties.
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Second, we control alternatively for affiliate-country-time (c(a)y) or HQ-country-time

(c(h)y) fixed effects. The former allow us to take into account unobservable affiliate-country-

time heterogeneity (that may be driving affiliate country liberalization) and use variation in

geographic location of HQ to identify the effects of interest. Thus differences in timing of

liberalization across pairs of countries and differences in time zones across host countries are

the source of identifying variation. Alternatively, we account for unobservable HQ-country-

time heterogeneity and use variation across affiliate countries of MNEs.

Third, we include technology-time fixed effects (ty), capturing any technology-specific

changes in collaboration patterns. For example, as industries mature and products become

more complex, innovation may require increasingly larger teams.

The results, presented in Table 3 are supportive of our hypothesis. The impact of tele-

com liberalization on cross-border R&D collaboration increases in the business hour overlap

between the affiliate and the HQ. In most specifications, no statistically significant impact

is present if there is no overlap in business hours. In addition to the continuous variable

capturing overlap in business hours, we estimate a variation of equation 2, dividing the lib-

eralization variable into two-hour intervals of business hour overlap (columns 4 to 6). We

find that telecom liberalization has its biggest impact when temporal distance is lowest, i.e.

a business hour overlap of at least 6 hours.

The liberalization impact is generally larger and varies more with business hour overlap

for experimental technology classes, confirming our earlier results that communication fric-

tions are more relevant in technology classes that plausibly require more exchange between

inventors.
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Table 3: Telecom Liberalization and Collaboration

Share Collaboration
Full Sample Experimental Non-experim. Full Sample Experimental Non-experim.

(1) (2) (3) (4) (5) (6)

Liberalization 0.0154 0.0234 0.0050
(0.0143) (0.0167) (0.0209)

× Overlap 0.0208∗∗∗ 0.0258∗∗∗ 0.0124∗∗

(0.0059) (0.0081) (0.0052)
× 0-2 hours 0.0260∗ 0.0384∗∗ 0.0081

(0.0141) (0.0149) (0.0212)
× 2-4 hours 0.0422 0.0372 0.0548∗∗

(0.0345) (0.0474) (0.0213)
× 4-6 hours 0.0446∗∗ 0.0452∗ 0.0561∗∗

(0.0201) (0.0251) (0.0236)
× 6-8 hours 0.0639∗∗∗ 0.0858∗∗∗ 0.0306∗

(0.0140) (0.0176) (0.0182)

Observations 575,780 293,241 282,539 575,780 293,241 282,539
R2 0.84 0.81 0.87 0.84 0.81 0.87
Dependent var. mean 0.27 0.28 0.26 0.27 0.28 0.26
Fixed Effects
Est. Pair-Technology ✓ ✓ ✓ ✓ ✓ ✓
Year-Host Country ✓ ✓ ✓ ✓ ✓ ✓
Year-Technology ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2. Standard errors are clustered at the country-
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

To better understand the magnitude of the result, take the estimates in column 4 of

table 3 and consider a German MNE with a Polish and a Japanese subsidiary with 8 and 0

hour business hour overlap, respectively. After telecom liberalization, the share of patents

in collaboration with HQ filed by inventors located in the Polish subsidiary will increase by

6.4pp (22%). In contract, collaborative patents in the Japanese subsidiary will increase by

2.6pp (10%).15 Thus, the effect of telecom liberalization on collaboration is more than twice

as large for the Polish affiliate, both in absolute and relative terms.

Table D.6 shows that the result is robust to focusing on affiliates that already existed

in the 1980s. This further alleviatates concerncs about telecom liberalization triggering

FDI, thereby leading to creation of new establishments. Table D.7 in the appendix shows

that results are robust to using the variation coming from affiliate-country liberalization

by including HQ-country-year fixed effects. Finally, instead of splitting the sample, we

interact our liberalization and overlap variables with the indicator capturing experimental

technologies. Table D.8 shows that this triple interaction term yields a statistically significant

coefficient, again supporting our conjecture that experimental technologies are affected more.

15The relative effect is computed using the pre-treatment mean for each interval of business hour overlap.
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5.2 Event Study

The panel nature of our data allow us to conduct event studies. Specifically, we test whether

collaboration patterns were already on the rise prior to telecom liberalization in country

pairs with high business hour overlap relative to those with low business hour overlap. This

test also allows us to document how telecom liberalization affects collaboration over time.

For the event study, we estimate:

Collaborationahty =
d=15∑
d=−10
d ̸=−1

β1,d1{y = d+ y0c(a)c(h)}+

+
d=15∑
d=−10
d̸=−1

β2,d1{y = d+ y0c(a)c(h)} ×Overlapah + FEaht + FEc(a)y + FEty + ϵahty (3)

This specification resembles equation 2, but we allow for a time-varying impact of liber-

alization rather than relying on a simple pre- versus post-liberalization comparison. y0c(a)c(h)

denotes the first year where both the affiliate country and HQ country have liberalized their

telecom markets. Again, we estimate this model on the full sample and the two subsamples

of technology types separately.

Figure 5 shows our estimates for β2. We do not detect any changing collaboration patterns

by business hour overlap prior to telecom liberalization. This lends support to the assumption

that, in the absence of telecom liberalization, cross-border collaboration would have followed

similar patterns in all country pairs regardless of business hour overlap. Panel b shows that

the effect is more pronounced for experimental technologies. It takes around five years for

the effect to kick in. This is to be expected as it takes time to start new collaborations and

develop new patentable ideas.
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Figure 5: Event Study of the Impact of Telecom Liberalization on Collaboration

(a) Full Sample

(b) Split by Technology

Notes: This figure reports the results of estimating equation (3). Standard errors are clustered at the
country-pair level. 90% confidence intervals are shown.
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A recent set of methodological papers on difference-in-differences shows that traditional

two-way fixed effects may produce misleading estimates when the treatment effect is heteroge-

neous between groups or over time.16 Although these studies propose alternative estimators

that are robust to such heterogeneity, they do not deal with cases as in our baseline equa-

tion (2), where the treatment variable, Liberalizationc(a)c(h)y, is interacted with a continuous

term, Overlapah.

We therefore modify our event study specification in equation (3) to present results from

one of these alternative estimators. Specifically, we redefine our treatment variable to equal 1

for affiliate and HQ country pairs that both liberalize their telecom markets and that have a

business hour overlap of greater than four hours. We then employ the imputation estimator of

Borusyak et al. (2021) to estimate the treatment effect in the ten years before and fifteen years

after the liberalization episode.17 Figure C.4 in the Appendix confirms the lack of pre-trend

effects prior to liberalization and corroborates the finding that cross-border collaboration

has increased by around 5 percentage points in the decade following it (panel a). As in our

baseline estimates, these effects are stronger for experimental technology classes (panel b)

and statistically indistinguishable from zero for non-experimental technologies (panel c).

5.3 International Call Prices

An alternative (and a more direct) way of capturing telecom price liberalization is to focus

on the actual price of international calls. Figure C.2 shows a histogram of call rate changes

from 1990 to 2003. As visible in the figure, prices of international calls declined over this

period for essentially all country pairs, though with substantial heterogeneity. The average

rate declined by around 160%. Whereas the US generally saw a low decline in international

call rates over this period, the European liberalization of telecommunication markets in the

late 1990s resulted in a large drop in rates for those countries.

Thus next, we exploit heterogeneity in changes of international call prices across country

pairs and estimate the following equation:

Collaborationahty = β1 × log(Call Pricec(a)c(h)y) + β2 × log(Call Pricec(a)c(h)y)×Overlapah

+ FEaht + FEc(a)y + FEty + ϵahty
(4)

This equation is very similar to our previous specification in equation 2, but there are

two differences. First, the indicator variable for the liberalization episodes has been replaced

16See Roth et al. (2022) for an overview of this literature.
17To achieve the imputation estimates, we can only include unit (affilitate and HQ country pair) and time

(filing year) fixed effects in this revised specification.
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with Call Pricec(a)c(h)y. This variable is defined as the per-minute price for an international

phone call between the affiliate and the MNE’s HQ country.18 Second, because the data

on call prices are available only for 1990, 1998 and 2003, y now represents 5-year periods

(1990-1994, 1998-2002 and 2003-2007) instead of annual observations.

The results, presented in table 4 below, provide further support for our hypothesis. A

decline in call prices, i.e. communications costs, boosts the share of cross-border collaborative

patents only in the presence of some overlap in the business hours between HQ and affiliates.

The mean reduction in minimum call prices between 1990 and 2003 in the regression sample

is around 2.19 log points. This would translate to an increase in collaboration of around 7.8

percentage points for the German-owned Polish subsidiary and no statistically significant

effect for the Japanese affiliate of the same firm.

Table 4: International Call Prices and Collaboration

Share Collaboration
Full Sample Experimental Non-experim. Full Sample Experimental Non-experim.

(1) (2) (3) (4) (5) (6)

log(Minimum Call Price) 0.0008 -0.0055 0.0101
(0.0124) (0.0149) (0.0120)

× Overlap -0.0131∗∗∗ -0.0136∗∗∗ -0.0127∗∗∗

(0.0027) (0.0037) (0.0037)
× 0-2 hours -0.0079 -0.0152 0.0022

(0.0127) (0.0149) (0.0119)
× 2-4 hours -0.0268∗ -0.0118 -0.0549∗∗∗

(0.0154) (0.0181) (0.0192)
× 4-6 hours -0.0306 -0.0448 -0.0153

(0.0198) (0.0436) (0.0318)
× 6-8 hours -0.0355∗∗∗ -0.0430∗∗ -0.0255∗∗

(0.0131) (0.0167) (0.0117)

Observations 232,577 114,138 118,439 232,577 114,138 118,439
R2 0.95 0.94 0.96 0.95 0.94 0.96
Dependent var. mean 0.31 0.33 0.30 0.31 0.33 0.30
Fixed Effects
Est. Pair-Technology ✓ ✓ ✓ ✓ ✓ ✓
Period-Host Country ✓ ✓ ✓ ✓ ✓ ✓
Period-Technology ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 4. Standard errors are clustered at the country-
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

5.4 Team Size

A decline in communication costs may be expected to an increase in the size of inventor teams.

This is the question we turn to in this subsection and estimate the following specification:

18As call prices are not necessarily symmetric, i.e. calling from country A to B can be less/more expensive
than vice versa, we take the minimum of both prices.
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(5)log(Team Size)ahty = β1×Liberalizationc(a)c(h)y+β2 × Liberalizationc(a)c(h)y ×Overlapah

+ FEaht + FEc(a)y + FEty + ϵahty

where the dependent variable now captures the average number of inventors listed on

all collaborative patents involving foreign affiliate a and HQ establishment h in technology

class t in year y. The right-hand-side of the equation remains as before. We take logs of the

dependent variable, since the size of inventor teams is right-skewed19.

The results, presented in column 1 of table 5 mirror our earlier findings and confirm

our priors. As anticipated, telecom liberalization leads to an increase in the size of inventor

teams but only when there is a substantial business hour overlap between a foreign affiliate

and HQ. To unpack these results, we disaggregate the dependent variable to measure the

number of inventors involved based in a foreign affiliate (column 2) and in HQ (column 3).

Greater response of HQ-based inventors seems to be driving the results.

Table 5: Liberalization and Team Size

log(Team Size)
Inventors Located in HQ or Affiliate Affiliate HQ

(1) (2) (3)

Liberalization -0.0216 -0.0271 0.0056
(0.0212) (0.0229) (0.0257)

× Overlap 0.0226∗∗ -0.0039 0.0358∗∗∗

(0.0091) (0.0099) (0.0082)

Observations 575,780 575,780 575,780
R2 0.79 0.73 0.88
Dependent variable mean 0.94 0.62 0.40
Fixed Effects
Establishment Pair-Technology ✓ ✓ ✓
Year-Host Country ✓ ✓ ✓
Technology-Year ✓ ✓ ✓

Notes: This table reports the results of estimating equation 5. Standard errors are clustered at the country-
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

19When we focus on HQ inventors only, we use a log(1 + x) transformation instead, since the HQ team
size can be zero.
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6 Inventor-level Analysis

So far, the focal point of our analysis has been a foreign affiliate of an MNE. In a final

step of our study, we further exploit the granularity of patent data by conducting inventor-

level analyses. This allows us to study whether the effects of communication frictions vary

with inventor characteristics. In particular, guided by the existing literature, we distinguish

between established or star inventors and their peers with a lesser track record.

6.1 Baseline

We start by estimating the following equation:

(6)Collaborationiahy = β1 × Liberalizationc(a)c(h)y + β2 × Liberalizationc(a)c(h)y ×Overlapah

+ FEah + FEc(a)y + FEi + ϵiahy

This equation is similar to our baseline establishment-level specification (equation 2)

but to simplify the analysis we drop the technology dimension. This leaves us with an

establishment-pair fixed effect (ah) and an affiliate-country-time fixed effect (c(a)y). In some

specifications, we also include an inventor fixed effect (i), controlling for any time-invariant

inventor characteristics.

The inventor-level analysis confirms the findings of the affiliate-level analysis. The es-

timates in table 6 show that liberalization matters for cross-border collaboration when the

overlap in business hours is high. Importantly, the results remain similar after including

inventor fixed effects. This implies that our earlier results were not driven by a change in

the composition of employees at the establishment level around liberalization episodes, but

rather that individual inventors start collaborating more with HQ after liberalization.
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Table 6: Telecom Liberalization and Collaboration - Inventor Level

Share Collaboration
(1) (2) (3) (4)

Liberalization 0.0030 -0.0202
(0.0195) (0.0147)

× Overlap 0.0242∗∗∗ 0.0220∗∗∗

(0.0041) (0.0034)
× 0-2 hours 0.0182 -0.0101

(0.0217) (0.0156)
× 2-4 hours 0.0340 0.0205

(0.0298) (0.0326)
× 4-6 hours 0.0255 0.0007

(0.0254) (0.0246)
× 6-8 hours 0.0514∗∗ 0.0338∗∗

(0.0199) (0.0165)

Observations 526,808 526,808 526,808 526,808
R2 0.54 0.77 0.54 0.77
Dependent var. mean 0.16 0.16 0.16 0.16
Fixed Effects
Establishment Pair ✓ ✓ ✓ ✓
Year-Host Country ✓ ✓ ✓ ✓
Inventor ✓ ✓

Notes: This table reports the results of estimating equation 6.2. Standard errors are clustered at the country
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

6.2 Star Inventors

In the final part of our study, we explore heterogeneous impacts on inventors with different

patenting histories. As discussed in the introduction, a priori the effects on star inventors

versus their less successful peers are ambiguous. On the one hand, inventors with lesser track

records may stand to benefit more from international collaborations and thus may be willing

to incur the high costs of international communication and the inconvenience of time zone

differential. On the other hand, the presence of such costs, which must be partially born by

their collaborators located in HQ, makes them less attractive as team members.

To examine these differential impacts we estimate the following equation:
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Collaborationiahy = β1 × Liberalizationc(a)c(h)y + β2 × Liberalizationc(a)c(h)y ×Overlapah

+ β3 × Liberalizationc(a)c(h)y × Stari
+ β4 × Liberalizationc(a)c(h)y ×Overlapah × Stari
+ β5 × Stari + β6 ×Overlapah × Stari + FEah + FEc(a)y + ϵiahy

(7)

This equation is akin to the previous equation , the only difference being that we introduce

an inventor-level indicator for being highly productive (Stari) and all interaction terms that

are not captured by fixed effects. Note that we estimate this specification with a reduced

sample, since our definition of Stari requires an inventor to be present in the 1980s. The

coefficient of interest, β4, captures whether the increase in collaboration for inventors in

high-overlap affiliates differs according to their initial track record.

We find a negative estimate for β4 which is significant at the 5 percent level. This is

independent of the way we define star inventors and is robust to including inventor fixed

effects, controlling for any time-invariant differences between inventors. This means that less

experienced inventors are more sensitive to an exogenous change in communication frictions.

We also find some evidence that star inventors a priori collaborate more (β̂5 > 0).

Table 7: Telecom Liberalization and Collaboration - Inventor Heteregoneity

Share Collaboration
Star Inventor Definition Top 25% Top 10% Continuous Top 25% Cited

(1) (2) (3) (4) (5) (6)

Liberalization -0.0133 -0.0139 -0.0233 -0.0129 -0.0151 -0.0132
(0.0127) (0.0125) (0.0150) (0.0129) (0.0128) (0.0128)

× Overlap 0.0168∗∗∗ 0.0189∗∗∗ 0.0204∗∗∗ 0.0179∗∗∗ 0.0205∗∗∗ 0.0184∗∗∗

(0.0044) (0.0050) (0.0037) (0.0042) (0.0051) (0.0047)
× Star Inventor 0.0026 0.0104 -0.0024 0.0015 0.0005

(0.0052) (0.0104) (0.0042) (0.0018) (0.0042)
× Overlap × Star Inventor -0.0096∗∗ -0.0146∗∗ -0.0125∗∗ -0.0033∗∗ -0.0073∗∗

(0.0042) (0.0064) (0.0051) (0.0015) (0.0035)
Star Inventor 0.0036∗ 0.0076∗∗∗ 0.0009 0.0050∗

(0.0019) (0.0018) (0.0012) (0.0026)
× Overlap 0.0010 0.0030 0.0018 0.0008 0.0003

(0.0022) (0.0054) (0.0038) (0.0010) (0.0027)

Observations 149,609 149,609 149,609 149,609 149,609 149,609
R2 0.58 0.58 0.78 0.58 0.58 0.58
Dependent var. mean 0.13 0.13 0.13 0.13 0.13 0.13
Fixed Effects
Establishment Pair ✓ ✓ ✓ ✓ ✓ ✓
Year-Host Country ✓ ✓ ✓ ✓ ✓ ✓
Inventor ✓

Notes: This table reports the results of estimating equation 6.2. Standard errors are clustered at the country
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.
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7 Conclusion

Using a newly constructed dataset, this paper studies innovation inside multinational firms,

which frequently involves inventors based outside the HQ country. We analyze communi-

cation frictions that affect cross-border inventor collaboration and thereby the diffusion of

knowledge inside the firm.

We first show that business hour overlap is crucial for collaboration between affiliate and

HQ-based inventors. Inventors in technology classes involving experimentation, potentially

requiring a higher frequency of communication, are most sensitive to this communication

cost.

In addition to this cross-sectional observation, we study the evolution of collaboration

across time. We focus on the liberalization of the telecom sector during the 1980s and

1990s. The price of international phone calls decreased drastically as a consequence, leading

to an increase of cross-border communication. We find that affiliate-based inventors start

collaborating with HQ alongside, especially in experimental technologies at affiliates which

are temporally close to HQ. This finding shows that while cheap communication matters,

it cannot overcome underlying geographic features. Recent technological advances such as

video calls using Zoom and other platforms are likely subject to the same limitations.

Finally, we show that reducing frictions to cross-border knowledge creation inside multi-

nationals is less important for star inventors than for others. This may indicate that reducing

communication frictions benefits a broad set of less experienced inventors in FDI host coun-

tries, potentially reducing the knowledge gap between them and star inventors.
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Appendix

A Details on Orbis IP (matching patents to firms)

We provide details on the matching of patents to firms in this appendix section.

Orbis IP sources its patent information from LexisNexis. At the time of our access to

Orbis IP in October-November 2020, the database had approximately 110 million patent

documents, covering information from patent offices in 109 countries. Bureau van Dijk

(BvD) describes their procedure of matching patents to firms as follows.

At BvD, the matching process begins with processing xml documents to extract the

assignee details and company details from BvD’s global company database to be matched

to include the following fields:

• Company name

• Local name

• Street (not to match but to detect duplicates)

• Postal Code (not to match but to detect duplicates)

• City (important for the matching when given by the IP

• Region in country (not to match but to detect duplicates)

• Country ISO Code

• Email/Website (as a confirmation)

• Category of company

• Listed/delisted

• Status (active/inactive)

• Company ID (for duplicates)

• Source

• BvD ID

• Activity description
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The above data to be matched follows the below process first through automated fuzzy

logic-based matching and then through manual matching:

Figure A.1: Orbis IP procedure for matching patents to firms

Source: Orbis IP / Bureau van Dijk.

A.1 Automated Matching Tool (Fuzzy Logic)

BvD’s fuzzy matching takes place in three steps:

1. Normalisation: transforms the original query to match the database candidates as far

as possible.

2. Candidate selection: retrieves the best potential candidates from the normalised query.

3. Candidate evaluation: evaluates the distance of each candidate from the normalised

query, and filters the candidates to select the best matches.

These three steps are explained in more detail below.

1. Normalisation

The goal of the normalisation process is to reduce the differences between the original

query and the database entities to a minimum. When entities are added to the database,

they are normalised with the same process that is used to normalise the query, ensuring

minimal differences.

Different normalisation processes take place (lowercase, remove diacritics, etc). Some are

specific to the type of entity: for companies, the legal form will be normalised (i.e. Limited

becomes ltd) and for individuals the first name will be normalised using hypocorism.

Note that the normalisation process for one entity can lead to multiple searches: consider

a single query to retrieve Thierry Henry (French football player). Thierry and Henry are

33



both French first names and last names, so as part of the normalisation process it performs

two distinct searches: a) one for first name Thierry, last name Henry b) and one for first

name Henry, last name Thierry.

2. Candidate selection

The goal of the selection step is to retrieve - as quickly as possible - all potential candidates

in the database. When handling a large quantity of data it isn’t possible to check every entity

of the database in order to retrieve only the best candidates, therefore a fuzzy algorithm is

used in order to locate within the database only those candidates that “should be” the best

ones, and to evaluate only those candidates.

All such algorithms come at a cost: there is a trade-off to be made between the “recall”

and the “precision”. Globally, the recall will measure the fact that the selected candidates

always contain the true match, while the precision will measure the fact that the proposed

candidate are valid matches, and will limit false positives in the results. No algorithm will

guarantee a 100% recall, except if you evaluate all the candidates present in the database

one by one, which isn’t possible when handling a large quantity of data.

The algorithm implemented for the candidate selection is based on the N-Gram algorithm,

where a query is split into different blocks of letters (or grams) of a given size (N=3). The

potential candidates are then those candidates that share as much N-Gram as possible with

the normalised query. This algorithm is language agnostic. For example, if you misspell

“Bureau van Dijk” and query the system for “Buro van Dijk”, the decomposition in N-Gram

of both names (N=3) would give:

BUR URO VAN DIJ IJK

BUR URE REA EAU VAN DIJ IJK

and would retrieve BUR, VAN, DIJ, IJK in common to both queries, leading to the

selection of the candidate.

Note that the major flaw of the N-Gram algorithm is working with “small”words, indeed

making a mistake in a three-letter word using 3 as the gram size would never select the correct

three-letter candidate as no gram will be common (i.e. if one were to type BNW intending

to retrieve BMW). Therefore, small words are handled differently and the applicable method

uses an algorithm based on the edit distance.

3. Candidate evaluation

In the last step of the process, the goal is to sort and reduce the candidates to the distance

threshold value specified by the user. The computed similarity is based on the edit distance.
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A.2 Manual Matching Software

The BvD Matching Software application is designed to supplement the automatic matching

functionality that is typically used to correlate records found in the patent databases to

records in BvD’s company database. Records that cannot be matched automatically are

presented to BvD Matching Software users so that they can accept or reject possible matches

manually. The likelihood of a match is declared for each record in the application’s interface.

The final purpose of the matching process is to link patent records to an appropriate BvD

identification number.

BvD uses the following fields to calculate a matching score between patent and BvD

company databases: Assignee name, Street, City, Postal code, Country (or ISO code). The

registered/legal address of the companies is used. BvD takes into consideration the current

name of the companies, alongside their previous names and ’also known as’ names. There is

no limit in the number of characters for a name (or any other field).

1. Normalisation To identify similarities and enable high scoring matches, the matching

system uses n-gram indexes, normalisation rules, and data dictionaries. The system can

handle spelling mistakes, typos, word orders, special characters, context of words as it relates

to a specific field/country, etc.

Specific normalisation rules are defined for each possible matching data field, and for each

country. The normalisation rules are applied on BvD records (in the Orbis database) and

patent records, hence the normalised values are taken into account for comparison/matching.

For example, punctuation marks are replaced by blanks, legal forms are standardized, non-

relevant words are ignored, synonyms are converted to a simple form, accented characters

are converted into non-accented characters.

BvD Matching Software is Unicode compliant. It supports local characters such as Chi-

nese, Cyrillic, Hungarian, German, Polish, Arabic, etc., and for some specific languages BvD

uses transliteration to transform local characters into common and comparable characters

enabling cross-alphabet matching.

2. Calculation After the data have been normalised, the match score is calculated using

an algorithm based on the following principle. For each field of a given record, calculate

the % of accuracy of the match between the BvD and patent records by using proximity

calculations. Then, take a weighted average of all the % of proximities. Weights are calcu-

lated automatically; they are not fixed. The weight of a criterion is based on the probability

of finding a company in the BvD database corresponding to the criterion being searched.

This means the weight of each criterion depends on the number of occurrences in the BvD

database and therefore, may differ from one release to another. The more occurrences that

are found, the less the field is significant.
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The automated process produces a matching score for each record. A quality indicator

uses the following scoring criteria:

Figure A.2: Orbis IP patent-to-firm matching score indicator

Source: Orbis IP / Bureau van Dijk.

The higher the score, the better the data match. Candidates with a poor matching

quality (E) may be irrelevant. Any match with less than a 70% score is pushed into the

manual matching pipeline.

B Sample Coverage

This section of the appendix provides details on the sample coverage of our dataset.

To determine the sample coverage, we first need to calculate the relevant total number

of granted triadic patents. We focus on patents that are present in both PATSTAT and

PatentsView. There are some differences in what these two datasets contain. Noteably,

PATSTAT includes design patents only after 2001. Since we cannot use PATSTAT to deter-

mine the members of the extended patent family for these early design patents, they are not

considered in the relevant total number of patents we try to match.

The most relevant variables for our analysis are the Orbis firm identifier and the inventor

location (at the city level) from PatentsView. We focus on inventor location rather than

assignee location to capture where innovation takes place physically. Both the firm identifier

and the inventor location can be missing.

One patent often lists multiple inventors and sometimes also multiple assignees. When

we compute sample coverage at the patent level we flag a patent as covered if the patent is

matched to at least one assignee and one inventor location. Based on this methodology we

find a coverage of around 83% (or 84% when weighting by forward citations). The coverage

is slightly lower with 79% when we look at patents that are granted in the US and filed

but not necessarily granted at EPO and JPO. In figure B.1 we plot the sample coverage for

granted triadic patents by year. It remains relatively stable between 75% and 85% with the

lowest coverage at the beginning and the end of the sample.
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Figure B.1: Sample Coverage

Notes: This figure shows the yearly share of granted triadic patents that our sample covers.

37



C Additional Figures

Figure C.1: Experimental Technology Classes vs other Classifications

Notes: Each dot represents a technology class. The x-axis captures our measure of experimental technology
class, i.e. the share mentioning experiments or trials. In panel A, the y-axis plots the share of patents
containing a process claim (based on data from Ganglmair et al. (2022)) and in panel B the y-axis depicts
the share of patents citing a scientific article (based on data from Marx and Fuegi (2020).)
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Figure C.2: Rate Change

Source: OECD.

Figure C.3: Volume of international calls

Notes: This picture is taken from a 2009 Telegeography report. It shows the rise of international call
volumnes during our sample period.
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Figure C.4: Event Study of the Impact of Telecom Liberalization on Collaboration -
Borusyak et al. (2021) estimates

(a) Full sample

(b) Split by technology
Notes: This figure reports the results of estimating equation (3), including unit and time fixed effects only.
Standard errors are clustered at the country-pair level. 95% confidence intervals are shown.
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D Additional Tables

Table D.1: Share of experiment-intensive Technologies

IPC Class Share Experimental Patent Count
Chemistry, Metallurgy 0.98 242455
Human Necessities 0.63 172939
Electricity 0.00 122025
Performing Operations, Trans-
porting

0.34 120374

Physics 0.28 120271
Mechanical Engineering, Light-
ing, Heating, Weapons, Blasting

0.12 42462

Textiles, Paper 0.76 13287
Fixed Constructions 0.00 6159

Notes: This table shows the share of experimental (4-digit) technology classes by the more aggregate 1-digit
IPC classes.
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Table D.2: Classification of Top-15 Technologies

Technology Code Technology Share Men-
tioning Experi-
ment/Trial

Classified
as Experi-
mental

Patent
Count

C07D heterocyclic compounds 0.48 Yes 28121
C07C acyclic or carbocyclic compounds 0.47 Yes 14001
A61P therapeutic activity of chemical

compounds or medicinal prepara-
tions

0.43 Yes 37235

C12N micro-organisms or enzymes;
compositions thereof; propagat-
ing, preserving, or maintaining
micro-organisms; mutation or
genetic engineering; culture
media

0.39 Yes 18183

C08G macromolecular compounds ob-
tained otherwise than by reac-
tions only involving carbon-to-
carbon unsaturated bonds

0.37 Yes 11627

A61K preparations for medical, dental,
or toilet purposes

0.36 Yes 49856

C08L compositions of macromolecular
compounds

0.36 Yes 16546

C07K peptides 0.36 Yes 15852
G01N investigating or analysing materi-

als by determining their chemical
or physical properties

0.22 Yes 21043

A61B diagnosis; surgery; identification 0.11 No 15806
A61F filters implantable into blood ves-

sels; prostheses; devices providing
patency to, or preventing collaps-
ing of, tubular structures of the
body, e.g. stents; orthopaedic,
nursing or contraceptive devices;
fomentation; treatment or protec-
tion of eyes or ears; bandages,
dressings or absorbent pads; first-
aid kits

0.09 No 10962

H04L transmission of digital informa-
tion, e.g. telegraphic communica-
tion

0.06 No 17932

G06F electric digital data processing 0.05 No 17506
H01L semiconductor devices; electric

solid state devices not otherwise
provided for

0.05 No 13193

Notes: This table shows our classification of experimental technology classes for the 15 most frequent.
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Table D.3: Liberalization and Call Prices

HQ Country Number of
patent families

Only HQ inven-
tors (in %)

Only foreign af-
filiate inventors
(in %)

HQ-affiliate
collaboration (in
%)

JP 110277 88.71 5.82 5.47
US 76772 60.60 16.33 23.06
DE 34077 58.63 12.92 28.45
FR 17353 50.81 24.91 24.28
KR 13555 77.29 6.54 16.17
GB 7031 34.79 32.20 33.01
SE 6384 48.29 26.10 25.61
IT 5311 55.71 13.22 31.07
NL 4796 8.42 48.81 42.76
CH 4571 5.73 55.83 38.44

Table D.4: Collaboration and Business Hour Overlap

Share Collaboration
(1) (2) (3) (4)

Overlap 0.0646∗∗∗ 0.0593∗∗∗ 0.0557∗∗∗ 0.0584∗∗∗

(0.0019) (0.0020) (0.0023) (0.0021)
× Experimental 0.0111∗∗∗ 0.0117∗∗∗

(0.0028) (0.0032)
× Share Experimental 0.0446∗∗∗

(0.0098)
× Cites Science -0.0042

(0.0034)
× Process 0.0053∗

(0.0029)

Observations 316,875 316,875 316,875 316,875
R2 0.47 0.47 0.47 0.47
Dependent var. mean 0.36 0.36 0.36 0.36
Fixed Effects
GUO ✓ ✓ ✓ ✓
Host Country-Technology ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 1. Standard errors are clustered at the location
pair-technology level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table D.5: Year of Liberalization of International Calls

Year of Country
Liberalization
1984 United States
1986 United Kingdom
1987 Japan
1990 New Zealand
1991 Australia
1992 Canada, Sweden
1993 Finland
1996 Denmark, Korea, Mexico
1997 Netherlands
1998 Austria, Belgium, France, Germany, Ireland

Italy, Luxembourg, Norway, Spain, Switzerland
2000 Czech Republic, Portugal
2001 Greece
2002 Hungary
2006 Turkey

Notes: This table shows the year of liberalization of the telecommunication sector, as reported in Boylaud
and Nicoletti (2000).
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Table D.6: Liberalization - 1980s Establishments

Share Collaboration
Full Sample Experimental Non-experim. Full Sample Experimental Non-experim.

(1) (2) (3) (4) (5) (6)

Liberalization 0.0112 0.0166 0.0046
(0.0167) (0.0191) (0.0220)

× Overlap 0.0245∗∗∗ 0.0316∗∗∗ 0.0118∗∗

(0.0069) (0.0092) (0.0056)
× 0-2 hours 0.0261 0.0367∗∗ 0.0094

(0.0158) (0.0168) (0.0218)
× 2-4 hours 0.0417 0.0359 0.0562∗∗

(0.0340) (0.0468) (0.0221)
× 4-6 hours 0.0312 0.0243 0.0455∗

(0.0199) (0.0218) (0.0232)
× 6-8 hours 0.0623∗∗∗ 0.0888∗∗∗ 0.0180

(0.0156) (0.0187) (0.0190)

Observations 316,967 170,235 146,732 316,967 170,235 146,732
R2 0.74 0.69 0.80 0.74 0.69 0.80
Dependent var. mean 0.19 0.20 0.16 0.19 0.20 0.16
Fixed Effects
Est. Pair-Technology ✓ ✓ ✓ ✓ ✓ ✓
Year-Host Country ✓ ✓ ✓ ✓ ✓ ✓
Year-Technology ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2, keeping only affiliates that already existed in
the 1980s. Standard errors are clustered at the country pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at
the 1%, 5% and 10% levels, respectively.
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Table D.7: Liberalization - Source Country-Time Fixed Effect

Share Collaboration
Full Sample Experimental Non-experim. Full Sample Experimental Non-experim.

(1) (2) (3) (4) (5) (6)

Liberalization -0.0072 -0.0081 -0.0049
(0.0072) (0.0081) (0.0121)

× Overlap 0.0176∗∗∗ 0.0263∗∗∗ 0.0004
(0.0055) (0.0071) (0.0057)

× 0-2 hours -0.0015 0.0013 -0.0064
(0.0064) (0.0070) (0.0113)

× 2-4 hours 0.0261 0.0356 0.0135
(0.0308) (0.0406) (0.0167)

× 4-6 hours 0.0217 0.0294 0.0083
(0.0180) (0.0211) (0.0198)

× 6-8 hours 0.0380∗∗∗ 0.0560∗∗∗ 0.0007
(0.0097) (0.0125) (0.0147)

Observations 575,780 293,241 282,539 575,780 293,241 282,539
R2 0.84 0.81 0.87 0.84 0.81 0.87
Dependent var. mean 0.27 0.28 0.26 0.27 0.28 0.26
Fixed Effects
Est. Pair-Technology ✓ ✓ ✓ ✓ ✓ ✓
Year-Source Country ✓ ✓ ✓ ✓ ✓ ✓
Year-Technology ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the results of estimating equation 2. Standard errors are clustered at the country
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table D.8: Liberalization - Triple Interactions

Share Collaboration
(1) (2)

Liberalization 0.0099
(0.0175)

× Experimental 0.0083 0.0078
(0.0142) (0.0156)

× Overlap 0.0103∗

(0.0058)
× Experimental × Overlap 0.0167∗∗ 0.0233∗∗∗

(0.0072) (0.0070)

Observations 575,780 575,780
R2 0.84 0.86
Dependent variable mean 0.27 0.27
Fixed Effects
Establishment Pair-Technology ✓ ✓
Year-Host Country ✓
Year-Technology ✓ ✓
Year-Location Pair ✓

Notes: This table reports the results of estimating equation 2. Standard errors are clustered at the country
pair level. ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.
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