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1. Introduction

The applications of potential theory in solid mechanics often rely on
the concept of nuclei of strain. This term was introduced by Mindlin [1]
to denote fundamental singular solutions of the Lamé equations, such
as those for a concentrated force or couple, a dislocation or a dislo-
cation loop (dipole). Within the framework of elasticity these entities
play a rôle similar to that of point charges, dipoles and multipoles
in electrostatics. The corresponding elastic fields then represent sin-
gle layer potentials, double layer potentials, etc., and the stresses and
displacements resulting from a continuous distribution of strain nuclei
are given by an integral expression. If the problem is reversed and the
strain nuclei distribution is regarded as an unknown, but the stresses are
given, an integral equation formulation of elastic problems is obtained.

Distributions of certain types of strain nuclei, in particular, dislo-
cations in plane problems, have found wide application in elastic and
plastic analysis. In fracture mechanics, for example, dislocation distri-
butions have been used with great success to model cracks (e.g.[2]).
Also, in modelling inclusions and inhomogeneities [3], the jump in
plastic distortion (which is related to eigenstrain) across the boundary
of the domain may be expressed in terms of the surface dislocation
density [4], enabling the stress state in the matrix to be computed.

The technique has been extended to include some geometries other
than plane. Problems possessing axial symmetry are an obvious next
choice, since they are essentially two dimensional. Examples include
that of an annular crack [5], a cylindrical crack [6], and general axisym-
metric crack problems [7]. In all cases the most important requirement
is that the fundamental solution for the corresponding strain nucleus
must be found in a concise and tractable form.

The solution to the problem of circular prismatic Volterra dislocation
loop was given by Kroupa [8]. Salamon [9, 10, 11] considered the cases
of shear and prismatic loops in a two-phase material. The problem of
the circular Somigliana dislocation has been addressed in great detail in
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an excellent paper by Demir et al [12]. The solutions were sought in the
form of the (biharmonic) Love stress function, and the Fourier trans-
form with respect to the axial coordinate was employed. The resulting
stress fields were expressed in terms of complete elliptic integrals of the
first, second and third kind. The final solution was obtained using a
superposition of an ‘innhomogeneous’ field (i.e. one containing a jump
in the radial or axial component of displacement) over a ‘homogeneous’
Lamé solution, corresponding to radial compression/tension of an infi-
nite cylinder and an infinite elastic body containing a cylindrical hole.
In this paper the following developments of the solution are sought:

− The boundary conditions are imposed in terms of the displacement
discontinuities, in accordance with the definition of the Somigliana
dislocation [2].

− It is desirable to obtain concise and explicit expressions for the
unknown potential functions before proceeding to determine the
stress and displacement fields. This requirement is important; oth-
erwise the final form of the solution precludes further modifica-
tions.

− It is desirable to extend the result to include Somigliana ring dis-
locations in an elastic half space or bonded dissimilar half spaces.
This task may only be accomplished provided a suitable form of the
displacement functions is found. This result would widely increase
possible applications of the solution in hand.

In this paper it is shown that the solutions may be found in terms of
a single harmonic function, related to the Papkovich-Neuber potentials.
In each case this function is given by a Lipschitz-Hankel type integral
potential. These potentials are, of course, expressible in terms of the
complete elliptic integrals of the first, second and third type, and thus
the original solution of Demir et al[12] may be recovered. However,
an important improvement may be seen in the fact that the asymp-
totic behaviour of these potentials has been analysed in much detail
[7, 13, 14, 15], which facilitates accurate analysis of the corresponding
elastic fields. Moreover, it is shown how the resulting solution may be
readily generalised to include the case of an elastic half space or two
perfectly bonded dissimilar half spaces, with the interface parallel to
the plane of the dislocation. These results open the way for analysing
the interaction between a Somigliana ring dislocation and a free surface
or an interface with a different material, and also provide the kernels
for integral equation formulations of axisymmetric crack problems.
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2. Potential functions

Papkovich [16] introduced a complete, general solution to the equations
of the theory of elasticity in terms of four harmonic potential func-
tions: the scalar potential ψ and a vector potential φ = (φ1, φ2, φ3).
Displacements and stresses due to these potentials are given by

2µui = (κ+ 1)φi − (xjφj + ψ),i (1)

σij =
1
2
(κ− 1)(φj,i + φi,j) +

1
2
(3− κ)φk,kδij − xkφk,ij − ψ,ij , (2)

where a comma preceding an index denotes differentiation with respect
to the relevant coordinate, κ = 3 − 4ν, ν is the Poisson’s ratio, and µ
is the shear modulus.

The four functions ψ and φj are not defined uniquely. Sternberg [17]
has shown that for an arbitrary three dimensional convex domain it is
possible to reduce the number of unknown functions to three.

In problems possessing torsionless axial symmetry a further reduc-
tion is possible. Consider a cylindrical system of coordinates r, z (Fig.1).
In searching for a solution it suffices to allow only the scalar poten-
tial ψ(r, z) and the axial component of the vector potential φ(r, z) =
φ(r, z) ez to be non-zero (where ez is the unit vector in the axial di-
rection, and the scalar function φ has now been relieved of all indices
to simplify notation). The resulting expressions for displacements and
stresses are [18]

2µur = −zφ,r − ψ,r, (3)
2µuz = κφ− zφ,z − ψ,z, (4)
2µuθ = 0.

σrr =
1
2
(3− κ)φ,z − zφ,rr − ψ,rr (5)

=
1
2
(3− κ)φ,z + zφ,zz +

z

r
φ,r + ψ,zz +

1
r
ψ,r, (6)

σzz =
1
2
(κ+ 1)φ,z − zφ,zz − ψ,zz, (7)

σrz =
1
2
(κ− 1)φ,r − zφ,rz − ψ,rz, (8)

σθθ =
1
2
(3− κ)φ,z. (9)

Here both the scalar functions are harmonic, i.e. satisfy

∇2ψ = 0, ∇2φ = 0. (10)
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3. The Fourier transform and associated functions

It is our intention now to seek potential functions for the two types
of dislocation, the edge (radial Burgers’ vector br) and the glide (axial
Burgers’ vector bz), in the form of Fourier transforms of unknown ‘ker-
nel’ functions, to be determined in the course of solution. This approach
is similar to that of Demir et al [12].

Let each of the Papkovich-Neuber potentials be sought in the form
of a Fourier transform

ψ(r, z) =
1
2π

∫ ∞

−∞
ψ̂(r, ξ) exp(−iξz)dξ, (11)

φ(r, z) =
1
2π

∫ ∞

−∞
φ̂(r, ξ) exp(−iξz)dξ. (12)

Since these potential functions are harmonic,

φ,zz +
1
r
φ,r + φ,rr = 0, (13)

and the same equation holds for ψ. Their dependence on the radial
coordinate r may now be determined from the modified Bessel equation
of zero order (see e.g. [19])

φ̂,rr +
1
r
φ̂,r − ξ2φ̂ = 0 (14)

which has solutions F (ξ)Io(ξr) and F (ξ)Ko(ξr), bounded at the origin
and infinity respectively.

Consider a dislocation line which is a circle of radius a in the plane
z = 0, depicted in Fig.1. Let the inside of the right circular cylinder, r <
a, be called domain 1, and the outside, r > a, be called domain 2. We
may now record the unknown potentials ψ1,2(r, z) and φ1,2(r, z), where
the superscript denotes the corresponding domain, in the following form

φ1(r, z) =
1
2π

∫ ∞

−∞
F1(ξ)Io(ξr) exp(−iξz)dξ, (15)

ψ1(r, z) =
1
2π

∫ ∞

−∞
G1(ξ)Io(ξr) exp(−iξz)dξ, (16)

φ2(r, z) =
1
2π

∫ ∞

−∞
F2(ξ)Ko(ξr) exp(−iξz)dξ, (17)

ψ2(r, z) =
1
2π

∫ ∞

−∞
G2(ξ)Ko(ξr) exp(−iξz)dξ, (18)

thereby reducing our task to that of determining four ‘kernel’ functions
of the transform variable ξ.
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Note the following important properties of the modified Bessel func-
tions

d

da
Io(ξa) = ξI1(ξa),

d

da
Ko(ξa) = −ξK1(ξa), (19)

and

Io(ξa)K1(ξa) + I1(ξa)Ko(ξa) =
1
ξa

(20)

Integrals containing pairs of Bessel functions, exponentials (or trigono-
metric functions) and powers, which are known as the Lipschitz-Hankel
potentials, have been considered in great detail [7, 10, 13] due to their
frequent occurrence in continuum mechanics problems, those with axial
symmetry in particular. We will be concerned with their asymptotic
properties in later sections dedicated to the analysis of the stress and
displacement fields. Here we note some of their properties relevant
to the derivation of the fundamental solutions. Eason et al [13] have
established the following identities

J(µ, ν;λ) =

∫ ∞

0
Jµ(ξ)Jν(ρξ)e−ζξξλdξ =

2
π

∫ ∞

0
Kµ(η)Iν(ρη) cos{ζη +

1
2
(µ− ν + λ)π}ηλdη(21)∫ ∞

0
Jµ(at)Jν(bt)e−cttλdt =

2
π

∫ ∞

0
Kµ(as)Iν(bs) cos{cs+

1
2
(µ− ν + λ)π}sλds(22)

Here J(µ, ν;λ) denotes the canonical form of the Lipschitz-Hankel in-
tegral; it may be obtained from the second equation, which is a more
general expression, by introducing the normalisation

η = as, ξ = at, ρ =
b

a
, ζ =

c

a
.

These results will be useful in further analysis. The integrals Jµνλ may
be evaluated in terms of the complete elliptic integrals of the first, sec-
ond and third kinds. The expression for the Lipschitz-Hankel integrals
needed in this paper are given in the Appendix.

We now return to the problem of determining the unknown ‘kernel’
functions F1(ξ), G1(ξ), F2(ξ), G2(ξ). These will be found using the
problem’s boundary conditions, which are prescribed over the cylin-
drical surface r = a and consist of two parts. The stress continuity
conditions

σ2
rz − σ1

rz = 0, −∞ < z <∞ (23)
σ2

rr − σ1
rr = 0, |z| > 0. (24)
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are common for both dislocation types (edge and glide). The nature of
the displacement discontinuity conditions depends on the nature of the
dislocation. These will be treated separately in the following sections.

4. Axial glide Somigliana ring dislocation

In this case the displacement boundary conditions require

2µ(u2
z − u1

z) = 2µH(z), −∞ < z <∞ (25)
2µ(u2

r − u1
r) = 0, −∞ < z <∞ (26)

where H(z) is the Heaviside step function. Equation (26) leads to∫ ∞

−∞
exp(−iξz) {[ξG2(ξ) + zξF2(ξ)]K1(ξa) + [ξG1(ξ) + zξF1(ξ)] I1(ξa)} dξ = 0,

which may only be satisfied provided

F1(ξ) = −f(ξ)K1(ξa), F2(ξ) = f(ξ)I1(ξa),
G1(ξ) = −g(ξ)K1(ξa), G2(ξ) = g(ξ)I1(ξa).

(27)

The boundary condition (25) for the displacement component uz yields

1
2π

∫ ∞

−∞
exp(−iξz) ×

{(iξg(ξ) + z iξf(ξ) + kf(ξ) )[Io(ξa)K1(ξa) + I1(ξa)Ko(ξa)]} dξ = 2µH(z).

Making use of the relationship (20) we obtain

1
2π

∫ ∞

−∞

{
ig(ξ) + izf(ξ) + kξ−1f(ξ)

}
exp(−iξz)dξ = 2µaH(z). (28)

The following results (see e.g. [20]) concerning Fourier transforms of
generalised functions will be needed:

1
2π

∫ ∞

−∞
exp(−iξz)dξ = δ(z), (29)

1
2π

∫ ∞

−∞
ξ−1 exp(−iξz)dξ = −iH(z). (30)

Also note that (e.g. [21])

zδ(z) = 0, (31)
zδ′(z) = −δ(z). (32)
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In order to satisfy equation (28) we set g(ξ) = g∗ ξ−1, f(ξ) = if∗, where
g∗ and f∗ are constants. Then

(g∗ + kf∗)δ(z)− f∗zδ(z) = 2µaδ(z),

so that with (31)
g∗ + kf∗ = 2µa. (33)

Boundary condition (24) for the stress component σrr becomes

1
2π

∫ ∞

−∞
exp(−iξz)

{
−g∗ − z iξf∗ +

(3− κ)
2

f∗
}
dξ = 0,

and leads to the result

−g∗δ(z) + f∗zδ′(z) +
(3− κ)

2
f∗δ(z) = 0,

so that using (32)

g∗ = −(κ− 1)
2

f∗. (34)

Together with the equation (33) this leads to

f∗ =
4µa

(κ+ 1)
, (35)

g∗ = −2µa(κ− 1)
(κ+ 1)

. (36)

Thus the unknown Papkovich potentials φ and ψ are found in the form

φ1(r, z) = − 4µa
2π(κ+ 1)

∫ ∞

−∞
iK1(ξa)Io(ξr) exp(−iξz)dξ, (37)

ψ1(r, z) =
2µa(κ− 1)
2π(κ+ 1)

∫ ∞

−∞
ξ−1K1(ξa)Io(ξr) exp(−iξz)dξ, (38)

φ2(r, z) =
4µa

2π(κ+ 1)

∫ ∞

−∞
iI1(ξa)Ko(ξr) exp(−iξz)dξ, (39)

ψ2(r, z) = −2µa(κ− 1)
2π(κ+ 1)

∫ ∞

−∞
ξ−1Io(ξa)Ko(ξr) exp(−iξz)dξ. (40)

The remaining boundary condition (23) for the stress component σrz

is also enforced, as may be verified by considering the Fourier integral
expressions for σ2

rz − σ1
rz. All terms contain the factor

[I1(ξr)K1(ξa)− I1(ξa)K1(ξr)]

which vanishes at r = a, as required.
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With the use of equation (21) the Papkovich potentials may be
rewritten in the form (for z ≥ 0)

ψ =
(κ− 1)

2
2µ

(κ+ 1)
J(1, 0;−1) (41)

φ = − 2µa
(κ+ 1)

J(1, 0; 0) (42)

Here the parameters appearing in the definition of the Lipschitz-Hankel
integral (21) assume the values

ρ =
r

a
ζ =

z

a

and represent the radial and axial coordinates of the observation point
normalised with respect to the radius of the dislocation ring.

Note that these expressions are valid both in domain 1 and domain
2 (this follows from the analysis involving the transformation ρ →
1/ρ; ζ → ζ/ρ, [7]).

One final observation should be made here. Strictly speaking, in
order for the integral expression in the definition of J(µ, ν;λ) to con-
verge, ζ must be non-negative. As in practice both positive and negative
values of z (and therefore ζ) are required, and the resulting functions
must display certain odd/even properties in z, the following notation
has been introduced [7]:

Jµνλ = [sign(ζ)](µ+ν+λ)
∫ ∞

0
Jµ(ξρ)Jν(ξ)e−ξ|ζ| ξλdξ, (43)

which leads to the necessary behaviour.
Note that the found Papkovich-Neuber potentials may be expressed

in terms of a single harmonic function,

ψ(r, z) =
(κ− 1)

2
Ω, (44)

φ(r, z) = Ω,z, (45)

where
Ω(r, z) =

2µa
(κ+ 1)

J10;−1 (46)
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5. Radial edge Somigliana ring dislocation

In this case the displacement boundary conditions require

2µ(u2
z − u1

z) = 0, −∞ < z <∞ (47)
2µ(u2

r − u1
r) = 2µH(z), −∞ < z <∞ (48)

Equation (47) leads to∫ ∞

−∞
exp(−iξz) × {[−iξG2(ξ)− ziξF2(ξ) + κF2(ξ)]Ko(ξa)

− [−iξG1(ξ)− ziξF1(ξ) + κF1(ξ)] Io(ξa)} dξ = 0,

which may only be satisfied provided

F1(ξ) = f(ξ)Ko(ξa), F2(ξ) = f(ξ)Io(ξa),
G1(ξ) = g(ξ)Ko(ξa), G2(ξ) = g(ξ)Io(ξa).

(49)

The boundary condition (48) for the displacement component ur yields

1
2π

∫ ∞

−∞
exp(−iξz) × {ξg(ξ)[Io(ξa)K1(ξa) + I1(ξa)Ko(ξa)]

+zξf(ξ)[Io(ξa)K1(ξa) + I1(ξa)Ko(ξa)]} dξ = 2µH(z).

Again using the relationship (20) we obtain

1
2π

∫ ∞

−∞
{g(ξ) + zf(ξ)} exp(−iξz)dξ = 2µaH(z) (50)

In order to satisfy equation (50) we set g(ξ) = ig∗ ξ−1, f(ξ) = f∗, where
g∗ and f∗ are constants. Once againg using (31) we obtain

g∗ = 2µa. (51)

Boundary condition (23) for the stress component σrz yields, with the
use of (32)

g∗ = −(κ+ 1)
2

f∗. (52)

Together with the equation (51) this leads to

f∗ =
4µa

(κ+ 1)
, (53)

g∗ = 2µa. (54)

Substituting these values into the final boundary condition (24) gives
an identity.
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Using a procedure entirely similar to that presented in the previous
section, the final form of the Papkovich potentials follows

ψ(r, z) =
(κ+ 1)

2
Ω, (55)

φ(r, z) = Ω,z, (56)

where now
Ω(r, z) =

2µa
(κ+ 1)

J00;−1 (57)

6. Analysis of the elastic fields

In this section an analysis of the components of stress and displacement
in the vicinity of axial glide and radial edge Somigliana ring dislocations
is given. Formulae for the displacements and stresses in terms of the
Lipschitz-Hankel potentials are first derived using equations (3)-(9).
The following basic differentiation formulae are used [14]

∂

∂z
Jµνλ = −a−1 Jµ ν;(λ+1) (58)

∂

∂r
Jµνλ = −a−1 Jµ (ν+1);(λ+1) (59)

The resulting stress expressions are then expanded in series in powers
of δ, where δ2 = ζ2 + (ρ − 1)2, ρ = r/a, ζ = z/a, and β denotes the
angle between the line connecting the source point and the observation
point, and plane of the ring dislocation (Fig.2). The expansions are
based on the asymptotic properties of the Lipschitz-Hankel potentials,
[13, 7, 14, 15]. Ellipsis in the formulae denotes the terms which are
regular or may contain singularities not stronger than logarithmic in δ.
Note that no singularity is present in the displacement terms.

The magnitude of the Burgers vector (bz for the axial case and br
for the radial case) is assumed unity.

Axial glide dislocation

uz = − 1
(κ+ 1)

[
(κ+ 1)

2
J100 + ζJ101

]
(60)

ur =
1

(κ+ 1)

[
(κ− 1)

2
J110 − ζJ111

]
(61)

σzz =
2µ

(κ+ 1)a
[J101 + ζJ102] (62)
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' − 2µ
(κ+ 1)πa

cosβ(1 + 2 sin2 β)
δ

+ . . . (63)

σrr =
2µ

(κ+ 1)a

[
J101 − ζJ102 +

ζ

ρ
J111 −

(κ− 1)
2ρ

J110

]
(64)

' 2µ
(κ+ 1)πa

cosβ cos 2β
δ

+ . . . (65)

σrz =
2µ

(κ+ 1)a
[ζJ112] (66)

' − 2µ
(κ+ 1)πa

sinβ cos 2β
δ

+ . . . (67)

Radial edge dislocation

uz = − 1
(κ+ 1)

[
(κ− 1)

2
J000 + ζJ001

]
(68)

ur =
1

(κ+ 1)

[
(κ+ 1)

2
J010 − ζJ011

]
(69)

σzz =
2µ

(κ+ 1)a
[ζJ002] (70)

' − 2µ
(κ+ 1)πa

sinβ cos 2β
δ

+ . . . (71)

σrr =
2µ

(κ+ 1)a

[
2J001 − ζJ002 +

ζ

ρ
J011 −

(κ+ 1)
2ρ

J010

]
(72)

' 2µ
(κ+ 1)πa

sinβ(1 + 2 cos2 β)
δ

+ . . . (73)

σrz =
2µ

(κ+ 1)a
[−J011 + ζJ012] (74)

' 2µ
(κ+ 1)πa

cosβ cos 2β
δ

+ . . . (75)

A number of useful observations can be made with the use of these
formulae. For example, it is immediately apparent that as the radius
of the ring dislocation tends to infinity, the corresponding stress fields
approach those of a glide or edge dislocation (depending on the ori-
entation) in the plane problem. This observation may be interpreted
in a different manner: as the distance between the source and obser-
vation points becomes very small (δ → 0), i.e. the radius of the ring
becomes very large, the above expressions provide the leading terms
in the expansion of stresses both in plane and axisymmetric problems.
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The difference between the two cases becomes apparent only from the
subsequent, less singular terms.

7. Discussion

In this paper concise and effective solutions for glide and edge Somigliana
ring dislocations were derived. It is believed that both the method of
derivation and the form of the final results lead to remarkable eluci-
dation of the solution, making it easier to follow, verify and use in
application to the analysis of axisymmetric problems in elasticity.

The asymptotic behaviour of the stresses in the vicinity of the dis-
location ring was analysed and presented in a simple form. This al-
lows effective comparison to be made with the limiting case of plane
geometry, which is approached as the ring radius becomes large.

An interesting observation could be made here. The value of strain
nuclei solutions in elasticity problems generally lies in the fact that they
provide a basis for generating controlled states of stress/strain, which
could be used satisfy the required conditions over part of the boundary
(e.g. crack surface in fracture problems). However, in various problems
there may also exist additional boundaries, where ‘homogeneous’ con-
ditions must be maintained (e.g. stress-free surfaces or regions). The
corresponding strain nuclei would be required to possess the property
that they do not disturb this ‘homogeneity’ over the remainder of the
boundary. In the specific case of ring dislocations in an infinite elastic
space, considered here, there are no free surfaces present. However, in
many elasticity problems it is usual to impose the requirement that
stresses vanish (sometimes according to a certain law) at infinity. It is
interesting to analyse our solutions in this respect.

As an example, choose the radial edge dislocation. It is fairly obvious
that stresses vanish with increasing radial distance r from the axis as
it becomes much greater than the ring radius a, ρ� 1. However, since
in generating the edge dislocation a cut has been introduced over the
cylindrical surface r = a from the point z = 0 to infinity, one might
expect to find a radial stress σrr persisting to infinitely large values of
ζ.

Consider a point on ρ = 1 and, letting ζ � 1, and determine the
radial component of stress

σrr =
2µ

(κ+ 1)a

[
2J001 − ζJ002 + ζJ011 −

(κ+ 1)
2

J010

]
(76)

Note that the result would also give a good estimate of the same stress
on the axis, since stress variation is slow far away from the source, i.e.
the ring dislocation itself.
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In order to evaluate the above expression for large ζ and ρ = 1 the
values of the J−integrals (and therefore the complete elliptic integrals)
must be found for small values of the elliptic parameter k ' 2/|ζ| � 1.
For such k it holds that

K(k) ' π

2

{
1 +

1
ζ2

+
9

4ζ4
+ . . .

}
, (77)

E(k) ' π

2

{
1− 1

ζ2
− 3

4ζ4
+ . . .

}
(78)

When these values of the elliptic integrals are substituted into the
expressions for Jµνλ, it is found that each of the individual J−terms
in the above expression for the radial stress component vanishes with
ζ → +∞ at least as fast as 1/ζ2. Similar condition for ζ → +∞ may
be verified for the remaining stress components σzz, σrz, and σθθ.

If, however, the limit ζ → −∞ is considered, stresses persist to
infinitely large values of ζ (z).

This result is different from that given in [12], where radial stress
at r = a for values of z → +∞ is reported to approach the value of
4µ/(κ+ 1)a (equation (20) in [12], magnitude of the Burgers vector b1
is assumed unity), and zero stresses for z → −∞. This difference with
the present results may be explained as follows.

In section 3 of their paper, Demir et al [12] introduce the Somigliana
ring dislocation by a ‘cut and paste’ exercise, whereby the two faces of a
certain surface S (which is given by r = a, z > 0 in the present problem)
are displaced by a given amount (the Burgers vector br) relative to each
other. If needed, additional material may then be introduced into the
resulting slit, and the whole assembly be pasted together again. Let us
call the state of stress arising due to this procedure Solution 1.

Now consider an alternative procedure, whereby another surface,
S′ : r = a, z < 0, is chosen, a cut is introduced and the amount
of material equal to the Burgers vector br, is removed, and the faces
are again glued together. Let us call the corresponding state of stress
Solution 2.

Note that the Burgers vectors are equal in both cases, as may be
verified by appying the definition, i.e. considering closed paths linked
with the ring of dislocation. However, the stresses are not equal in the
two problems, as Lamé problem ‘homogeneous’ stress terms can be seen
to give the difference between the two stress states considered. Note
that in [12] boundary conditions for the displacements on the surface
of the right circular cylinder r = a are given in terms of the derivatives
of displacement jumps (equations (10) in section 3.1). These in fact
give rise to a whole family of solutions corresponding to a multitude of
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boundary conditions given by

2µ(u2
r − u1

r) = H(z) + C, (79)

where the choice of an arbitrary constant C does not affect the value of
the Burgers vector. In fact, it is fairly obvious that it is the parameter
C controls the strength of the ‘homogeneous’ Lamé term. It also seems
most natural to choose the ‘fundamental’ solution so that C = 0, as in
the present formulation). Then, if needed, the entire family of solutions
may be obtained by adding Lamé terms of intensity determined by C.

Depending on the nature of the problem where the fundamental
solutions for ring dislocations are intended to be used, the appropriate
member of the above family must be chosen. For example, if the prob-
lem of a finite cylindrical crack in an infinite elastic space is considered,
any solution will do, since the crack closure condition will ensure that
net dislocations (and hence resultant stresses at infinity) are zero. If a
cylindrical crack in an elastic half space z > z0 is considered [22], it is
necessary to choose the solution where stresses vanish for z → +∞.

In summary, the approach presented in this paper provides further
insight and clarification of the Somigliana ring dislocation solutions. It
also opens the way for the development of the solutions for an elastic
half space and for bonded dissimilar elastic half spaces, which are given
in the companion paper [22].
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Appendix

A. Expressions for Jµνλ in terms of elliptic functions

In the formulae below

Jµνλ = {sign(ζ)}(µ+ν+λ
∫ ∞

0
Jµ(t)Jν(tρ)e−|ζ|ttλdt

The complete elliptic integrals

E =
∫ π/2

0
(1− k2 sin2 φ)1/2dφ
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K =
∫ π/2

0

dφ

(1− k2 sin2 φ)1/2

Π =
∫ π/2

0

dφ

(1− h sin2 φ)(1− k2 sin2 φ)1/2

where the elliptic parameters

k2 =
4ρ

(1 + ρ)2 + ξ2
; h =

4ρ
(1 + ρ)2

; k′2 = 1− k2.

J000 =
k

πρ1/2
K (80)

J001 =
k3ζ

4πρ3/2k′2
E (81)

J002 =
k5

16πρ5/2k′2
{[2(1 + k′2)ζ2

k′2
− 4ρ
k2

]E− ζ2K} (82)

J01;−1 =


2

πkρ1/2 E−
(1−ρ2)k

2πρ3/2 K + k2ζ3

4πρ2
1−ρ
1+ρΠ, ρ < 1;

2
πkE−

ζ
2ρ ; ρ = 1,

2
πkρ1/2 E−

(1−ρ2)k

2πρ3/2 K− k2ζ3

4πρ2
1−ρ
1+ρΠ− ζ

ρ , ρ > 1.

(83)

J010 =


−kζρ1/2

2π K− k2ζ2

4π
1−ρ
1+ρΠ, ρ < 1;

− kζ
2πK + 1

2ρ; ρ = 1,
−kζρ1/2

2π K + k2ζ2

4π
1−ρ
1+ρΠ + ρ, ρ > 1.

(84)

J011 =
k3(ρ2 − 1− ζ2)

8πk′2ρ5/2
E +

k

2πρ3/2
K (85)

J012 =
k3ζ

8πk′2ρ5/2

{[
k4[ρ4 − (1 + ζ2)2]

4ρ2k′2
+ 3

]
E +

k2(1 + ζ2 − ρ2)
4ρ

K

}
(86)

J10;−1 =


2ρ1/2

πk E + (1−ρ2)k

2πρ1/2 K + k2ζ3

4πρ
1−ρ
1+ρΠ− ζ, ρ < 1;

2
πkE−

ζ
2 ; ρ = 1,

2ρ1/2

πk E + (1−ρ2)k

2πρ
1
2

K− k2ζ3

4πρ
1−ρ
1+ρΠ, ρ > 1.

(87)

J100 =


− kζ

2πρ1/2 K− k2ζ2

4πρ
1−ρ
1+ρΠ + 1, ρ < 1;

− kζ
2πK + 1

2 ; ρ = 1,
− kζ

2πρ1/2 K + k2ζ2

4πρ
1−ρ
1+ρΠ, ρ > 1.

(88)
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J101 =
k3(1− ρ2 − ζ2)

8πk′2ρ3/2
E +

k

2πρ1/2
K (89)

J102 =
k3ζ

8πk′2ρ3/2

{[
k4[1− (ρ2 + ζ2)2]

4ρ2k′2
+ 3

]
E +

k2(ρ2 + ζ2 − 1)
4ρ

K

}
(90)

J11;−1 =


ζ

πkρ1/2 E−
kζ(1+ρ2+ζ2/2)

2πρ3/2 K + k2ζ2(1−ρ)2

8πρ2 Π + ρ
2 , ρ < 1;

ζ
πkE−

kζ
2π (2 + ζ2

2 )K + 1
2 ; ρ = 1,

ζ
πkρ1/2 E−

kζ(1+ρ2+ζ2/2)

2πρ3/2 K− k2ζ2(1−ρ)2

8πρ2 Π + ρ
2 , ρ > 1.

(91)

J110 =
2

πkρ1/2

(
2− k2

2
K−E

)
(92)

J111 =
kζ

2πρ3/2

(
2− k2

2k′2
E−K

)
(93)

J112 =
k

2πρ3/2

{
k2

4ρk′2

[
k4ζ2

k′2
− 1− ρ2

]
E +

[
1− k2ζ2(2− k2)

8ρk′2

]
K

}
(94)
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