
CREATIVE DESTRUCTION AND UNCERTAINTY

Petr Sedláček
University of Oxford

Abstract
Uncertainty rises in recessions. But does uncertainty cause downturns or vice versa? This paper
argues that counter-cyclical uncertainty fluctuations are a by-product of technology growth. In a
firm dynamics model with endogenous technology adoption, faster technology growth widens the
dispersion of firm-level productivity shocks, a benchmark uncertainty measure. Moreover, faster
technology growth spurs a creative destruction process, generates a temporary downturn and renders
uncertainty counter-cyclical. Estimates from structural VARs on U.S. data confirm the model’s
predictions. On average, 1/4 of the cyclical variation in uncertainty is driven by technology shocks.
This fraction rises to 2/3 around the “dot-com” bubble. (JEL: D22, E32, D80)
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1. Introduction

Uncertainty rises during recessions. While this stylized fact is robust to many
refinements, the question of whether uncertainty is an exogenous source of business
cycles or an endogenous response to them is not well understood. This paper
argues that counter-cyclical fluctuations in uncertainty are a by-product of changes
in technology growth. Moreover, such growth-driven uncertainty changes are found to
be quantitatively important in U.S. data.

To study the link between technology growth, business cycles and firm-level
uncertainty, I build a tractable general equilibrium model of endogenous firm
dynamics and technology adoption. In this model, firms can improve their productivity
by investing into the adoption of newer vintages of technology which grow
stochastically over time. When the technological frontier expands, firms face relatively
larger productivity gains if they successfully adopt newer vintages and relatively larger
productivity losses if they do not. In other words, faster technology growth widens the
dispersion of firm-level productivity shocks, a benchmark measure of uncertainty.1

Endogenous technology adoption then serves as a strong source of magnification and
propagation of uncertainty responses to technology shocks.

In addition, expansions of the technological frontier spur a process of creative
destruction. A technological improvement raises productivity of firms utilizing the
latest technology vintage. This leads to an increase in consumption and wages, but
this rise is only gradual as consumption smoothing motives of the household direct
some of the productivity gains into investment. Therefore, faster technology growth
has opposing effects on firms, depending on their technology vintage. On the one
hand, firms at the frontier enjoy productivity gains larger than the increase in wage
costs prompting them to create jobs. On the other hand, firms which have not adopted
the newer vintage of technology experience only a rise in labor costs and as a result
they shed workers and shut down more often.

In the calibrated model, which matches salient features of U.S. firm dynamics, the
initial surge in job destruction dominates and the economy undergoes a temporary
Schumpeterian downturn. Over time, however, aggregate productivity increases as
more firms adopt the leading technology and obsolete production units get weeded
out. Therefore, in contrast to popular models of uncertainty-driven business cycles
(see e.g. Bloom, 2009), in this model counter-cyclical increases in uncertainty are
associated with positive long-run effects.2

To see whether this channel is also empirically relevant I test the model predictions
in the data using two distinct approaches. First, while uncertainty is counter-cyclical,
the model predicts that uncertainty co-moves positively with changes in technology
growth. I use 4-digit industry level data between 1971 and 2009 and show that both

1. See Bloom et al. (2018). The Appendix shows that the results are robust to alternative firm-level
uncertainty measures.

2. See Lester et al. (2014) for an RBC model in which uncertainty is welfare increasing under certain
calibrations.
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these predictions also hold empirically. Moreover, uncertainty in the data is also
positively related to average R&D intensity of the industry. Interpreting the latter as
a proxy for the speed of technology adoption, this is also consistent with the model
in which endogenous technology adoption magnifies and propagates the effects of
technology shocks on uncertainty.

Second, I test the causal implications of the model regarding the impact of
technology shocks on uncertainty and the creative destruction process. The empirical
strategy is to estimate a series of bi-variate structural vector autoregressions (VARs)
identifying technology shocks using long-run restrictions as in e.g. Blanchard and
Quah (1989) and Gali (1999).3 The identifying assumption, consistent with the
structural model, is that only technology shocks affect productivity in the long-run.

The structural VARs, estimated on annual data between 1977 and 2014, support
the model’s predictions. Specifically, following positive technology shocks firm-level
uncertainty, job creation and job destruction all increase, while at the same time
aggregate employment falls temporarily. Moreover, the magnitudes of these empirical
impulse responses are in line with the quantitative predictions of the calibrated model.

Finally, I use the estimated structural VARs to quantify to what extent observed
firm-level uncertainty is growth-driven. Forecast error variance decompositions
suggest that on average 27% of the business cycle variation in uncertainty is driven by
technology shocks alone. Zooming in on uncertainty spikes around the four recessions
in the sample shows that there are large differences in the degree to which changes
in growth drive uncertainty. While more than two thirds of the uncertainty increase
around the “dot-com” recession in 2001 were growth-driven, the Great Recession
spike in uncertainty was essentially unrelated to technology shocks.

This paper is related to several strands of the literature. First, it is connected
to the large set of studies analyzing uncertainty movements over the business cycle
(see e.g. Bloom, 2009; Bachmann and Bayer, 2014; Jurado et al., 2015). The notion
that uncertainty fluctuations may be endogenous to the business cycle features in
e.g. Bachmann and Moscarini (2012), Gourio (2014), Orlik and Veldkamp (2013),
Boedo et al. (2016) or Berger and Vavra (forthcoming).4 Ludvigson et al. (2017) use
instrumental variables to estimate that indeed a large part of uncertainty fluctuations
are endogenous responses to other structural shocks. Instead, the model in this paper
shows that aggregate downturns and increases in uncertainty are both partly driven by
a third common factor: changes in technology growth.

Second, the focus on a link between uncertainty and growth is related to Ramey
and Ramey (1991) and Koren and Tenreyro (2007) who document a negative
relationship between growth and the (constant) level of macroeconomic volatility.
Baker and Bloom (2013) use natural disasters to estimate a negative relationship

3. The Appendix shows that the results are robust to an alternative empirical strategy based on local
projections following Jorda (2005) and using the technology shocks estimated by Basu et al. (2013).

4. Oi (1961); Hartman (1972); Abel (1983); Bar-Ilan and Strange (1996) entertain the possibility that
increases in uncertainty come with positive effects and Ilut et al. (2018) argue that counter-cyclical cross-
sectional volatility is a natural result of concave hiring rules.
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between changes in uncertainty and growth. In contrast to these studies, this paper
provides a structural model of firm dynamics and growth in which it can be shown
analytically that uncertainty fluctuations are a by-product of changes in technology
growth.

Finally, this paper also relates to models and empirical evidence on Schumpeterian
creative destruction (see e.g. Aghion and Howitt, 1994; Caballero and Hammour,
1996; Mortensen and Pissarides, 1998, for earlier contributions). Many studies have
documented that such technology shocks are recessionary in the short-run (see e.g.
Gali, 1999; Francis and Ramey, 2005; Basu et al., 2006).5 The model and VAR results
in this paper are closely related to those in Lopez-Salido and Michelacci (2007) and
Canova et al. (2013), who analyze the effects of technology shocks on labor market
flows. In contrast to their model, the framework in this paper considers multi-worker
firms and endogenous technology adoption. The latter turns out to be an important
propagation force. Importantly, the theoretical and empirical focus of this paper is on
the relation between the process of creative destruction and uncertainty. To the best
of my knowledge, the current paper is the first to document how firm dynamics and
firm-level uncertainty respond to Schumpeterian technology shocks and to quantify
this nexus.

The rest of the paper is structured as follows. The next section describes the
structural model, it explains its calibration and it provides the model-based results.
Section 3 then tests the model results in the data and quantifies to what extent
uncertainty fluctuations are growth-driven in the data. Section 4 concludes.

2. Structural model

This section builds a tractable general equilibrium growth model with endogenous
firm dynamics, technology adoption and business cycle fluctuations. In this model
firms endogenously enter, exit and conditional on survival they grow over their
life-cycle. Throughout their life-cycles firms invest into adopting better production
technologies which improve stochastically over time.

The main goal of the model is to understand the link between growth, business
cycle fluctuations and firm-level uncertainty. Following Bloom et al. (2018), the
benchmark measure of uncertainty used throughout the paper is the dispersion of firm-
level total factor productivity (TFP) shocks. The construction of this measure, together
with intuition about why it constitutes an uncertainty proxy, are described in detail in
Section 2.2.

5. Fisher (2006) stresses the importance of distinguishing between “neutral” and “investment-specific”
technology shocks which typically have different qualitative effects. The Appendix shows that the results
are robust to accounting for investment-specific technology shocks.
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2.1. Model environment

The economy is populated by a representative household with a continuum of
members and by a continuum of heterogeneous firms which are owned by the
household. To ease the exposition, aggregate variables are denoted by upper-case
letters, while firm-specific variables are denoted by lower-case letters. Let us begin
by describing household preferences and choices and then move on to the process of
technology adoption and the behavior of incumbent and entering firms.

2.1.1. Household preferences and choices. The representative household chooses
consumption, Ct, investment into physical capital It, and the supply of labor, Nt on
perfectly competitive factor markets. Following the indivisible labor models (see e.g.
Hansen, 1985; Rogerson, 1988), labor is assumed to enter linearly into the household’s
utility function and is interpreted as the employment rate. Formally, the per-period
utility of the representative household is given by

lnC − υN, (1)

where υ > 0 is the disutility of labor and the preference specification allows for
balanced growth. The representative household maximizes the expected present value
of life-time utility, subject to its budget constraint

C + I = NW +RK + Π, (2)

which states that total income stems from employment (with W being the competitive
wage rate), renting out of capital to firms (with R being the competitive interest rate)
and from the ownership of firms, where Π are aggregate profits. This total income is
spent on consumption and investment into physical capital, where I =K ′− (1− δ)K
and where δ is the depreciation rate, K is the stock of capital and primes indicate next
period’s values. The resulting optimality conditions are given by

W = υC, (3)

1

C
= βE

1

C ′
(
R′ + 1− δ

)
. (4)

2.1.2. Technology adoption, firm-specific productivity and growth. It is assumed that
the frontier technology evolves exogenously according to the following process

lnZ ′ = Z + lnZ + ε′Z , (5)

where Z > 0 is a positive drift term and εZ are iid innovations distributed according
to a Normal distribution with zero mean and standard deviation σZ .

The productivity level of an individual firm i is denoted by zi. Each individual
firm owns a particular vintage of the frontier technology and therefore we can express
individual firm productivity in terms of a particular lag of the frontier technology,
zi,t = vj,t = Zt−j with j ≥ 0. In addition, firms can attempt to improve their
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prevailing productivity levels by investing into costly adoption of newer technology
vintages. Because the frontier is growing over time, an individual firm which fails to
adopt newer technologies will experience a gradual decline in relative productivity. At
some point, such a firm will become so unproductive that it will no longer be profitable
to remain in operation and it will shut down endogenously.

The investment into technology adoption is interpreted broadly, not only as direct
costs of purchasing a well-defined technology. In particular, the costs of technology
adoption, or implementation, include e.g. those related to identifying best practices,
personalizing and implementing such practices at a specific firm, reorganizing existing
business procedures or aligning of incentives to use the new technology efficiently
(see e.g. Lientz and Rea, 1998; Comin and Hobijn, 2007; Atkin et al., 2017). Because
any of the above implementation requirements may fail, investment into technology
adoption is inherently uncertain.6,7

Following Klette and Kortum (2004), the various costs and resulting benefits
of technology adoption are summarized using the following simple function. In
particular, a firm investing r units of the final good has a probability p of adopting
a newer technology vintage, where

pi =

(
ri
χ

) 1
η

γ
1− 1

η

i . (6)

In the above expression, χ is a scaling factor, γi is the technology gap (or “stock
of knowledge”) defined as γi = ln zi − lnZ and 1/η is a curvature parameter.8 The
associated cost function can be written as

T (pi, γi) = χγi

(
pi
γi

)η
. (7)

As explained, if an incumbent firm fails to adopt a newer technology vintage,
it retains its prevailing productivity level. Successful adoption attempts may lead
to either radical or incremental technological improvements (as in e.g. Akcigit and
Kerr, 2018). In particular, a fraction θ of firms adopting newer vintages adopt the
frontier technology, while all other adopting firms obtain the technology of the closest
younger technology vintage. Formally, if a firm i in period t has a productivity level

6. The assumption of gradual adoption of (frontier) technology is related to Comin and Gertler (2006).
In contrast to the latter study which assumes homogeneous firms (and competitive technology adopters),
the primary focus of this paper is the time-varying distribution of technology vintages across firms.

7. An alternative interpretation of the uncertainty surrounding technology adoption is that in addition
to expected adoption costs, firms face heterogeneous and stochastic implementation costs. As new
information about these costs emerges, firms may choose to abandon adopting a technology that was
profitable in expectation (see e.g. Jack et al., 2015).

8. While the baseline specification assumes that expenditures on technology adoption constitute a
resource cost for the firm, the Appendix shows that similar results are obtained when technology adoption
costs are specified in labor units instead.
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of zi,t = vj,t = Zt−j , then its productivity in the next period is described by

ln zi,t+1 =


vj+1,t+1 with probability 1− pi,t,
vj,t+1 with probability pi,t(1− θ),
Zt+1 with probability pi,tθ.

(8)

Finally, it is assumed that the process of technology adoption is the same for
potential startups as it is for incumbent firms. As a normalization, the stock of
knowledge for potential entrants is assumed to be given by the average stock of
knowledge in the economy, γ. Startups are assumed to enter the economy only if
they manage to adopt the latest technology vintage.9

2.1.3. Firm behavior. Firm dynamics play a key role in this model. They feature
endogenous firm entry and exit, an endogenous firm productivity (and thus size)
distribution and firm life-cycle growth. Let us first describe these individual features
and then turn to the formal firm maximization problem.

Incumbent firms differ in terms of their productivity levels which they can improve
as described in Section 2.1.2. Conditional on their productivity level, firms produce
output using labor and capital in a decreasing-returns-to-scale production technology.
The gradual nature of technology adoption together with the presence of decreasing
returns to scale in production result in a non-degenerate endogenous firm-level
productivity (and thus size) distribution.

In the data, however, productivity gaps alone cannot account for the observed
average size differences between young and more mature firms (see e.g. Foster
et al., 2016). Therefore, to generate a realistic firm size distribution, which will be
quantitatively important for the aggregate dynamics of the economy, firms in this
model also grow over their life-cycles independent of their productivity levels.

In particular, it is assumed that firms accrue efficiency gains, ψ, through learning-
by-doing. These gains are proportional to firm size and can be rationalized by for
instance established long-term relationships, well-developed distribution networks
or better management practices (see e.g. Stein, 1997). This makes more mature
businesses, which do not necessarily operate cutting-edge technologies, competitive
and able to fend off more innovative newcomers.10

Finally, in addition to variable costs, firms must also pay stochastic fixed costs of
operation, ϕ. Businesses endogenously shut down when the realization of the fixed
cost is too high rendering them unprofitable.11

9. The Appendix shows that a model in which startups are characterized by a distribution of different
technology vintages, rather than all starting at the frontier, yields similar results.

10. In addition, modeling life-cycle growth using such deterministic efficiency gains greatly simplifies
the computation of the model. The reason is that it does not introduce additional state variables as would
be the case with e.g. labor or capital adjustment costs at the firm level.

11. Note that as with expenditures on technology adoption, also ψ and ϕ are assumed to be paid in units
of the final good and therefore they grow at the same rate as the rest of the economy.
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Formally, after observing aggregate shocks but prior to the realization of
idiosyncratic operational costs, an incumbent firm i of age amaximizes its discounted
stream of all future profits (Va(zi,F)) by choosing employment (ni,a), capital (ki,a)
a technology adoption probability (pi,a) and by deciding whether or not to remain in
operation

Va(zi,F) = max
ni,a,ki,a,pi,a

∫
ϕ

max
[
0, Ṽa(zi, ϕ,F)

]
dH(ϕ), (9)

where F is the aggregate state and Ṽa(zi, ϕ,F) is the value of a firm conditional on a
particular draw of operation costs defined as

Ṽa(zi, ϕ,F) =yi,a −Wni,a −Rki,a − T (pi,a, γi) + ψani,a − ϕ (10)

+ Eβ
C

C ′
Va+1(z′i,F ′),

and where yi,a is firm-level production given by

yi,a = Azi

(
kαi,an

1−α
i,a

)κ
.

In the above, α and κ lie between 0 and 1 with the latter controlling the returns to
scale in production, zi is firm-specific productivity evolving according to (8) and
A represents an aggregate total factor productivity shock. Unlike individual firm
productivity, aggregate TFP affects all firms symmetrically and as such allows for
common movements in firm productivity. It is assumed to follow an AR(1) process

lnA′ = (1− ρA)A+ ρA lnA+ ε′A,

where ρA is the autocorrelation coefficient, A is the mean of lnA and where εA ∼
N(0, σ2A).

Given the perfectly competitive nature of the factor markets, the optimal firm-
specific employment and capital decision boil down to factor prices being equal to
marginal products (and efficiency gains from learning-by-doing)

R =ακyi,a/ki,a, (11)

W =(1− α)κyi,a/ni,a + ψa. (12)

The point at which firms decide to shut down, ϕ̃i,a, is defined by (10) equalling
zero

0 = yi,a −Wni,a −Rki,a − T (pi,a, γi)− ψani,a − ϕ̃i,a + EβC/C ′Va+1(z′i,F ′).
(13)

Finally, optimal technology adoption, both for incumbent firms and potential new
entrants, equates the marginal costs to the marginal benefits of investing into newer
technology vintages

χη

(
pi,a
γi

)η−1
=
∂EβC/C ′Va+1(z′i,F ′)

∂pi,a
, (14)
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χη

(
pe
γ

)η−1
= θV0(Z,F). (15)

In the above, pe is the probability a potential entrant successfully adopts a newer
technology and V0 represents the firm value of startups. Note that Va+1(z′i,F ′)
incorporates the endogenous evolution of firm-specific productivity as described by
(8). To ease the exposition, formulas making this explicit are presented only in the
Appendix.

2.1.4. The firm distribution, market clearing, balanced growth and equilibrium. We
can now define ωj,a as the beginning-of-period mass of firms of age a and productivity
vintage zj . In addition, let there be a fixed mass E of potential startups attempting
to enter the economy in each period. The distribution of firm masses across frontier
technology vintages (j ≥ 0) and firm ages (a ≥ 0) can be described by

ω0,0 =Epeθ, (16)

ω′0,a+1 =
∑
a

∑
j

∫ ϕ̃j,a

pj,aθωj,adH(ϕ)

+
∑
a

∑
j≤a

∫ ϕ̃0,a

p0,a(1− θ)ω0,adH(ϕ)

ω′j+1,a+1 =
∑
a

∑
j

∫ ϕ̃j,a

(1− pj,a)ωj,adH(ϕ)

+
∑
a

∑
j≤a

∫ ϕ̃j+1,a

pj+1,a(1− θ)ωj+1,adHt(ϕ)

In the above, the first expression describes the mass of startups entering the
economy in each period. The second expression gives the mass of firms older than
one year, but which are nevertheless at the technological frontier. Such firms are
either last period’s surviving adopters with radical improvements from any part of
the firm distribution (first summation) or last period’s surviving frontier firms which
managed to adopt the next younger vintage enabling them to keep up with technology
growth (second summation). Finally, the third expression defines the mass of firms
at productivity levels below the frontier. These businesses are either last period’s
surviving firms with productivity zj which did not adopt newer technologies (first
summation) or the mass of last period’s surviving firms with productivity zj+1

which adopted the next younger technology vintage enabling them to keep up with
technology growth (second line).

The labor and capital market clearing conditions and the aggregate resource
constraint can be written, respectively, as

N =
∑
j

∑
a

∫ ϕ̃j,a

ωj,anj,adH(ϕ), (17)
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K =
∑
j

∑
a

∫ ϕ̃j,a

ωj,akj,adH(ϕ), (18)

Y = C + I + Ξ, (19)

where aggregate production Y =
∑
a

∑
j

∫ ϕ̃j,a ωj,a(yj,a + nj,aψa)dH(ϕ), which
includes efficiency gains from learning-by-doing, is spent on consumption, investment
into physical capital and aggregate costs Ξ =

∑
a

∑
j

∫ ϕ̃j,a ωj,a (ϕ+ T (pj,a, γj))dH(ϕ).
The latter include operational costs and technology adoption expenditures. Aggregate
profits are then defined as Π = Y −WN −RK − Ξ.

Note that the frontier technology is the only source of growth and therefore the
economy fluctuates around the stochastic trend Z.12 The aggregate state F consists
of not only the aggregate capital stock K and the two aggregate shocks Z and A, but
also of the entire joint distribution of firm age and productivity vintages ωj,a. The
reason for the latter is that aggregate factor demands depend on the distribution of
workers and capital across firms with different productivity vintages and efficiencies
of operation (learning-by-doing gains) which are age-dependent.

Finally, we are now ready to define the model’s equilibrium as

• individual firms’ policy rules for employment (ni,a), capital (ki,a), technology
adoption probabilities (pi,a) and firm exit (ϕ̃i,a),

• potential entrants’ policy rules for technology adoption probabilities (pe),
• household’s policy rules for aggregate consumption (C), employment (N ) and

investment (I),
• the wage (W ), interest rate (R) and the distribution of firms across technology

vintages and ages (ωj,a),

which satisfy firms’ optimal labor, capital, technology adoption and exit conditions
(11) to (14), the free entry condition (15), household’s optimal labor supply and Euler
equations (3) and (4), and the aggregate resource constraint (19), which clear the labor
and capital markets (17) to (18) and which are consistent with the law of motion for
the distribution of firms across frontier technology vintages and ages (16).

2.2. Firm-level uncertainty in the model

Having described the theoretical framework, this subsection builds intuition as to
how and why technology growth is linked to firm-level uncertainty. Before doing
so, however, let us describe the construction of the benchmark measure of firm-level
uncertainty.

2.2.1. Measuring firm-level uncertainty. Throughout this paper the benchmark
measure of uncertainty follows Bloom et al. (2018). These authors consider business-
level production functions similar to those in this paper, namely yi = Azif(ki, ni),

12. Only firm-level and aggregate employment are stationary. All other variables can be stationarized by
dividing them with Z.
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where TFP has an aggregate (A) and a firm-specific (z) component and where firms
use capital and labor inputs to produce output. In addition, they assume that firm-
specific productivity evolves according to

ln zi,t = ρz ln zi,t−1 + ηi,t, (20)

where ρ is a persistence parameter and where, importantly, the variance of productivity
innovations ηi is allowed to be time-varying. In other words, firms face time-
varying idiosyncratic uncertainty since the magnitude of their productivity innovations
fluctuates over time. Moreover, this also implies that the dispersion of productivity
innovations across individual firms is time-varying.13

Using the above setting, the authors then define uncertainty based on the cross-
sectional dispersion of establishment-level total factor productivity shocks estimated
from the following regression

ln zi,t = µi + ρ ln zi,t−1 + λt + ηi,t, (21)

where µi is an establishment fixed effect, λt are time fixed effects and ηi,t are the
assocaited establishment-level TFP shocks.14 To construct this uncertainty measure,
the authors use the Census panel of manufacturing establishments with annual data
ranging from 1972 to 2009. In order to avoid compositional changes, they focus only
on a balanced panel of establishments which are at least 25 years old.

In what follows, all references to uncertainty are understood to be regarding the
above-described concept of the cross-sectional dispersion of establishment-level TFP
shocks. In addition, all empirical exercises concerning uncertainty will be conducted
using the data constructed by Bloom et al. (2018).

2.2.2. The nexus between growth and uncertainty. To understand why growth is
linked to firm-level uncertainty, we can consider a simplified version of the firm-level
productivity process described in (8). In particular, consider that technology adoption
is purely exogenous and that all firms face the same constant probability of adopting
a newer technology vintage, i.e. pi,t = p. In addition, let us assume that all firms
adopting newer technologies obtain the latest technology vintage, i.e. θ = 1.

Under these assumptions, in a large enough cross-section of firms, a fraction p of
businesses will have adopted the leading technology Zt, while productivity of all other
firms would have remained fixed. The evolution of firm-level productivity can then be
described, on average, by the following law of motion

ln zi,t = (1− p) ln zi,t−1 + p lnZt + υi,t, (22)

13. Note that many other alternative uncertainty proxies correlate highly with cross-sectional TFP
dispersion (see e.g. Bloom et al., 2018).

14. Despite that this particular measure is constructed with establishment-level data, I will use the
term establishment- and firm-level uncertainty interchangeably because the structural model does not
distinguish between firms and establishments.
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where E[υi,t] = 0 in the cross-section for every t. Notice, however, that by defining
ρ = 1− p and λt = p lnZt we obtain the empirical regression (21) used to estimate
firm-level uncertainty shocks.15 Recall that the latter is defined as the cross-sectional
dispersion of the forecasting errors υi,t. These errors can be be written in terms of
structural parameters as

υi,t =
{ pγi,t−1 − pZ when firm i does not adopt Zt,

(p− 1)γi,t−1 − (p− 1)Z when firm i adopts Zt,
(23)

with their cross-sectional variance being

var[υi,t] = (p2 − p+ 1)σ2γ + p(1− p)µ2γ + p(1− p)Z2
, (24)

where µγ = E[γi,t−1] and σ2γ = var[γi,t−1] are the cross-sectional mean and variance
of last period’s distribution of productivity gaps, respectively.16 The above expression
shows that firm-level uncertainty is determined by three components: the distribution
of (past) technology gaps, the speed of adopting the technological frontier and the
growth rate of the frontier technology.

From (24) it is clear that time-variation in technology growth, Zt = Z + εt,
directly translates into firm-level uncertainty fluctuations.17 In particular, periods of
high growth are associated with more uncertainty. The intuition behind this result is
simple. When the frontier technology expands, firms face larger productivity gains if
they successfully adopt the leading technology and relatively larger productivity losses
if they do not.18.

Moreover, notice that firm-level productivity must be described by gradual
technology adoption in order for growth to be linked to uncertainty. In the
extreme cases of no adoption (purely vintage technology) or full adoption
(homogeneous technology) growth-driven uncertainty fluctuations disappear.19

Finally, the dependence of firm-level uncertainty on the past distribution of
productivity gaps allows for persistent uncertainty increases even following only
transitory changes in technology growth. Similarly, endogenous changes in the
probability of technology adoption, p, will also induce richer dynamics in the full
structural model.

15. To ease the exposition, establishment fixed effects are omitted here. However, all quantitative model
exercises are based on (21) and thus include establishment fixed effects.

16. See the Appendix for a detailed derivation.

17. Similarly, it is possible to derive expressions for skewness and kurtosis of the firm-level TFP shocks.
In particular, frontier growth enters as Z3

[1− 2p]/
√
p(1 − p) and Z4

[1− 6p(1− p)]/[p(1− p)] in the
skewness and kurtosis expressions, respectively. Therefore, the impact frontier growth has on these higher
moments is quantitatively smaller and qualitatively ambiguous depending on the speed of technology
adoption p.

18. This mechanism is similar to the growth option channel described in Bar-Ilan and Strange (1996)
where higher uncertainty also has positive effects

19. It is straightforward to extend the model to include iid disturbances to firm-specific productivity such
that var[υi,t] > 0 even in the extreme cases of full or no technology adoption.
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2.3. Calibration and model performance

The following paragraphs first describe the model’s calibration and then evaluate its
performance on dimensions not considered in the parametrization. In order to ease the
exposition of the calibration strategy, I discuss the calibrated parameters in relation
to specific targets even though individual parameters typically influence the behavior
of the entire model. All parameter values and the associated targets are presented in
Table 1.20

In order to be consistent with the establishment-based uncertainty measure, the
targeted moments are computed using U.S. establishment data taken from the Business
Dynamics Statistics (BDS) for the available period of 1977-2014. Following the
frequency of the BDS, the model period is therefore assumed to be one year.21

2.3.1. Calibration. Let us start by discussing the parameters pertaining directly to
the household. The discount factor, β, is set to 0.97 corresponding to an annual interest
rate of 3%. The disutility of labor, ν, is set such that the steady state wage rate is
normalized to one. The depreciation rate of physical capital is set to 10%, consistent
with values found in Cooper and Haltiwanger (2006).

The parameters governing the process of technology adoption include the
normalization constant χ, the curvature parameter η and the probability of radical
technology improvements θ. The normalization constant affects the level of
technology adoption costs. Proxying adoption costs with expenditures spent on
research and development, χ is set such that average adoption costs are 4% of output as
in the data (see Akcigit and Kerr, 2018). The curvature parameter is set to 2 implying
a 0.5 elasticity of the probability of adopting a new technology vintage with respect
to the associated expenditures. This is consistent with estimates in Acemoglu et al.
(2013). Finally, θ is set to 0.1 following Akcigit and Kerr (2018) who estimate that
roughly 10% of all innovations open up new technologies.

Next, turning to the production function, α = 0.33 while the returns to scale
parameter is set to κ = 0.8 which falls within the values estimated in Basu and
Fernald (1997).22 The efficiency gains from learning-by-doing, ψa, directly affect
establishments’ life-cycle growth. To ease the computational burden, I consider four
age categories: startups, young (one to five years), medium-aged (six to ten years)
and old establishments (11 years and more).23 Efficiency gains are then set in order

20. The solution method follows Sedláček and Sterk (2017) and its description is deferred to the
Appendix.

21. When computing business cycle statistics, the data is logged and HP filtered with a smoothing
coefficient 100.

22. The Appendix provides robustness exercises with respect to this parameter which is quantitatively
important for the resulting business cycle fluctuations of the economy.

23. While startups become young establishments in the next period (conditional on survival), young
(medium-aged) establishments become medium-aged (old) establishments with a probability δ = 1/5
ensuring an “expected duration” of five years within these age categories (conditional on survival).
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to match average establishment size by age, relative to the economy’s average (with
efficiency gains of old establishments normalized to zero).24 The distribution of the
operational costs, H , controls the extent to which establishments exit the economy. It
is assumed that H is logistic with mean µH and scaling parameter σH . The former is
set such that the average establishment exit rate is 10%. The latter, which controls the
dispersion of of operational costs and which in turn shapes the relation between exit
rates and firm-specific productivity, is pinned down by targeting the relative exit rate
of startups and young establishments of 1.7 observed in the BDS data.

Finally, let us turn to the calibration of the two aggregate shocks, TFP (A) and
frontier technology (Z). Aggregate TFP is assumed to follow an AR(1) process which
is characterized by a mean TFP level A, persistence parameter ρA and dispersion
of TFP shocks σA. In contrast, frontier technology grows over time with a positive
drift Z and dispersion of frontier technology shocks σZ . These five parameters are
chosen such that the model replicates the average establishment size, the persistence
and volatility of real GDP, average labor productivity growth and the volatility of the
reallocation rate related to entry and exit. The latter is defined as the number of jobs
created by startups and destroyed by exiting businesses as a share of total employment.

2.3.2. Model performance. This subsection discusses the model’s performance
along several dimensions important for the quantitative results discussed next.

Table 2 shows that the model does well in replicating business cycle volatility
and co-movement of (i) aggregate variables (top left panel), (ii) the reallocation
process (top right panel), and (iii) the age distribution of establishments (bottom
panels). Specifically, while the volatility of output was a calibration target, the
model endogenously predicts that consumption and employment are less and that
investment is more volatile than output and that all variables are highly correlated with
output, consistent with the data. 25 Similarly, while the volatility of the employment
reallocation rate Rn was a calibration target, the model does well in also replicating
the volatility and business cycle co-movement of the number of establishments, the
establishment reallocation rate and average establishment size. The exception is the
employment reallocation rate which is more counter-cyclical in the model compared
to the data. In addition, the model is also consistent with the magnitude of reallocation.
In particular, in the data almost a third of all jobs are either created or destroyed each
year and about 35% of this reallocation is because of establishment entry and exit. In
the model, 30% of all jobs are created or destroyed every period and entry and exit
account for 40% of this reallocation process. Finally, the model is also consistent with

24. In the data, on average about 30% of new establishments are created by existing firms. Such
establishments may face different efficiency gains inherited from their parent firm. For simplicity, the
calibration abstracts from such issues.

25. Volatility of model variables is computed using 1, 000 simulations of 1, 038 periods, where only the
last 38 periods considered (consistent with the empirical sample length). Reported values are means of the
respective standard deviations across the 1, 000 simulations.
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TABLE 2. Model performance

aggregates reallocation process
Y C I N Ω Rn Re n

standard deviation (in %)
data 1.9 1.4 8.3 1.8 1.2 7.9 4.3 1.8
model 1.8 1.0 6.7 1.3 1.5 7.1 2.2 1.7

correlation with output
data 1 0.92 0.84 0.89 0.65 −0.06 0.23 0.56
model 1 0.78 0.94 0.89 0.61 −0.66 0.19 0.14

establishment shares (%) employment shares (%)
age (years) 0 1-5 6-10 11+ 0 1-5 6-10 11+

data 10 32 19 39 5 23 17 54
model 10 27 17 46 5 19 15 61

Notes: The top panel shows the empirical and model-implied standard deviations (and correlations with
output) of aggregate variables and variables related to the reallocation process. The data spans 1977-2014,
consistent with the BDS sample. Y is real GDP, C is personal conusmption expenditures, I is real gross
private domestic investment and N is civilian employment, Ω is the number of establishemnts, Rn is the
employment reallocation rate defined as the sum of job creation and destruction at entering and exiting
establishments as a share of total employment, Re is the establishment reallocation rate defined as the
sum of entering and exiting establishments as a share of all establishments and n is average establishment
size. All variables are logged and detrended with an HP filter with smoothing coefficient 100. The bottom
panels of the table report the shares of establishments and employment in the respective age groups.

the empirical age distributions (of establishments and employment) with the share of
old businesses being somewhat higher in the model compared to the data.

In addition to the above “macro” predictions, the model is also consistent with
several “micro” patterns of the technology adoption process. In particular, Akcigit and
Kerr (2018) document that small firms innovate relatively more than larger businesses
showing that patents per employee decrease with firm size. Using the probability of
successfully adopting newer technology vintages (p) to proxy for patents, this negative
relationship between innovation and firm size also holds in the model. In addition, in
the data innovation expenditures are positively correlated with firm productivity in
the cross-section, but less so with productivity growth (see e.g. Klette and Kortum,
2004). In the model, lower firm-specific productivity impedes the innovation process,
see (7). At the same time, less productive firms that successfully innovate experience
relatively larger productivity gains, see (8). Therefore, as in the data, also in the
model technology adoption expenditures are positively correlated with firm-specific
productivity but essentially uncorrelated with productivity growth.26

26. The data features a large share of firms reporting zero R&D expenditures (see e.g. Klette and Kortum,
2004). While this is not allowed in the model, which simplifies it’s computation, in the steady state 20%
of the firms exhibit a technology adoption intensity of less than 0.5%.
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2.4. Model results

This subsection presents the main model results. It begins by describing the model
dynamics following the two aggregate shocks. It was analytically shown that firm-
level uncertainty is linked to technology growth in a simplified version of the structural
model. Importantly, this remains true in the full model. Moreover, unconditionally
uncertainty fluctuations are counter-cyclical over the business cycle, as in the data.
The The next section presents empirical evidence for these model predictions using
U.S. data.

2.4.1. Model dynamics following aggregate shocks. Figure 1 shows impulse
response functions of several model variables in response to the aggregate TFP (A)
and frontier technology (Z) shocks. All variables are expressed in percent deviations
from their respective steady state growth paths.

Let us begin by inspecting the dynamics following a one-standard-deviation
increase to aggregate TFP which affects all firms symmetrically. Because of
consumption smoothing motives, the household ensures that part of this productivity
increase gets invested (both into physical capital and greater technology adoption).
The household’s labor supply decision (3) shows that the aggregate wage rises along
with consumption, undershooting the increase in firm productivity. Therefore, despite
the temporary rise in labor costs, all firms are relatively more profitable and they
expand leading to an increase in aggregate employment and output. For the same
reason, job creation of startups rises and job destruction from firm exit drops. Finally,
because all firms are affected symmetrically, average firm productivity mirrors the
pattern of aggregate TFP without affecting the productivity dispersion across firms.
Therefore, uncertainty is unaffected. In other words, the positive aggregate TFP shock
generates a standard real business cycle.

The dynamics following shocks to the frontier technology are very different from
those induced by an aggregate TFP shock. The main reason lies in the fact that changes
in the frontier technology do not immediately affect the productivity of all firms, but
rather they permeate through the economy only gradually. This is because it takes time
and resources to adopt the new technology vintages. This asymmetry, which induces
changes in the firm-level productivity distribution, generates a new force acting
against the consumption smoothing channel. On impact, only the productivity of firms
that have adopted the latest technology vintage rises. The productivity of all other
businesses remains fixed until they also manage to successfully adopt newer vintages.
Therefore, average firm productivity only gradually increases to its new long-run
level. Importantly, uncertainty rises in response to the frontier technology shock.
This is precisely because the frontier technology shock affects firms asymmetrically,
widening the cross-sectional dispersion of firm-specific productivity shocks. Firms
now face relatively larger productivity gains if they manage to successfully adopt the
leading technology and relatively larger productivity losses if they do not. More details
on the uncertainty response, including a description of its computation, are presented
below.
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FIGURE 1. Impulse responses to aggregate shocks. Notes: Impulse response functions to positive
one-standard-deviation shocks occuring in period T to aggregate TFP (A) and frontier technology
(Z), respectively. All impulse responses are expressed in percentage deviations from the respective
steady state growth paths.

However, not all the productivity gains are consumed. Instead, consumption
smoothing motives ensure that part of these gains are invested and therefore
consumption (and wages) rises by relatively less than productivity at the frontier. This,
in turn, means that the economy experiences a simultaneous increase in job creation
by firms utilizing the latest technology vintage and job destruction of all other firms
for which productivity has remained fixed.

The precise nature of the creative destruction process is crucial for the aggregate
employment response, which is in principle ambiguous. This process is described
in detail below. However, under the present calibration, job destruction dominates
initially and aggregate employment and output fall temporarily.
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FIGURE 2. Uncertainty impulse responses to a positive frontier technology shock. Notes: Impulse
response function of the standard deviation of firm-level TFP shocks, computed according to (21), to
a positive one-standard-deviation shock to the frontier technology. The impulse response is generated
by simulating a cross-section of firms 1, 000 times for 1, 038 periods. All exogenous shocks are
set to zero except for a positive one-standard-deviation innovation to the frontier technology in
period 1, 001. The first 1, 000 periods are discarded. The figure shows the average response and
the respective 90% confidence bands (shaded areas) over the 1, 000 simulations. “ Fixed adoption”
referes to a counterfactual scenario when firms’ probabilities of adopting newer technology vintages
are held fixed at their respective steady state levels.

2.4.2. Model-predicted uncertainty fluctuations. Let us now turn back to analyzing
the response of uncertainty to frontier technology shocks. The model-based
uncertainty measure is exactly the same as is estimated in the data according to (21).
Towards this end, the model is simulated 1, 000 times for 1, 038 periods with a cross-
section of one million firms. All exogenous shocks are set to zero except for a positive
one-standard-deviation innovation to the frontier technology in period 1, 001. The first
1, 000 periods are discarded. The remaining time-periods are used to estimate equation
(21) and construct the uncertainty measure.27 The impulse response function of firm-
level uncertainty in Figure 1 is the average response over the 1, 000 model simulations.

Figure 2 replicates the uncertainty impulse response, together with the associated
90% confidence bands stemming from the 1, 000 simulations. While firm-level
uncertainty increases on impact by about 5% and gradually converges back to its
steady state, the confidence bands suggest that this increase is short-lived and lasts
for at most one year.

27. Following Bloom et al. (2018) who construct their uncertainty measure using data on establishments
with at least 25 years of observations, I restrict the sample in the model-counterpart to only old firms.
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In addition to the benchmark response, the dash-dotted line depicts a
counterfactual impulse response of uncertainty which excludes the effect endogenous
technology adoption has on uncertainty, i.e. when the probabilities of updating firm-
specific productivity are fixed to their respective steady state values pi. Importantly,
the magnitude of this effect is quantitatively important. On impact, an increase in
technology adoption expenditures strengthens the uncertainty response by about 60%.
In addition, it more than doubles the persistence of the uncertainty increase. While
the average uncertainty response reverts back to its steady state after about four
years in the benchmark economy, it dies out after about one and a half years in the
counterfactual scenario.

The above shows that uncertainty increases in response to higher growth and
that endogenous technology adoption is an important magnification and propagation
channel in this regard. To the extent that measured uncertainty is at least partly growth-
driven and R&D expenditures can be proxied by the firms’ costs of adopting the
leading technology, this result is consistent with Stein and Stone (2013). The authors
find that uncertainty increases have a positive effect on R&D expenditures while
hampering many other forms of investment.

What the above does not show, however, is how growth-driven uncertainty moves
over the business cycle, i.e. unconditional on fontier technology shocks. Therefore, I
again simulate the model, but this time allowing for both aggregate shocks to vary in
line with their calibration.28

The top two rows of Table 3 report correlations of uncertainty (cross-sectional
dispersion of firm-level productivity shocks) with several business cycle indicators.
The first two columns show that firm-level uncertainty is unconditionally counter-
cyclical, albeit with correlations that fall somewhat short of that observed in the data.
For instance, Bloom et al. (2018) report a correlation between GDP and uncertainty of
about −0.46 indicating that firm-level uncertainty is likely fluctuating in a counter-
cyclical fashion also for other (potentially exogenous) reasons not present in the
current model.

However, the table also shows that skewness and kurtosis of firm-level TFP shocks
is essentially a-cyclical. Importantly, this is also consistent with the data, as Bloom
et al. (2018) find no statistically significant correlation between these moments and
the business cycle.

Finally, the last column depicts the correlation of the moments of the firm-level
productivity shock distribution with changes in the frontier technology. In this case,
uncertainty is strongly positively related, since the dispersion of firm-level TFP shocks
widens as the technological frontier expands. However, skewness and kurtosis are
again a-cyclical.

To gage these relationships in the data, I consider three proxies for frontier
technology growth: i) real expenditures on R&D, ii) patent applications and iii) patent

28. Once again, the model is simulated 1, 000 times for 1, 038 period with a cross-section of on million
firms. The first 1, 000 periods are discarded. The generated cross-section of firm-level productivity shocks
is then used to compute the model-implied uncertainty (dispersion), skewness and kurtosis measures.
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TABLE 3. Correlation of cross-sectional moments of firm-level productivity shocks with...

output employment technology

dispersion −0.27 −0.24 0.37
[−0.44,−0.10] [−0.41,−0.07] [0.19, 0.55]

skewness −0.01 −0.01 0.01
[−0.18, 0.16] [−0.18, 0.16] [−0.16, 0.18]

kurtosis 0.07 0.06 −0.08
[−0.09, 0.23] [−0.11, 0.23] [−0.24, 0.08]

Notes: correlation coefficients between firm-level uncertainty and business cycle indicators. Uncertainty is
measured as the standard deviation of firm-level TFP shocks (computed according to (22)). “Technology”
refers to the stochastically growing frontier technology Zt. All the data is logged and HP filtered. The
reported values are averages over 1, 000 model simulations of length 1, 038 periods in which the first
1, 000 periods are discarded. The respective one-standard-deviation intervals (across the 1, 000 model
simulations) are reported in brackets.

grants.29 The empirical correlation between firm-level uncertainty and proxies of
frontier technology growth ranges between 0.15 and 0.25. In the case of skewness
and kurtosis, there is no significant relationship to the above proxies.

Clearly, the above model-implied business cycle properties crucially depend on the
process of creative destruction which induces the Schumpeterian downturn following a
speed-up in frontier technology growth. The following subsection, therefore, analyses
this process in more detail. The next section then provides empirical evidence
on the model-suggested link between technology growth, creative destruction and
uncertainty.

2.4.3. The process of creative destruction. The aggregate employment response
depends on the relative mass of created and destroyed jobs. This, in turn, depends on
the shares of expanding and contracting firms in the economy and on the magnitude
of their respective employment changes.

Let us begin by investigating the firm-level employment changes implied by the
optimal hiring decision (11)

n̂i = 1/(1− κ)(ẑi − (1− κα)Ŵ − καR̂), (25)

where “hats” indicate percentage deviations from the respective steady state trends.30

The above equation shows that on the one hand all firms which fail to innovate, i.e. for
which ẑi = 0, experience the same percentage change in employment irrespective
of their size. In particular, the percentage drop in employment among shrinking

29. Focusing on patents as a measure of frontier technology growth follows Hall et al. (2001). The
patent data is taken from U.S. Patent and Trademark Office (USPTO), R&D expenditures are taken from
the Bureau of Economic Analysis and the uncertainty measure is taken from Bloom et al. (2018). All
variables are logged and detrended using an HP filter with smoothing coefficient 100.

30. For clarity, (25) ignores efficiency gains from learning-by-doing. Taking them into account
introduces differences in the percentage responses between firms of different ages. Equation (25) also
highlights the importance of the returns to scale parameter κ for the quantitative results. The Appendix
provides sensitivity tests with respect to this parameter.
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FIGURE 3. Impulse responses to a frontier technology shock: distributions. Notes: Impulse response
functions (in percent) to a positive one-standard-deviation shock to the frontier technology (Z).
The horizontal axis shows the age of the technology vintage of firm-specific productivity, i.e.
zj,t = Zt−j . A zero year old technology refers to the frontier. The left panel depicts firm-specific
exit rates deviations from their respective steady state values, as a function of the technology
vintage of firm-specific productivity. The right panel depicts firm employmentdeviations from their
respective steady state values, as a function of the technology vintage of firm-specific productivity.
The different lines plot the impulse response on impact, 1, 2 and 3 years after the shock hits the
economy, respectively.

firms is only a function of the change in factor prices and the production function
parameters which are all common across firms. On the other hand, firms adopting
newer technology vintages experience heterogeneous productivity gains depending
on their prevailing productivity level. Specifically, firms far away from the frontier,
but which nevertheless managed to adopt the leading technology, undergo relatively
larger productivity (and thus size) increases compared to businesses with an initially
higher productivity level. The shape of the firm size distribution is therefore key for
the quantitative results.

In the calibrated model, which matches well the empirical firm size distribution,
an average innovating firm creates more jobs than the average shrinking firm destroys.
However, the overall impact on aggregate employment still depends on the relative
shares of these two groups of firms. Figure 3 shows the impulse responses of the
distribution of firm exit rates and employment levels as a function of firm-specific
productivity ordered according to the age of the specific technology vintage, i.e.
zj,t = Zt−j . Therefore, firms with a zero year old technology vintage posses the
leading technology and older vintages are farther away from the growing frontier.
The figure shows responses in the year of impact, 1, 2 and 3 years after the shock
hit the economy. For clarity, the figure restricts the maximum age of a technology
vintage to be 8 years.31 However, the vast majority (95%) of all firms are located

31. Vintages can be up to 30 years old as discussed in the solution method in the Appendix. The
Appendix also shows more detailed impulse responses separated also by firm age.
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within this range. In addition, the average exit rate and size of firms with technology
vintages younger than 9 years are 8.5% and 18.3 employees, respectively. Therefore,
Figure 3 summarizes changes in the (quantitatively) most important part of the firm
distribution.

Upon impact, only firms at the technological frontier (j = 0) reap the benefits
of improved technology. Such firms shut down relatively less often and they expand,
compared to their steady state. All other firms, which now find themselves facing
higher labor costs, shut down relatively more often and contract. The permanent
nature of technology shocks means that one year after the improvement in frontier
technology, also firms with a one year old technology vintage are relatively more
productive and they expand and shut down less often. Similar logic applies to
responses in later years, highlighting how the benefits of technology shocks only
gradually permeate through the economy.

In the calibrated model, the mass of shrinking firms initially dominates that of
expanding businesses. Therefore, following a positive frontier technology shock, the
economy undergoes a temporary Schumpeterian downturn.

3. Creative destruction and uncertainty in the data

The structural model presents a theory in which positive growth options increase
uncertainty at the firm-level and, at the same time, spur a process of creative
destruction generating a temporary Schumpeterian downturn. This section presents
empirical evidence in support of these model predictions and quantifies to what extent
observed uncertainty fluctuations in the data are growth-driven.

First, using detailed industry-level data, I show that uncertainty is indeed positively
correlated with productivity growth. Second, using structural VARs and aggregated
firm-level data in the U.S., I document that a positive technology shock triggers a
Schumpeterian downturn and an increase in firm-level uncertainty as predicted by the
model.

3.1. Technology growth and uncertainty at the industry-level

The model predicts that, while being counter-cyclical, uncertainty is positively related
to productivity growth. Moreover, in the model this channel operates via endogenous
technology adoption. In this subsection, I test these model predictions using industry
data at the 4-digit level. Specifically, I consider the following regression

σs,t = µs + λt + α∆ lnV As,t + β∆ lnTFPs,t + γRDs + δXs,t + εs,t, (26)

where s indicates an industry and t a time period. In (26), σs,t is industry-specific
uncertainty, µs is an industry fixed effect, λt is a time fixed effect, ∆ lnV As,t is
the growth rate of industry-specific value added, ∆ lnTFPs,t is the growth rate of
industry-specific TFP, RDs is the average industry-specific R&D intensity and Xs,t
include other control variables.
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TABLE 4. Regression results: industry-level uncertainty

I II III

∆V A −0.05∗∗∗ −0.12∗∗∗ −0.12∗∗∗

∆TFP 0.21∗∗ 0.22∗∗

RD 0.01∗∗

Notes: Regression results for (26). All regressions include industry and time fixed effects and control
variables described in the main text. The three columns report results for different versions of (26) which,
in addition to value added growth, sequentially include TFP growth and average R&D intensity within
industries. Standard errors are clustered by industries.

The industry level uncertainty data is taken from Bloom et al. (2018), the R&D
data is taken from Bloom et al. (2013) and all the other industry-level data is taken
from the NBER-CES Manufacturing Industry Database. Uncertainty is measured
again as the cross-sectional dispersion in establishment-level TFP shocks, TFP is the
“5-factor-TFP” measure and R&D intensity is given by R&D expenditures relative to
sales. Finally, Xs,t includes a range of industry-specific control variables: growth in
total payroll, material costs, capital investment and inventories and the average capital-
labor ratio, share of energy costs in total costs and share of structures in total capital.
The sample periods differ somewhat across industries, but overall they range between
1971 and 2009. After dropping industries with missing observations we are left with
77 industries and a total of 2, 831 time-industry observations.

Table 4 shows the regression results. The top row indicates that uncertainty
is robustly counter-cyclical as has been shown in many other studies. However,
consistent with the model predictions, the second row shows that conditionally on
value added growth uncertainty is in fact positively related to TFP growth. Moreover,
uncertainty is shown to be positively related to R&D instensity of the given industries.
Using R&D expenditures as a proxy for the speed of technology adoption, this is
consistent with the model which can be directly seen from (24).32

While one should be cautious in interpreting the above results as causal
relationship, they do reflect conditional correlations which are consistent with the
model predictions. The following subsection takes a step in the direction of identifying
causal relationships in the data. In particular, it estimates technology shocks and
investigates the responses of uncertainty, and other variables, to these structural
innovations.

3.2. Technology growth and uncertainty in the aggregate

Let us now focus on the causal predictions of the model regarding technology
shocks, the creative destruction process and uncertainty. Towards this end, I estimate
a series of structural vector autoregressions (VARs) with long run restrictions as

32. As long as p < 0.5, higher values of p raise uncertainty (and it’s sensitivity to TFP shocks).
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in e.g. Blanchard and Quah (1989), Gali (1999).33 Consistent with the structural
model, the identification is based on assuming that only technology shocks determine
productivity in the long-run.

The estimation uses bi-variate VARs where the data vector is given by Yt =
(∆at, xt)

′, with ∆at being productivity growth and xt being the variable of interest.34

Productivity is measured by output per hour in the non-farm business sector and xt
includes: firm-level uncertainty, job creation by new establishments, job destruction
by exiting establishments and aggregate employment.35 All variables are in annual
frequencies, ranging from 1977-2014. In addition, following Fernald (2007), who
documents that low-frequency movements in productivity impair the identification of
technology shocks, the estimation allows for break points in the intercepts. Finally, all
VAR specifications are estimated with two lags.36

Figure 4 shows the responses of our variables of interest, both in the data and in
the model. In the data, and as predicted by the model, a positive technology shock
spurs a process of creative destruction associated with a simultaneous increase in job
creation and job destruction. In the aggregate, this leads to a temporary Schumpeterian
downturn with employment falling for several periods. Finally, the bottom right panel
shows that, consistent with the model, also in the data firm-level uncertainty rises in
response to a positive technology shock.

Therefore, the figure shows that the model predicts empirically plausible impulse
responses, both qualitatively but also quantitatively. Only the model response of
uncertainty is somewhat on the high side of its empirical counterpart. However,
recall from Figure 2 that the confidence bands around the model-predicted uncertainty
response suggest that it is different from zero only in the first year following the shock.

3.3. To what extent is uncertainty growth-driven in the data?

Finally, let us quantify to what extent observed fluctuations in firm-level uncertainty
are growth-driven in the data. A variance decomposition of the forecast errors suggests
that about 27% of the observed fluctuations in uncertainty are driven by technology
shocks alone.

In addition, it is possible to gage which episodes of heightened uncertainty were
predominantly driven by growth options and which were by driven by other factors.
In what follows, I focus on the four NBER recessions in the sample, which were

33. The Appendix shows that very similar results are obtained with an alternative estimation strategy
based on local projections following Jorda (2005) and using technology shocks estimated by Basu et al.
(2013).

34. The identified technology shocks are nevertheless very similar with correlation coefficients around
0.8 across the different VARs.

35. Uncertainty is again measured as the cross-sectional variation in TFP shocks taken from Bloom et al.
(2018), job creation and destruction data are taken from the Business Dynamics Statistics (both entering in
logs) and employment is the growth rate of civilian employment taken from the Bureau of Labor Statistics.

36. The Appendix provides further details on the estimation procedure as well as several robustness
checks.
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FIGURE 4. Aggregate responses to a positive technology shock: data and model. Notes: Impulse
response functions to a positive one-standard-deviation technology shock in the “model” and the
“data”. Job creation from entry and destruction from exit are taken from the Business Dynamics
Statistics (both entering in logs), employment is the growth rate of civilian employment taken from
the Bureau of Labor Statistics and R&D expenditures are measured as real R&D expenditures as a
share in real GDP taken from the Bureau of Economic Analysis. Shaded areas depict one-standard-
deviation confidence intervals.

all associated with a cyclical increase in uncertainty. To measure the latter, I de-
mean the data using the estimated time-varying intercepts from the structural VAR.37

The uncertainty run-ups are always measured from the respective trough prior to
the recession up until one year after the official end of the downturn. In order
to measure the “growth-driven” component of these uncertainty spikes, I use the
estimated structural VAR to forecast uncertainty while allowing for only the identified
technology shock to vary and fixing the second shock to zero.

Figure 5 plots the above-described uncertainty spikes around the four NBER
recessions in the sample, together with the respective growth-driven components
implied by the identified technology shocks alone. While technology shocks explain,
on average, about a quarter of the uncertainty fluctuations, the patterns differ
substantially across recessions.

37. Note that the level of uncertainty was highest in the Great Recession, but the time-varying intercepts
soak up some of this (trend) increase which occurred already prior to the Great Recession. See the
Appendix for more details on the estimated VARs.
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FIGURE 5. Uncertainty spikes around recessions and their growth-driven components. Notes:
Cyclical uncertainty increases around NBER recessions measured as deviations from the respective
prior troughs. “Growth-driven component” is based on the estimated structural VAR with the
identified technology shocks being the only sources of variation. Both time-series are first demeaned
using the time-varying intercepts from the estimated structural VAR.

Specifically, uncertainty increases during the milder downturn in 1991 and the run
up towards the bursting of the “dot-com” bubble in 2001 were predominantly growth-
driven. In these cases, growth-driven uncertainty accounts for about two thirds of the
overall increase at its peak. On the contrary, the strong uncertainty increases during the
double-dip recession in the early 1980’s and the Great Recession had little to do with
growth. In fact, during both these downturns the growth-driven component contributed
negatively to the overall increase in uncertainty.38

The above empirical evidence therefore supports the predictions of the structural
model that technology growth, creative destruction and firm-level uncertainty
fluctuations go hand-in-hand. Not only does uncertainty respond to technology shocks
in the data, it does so in a quantitatively important way.

4. Conclusion

This paper provides a theory and empirical evidence on how growth-options impact
firm-level uncertainty and in turn the aggregate economy. The structural model
of firm growth via endogenous technology adoption suggests that increases in

38. This is in line with Ludvigson et al. (2017), who argue that the Great Recession increase in
uncertainty was primarily related to financial uncertainty.
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technology growth go hand-in-hand with a process of creative destruction and
with increases in firm-level uncertainty. Such growth-driven uncertainty fluctuations
are therefore counter-cyclical, but co-move positively with technology growth. The
model predictions are shown to hold in U.S. data not only qualitatively, but also
quantitatively.

While the results show that technology growth is likely an important driver of
uncertainty fluctuations, especially in certain periods, they also highlight the role of
other factors in shaping uncertainty fluctuations. In particular, the Great Recession
seems to be a period in which uncertainty increased dramatically for reasons unrelated
to technology growth. In order to understand the aggregate implications of uncertainty
fluctuations and the possible inefficiencies and associated policy implications related
to them, it is important to further strive to understand the different sources of
uncertainty variation.
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