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1. Introduction

The problem of the circular prismatic Volterra dislocation loop was
first solved by Kroupa [1]. Solutions for the circular Somigliana radial
edge dislocation and the circular Volterra glide dislocation were given
by Demir et al. [2] in terms of the Love stress function.

In the companion paper [3] the solutions for circular dislocations
were derived anew in terms of the Papkovich potential functions and
the Lipschitz-Hankel integral potentials [4]. This approach (see also
[5]) leads to a concise formulation of the solution, which is amenable to
further treatment and modifications. In particular, in this paper it will
be shown how some results concerning the Somigliana ring dislocations
embedded in an elastic half space or in one of two perfectly bonded
dissimilar half spaces may be obtained.

The derivation relies on some properties of the Papkovich potentials
of various eigenstrains in an infinite elastic space and in bonded dis-
similar half-spaces. These properties were expressed by Aderogba [6] in
the form of a general theorem relating the full space and the half space
solutions.

In this paper, some specific consequences of Aderogba’s theorem re-
quired in the present analysis are first obtained, together with a simple
transformation rule for the Papkovich potentials under translation of
the coordinate frame. These results are then applied to the Papkovich
potential solutions for circular Somigliana dislocations [3]. The result-
ing elastic fields are analysed with respect to their asymtotic behaviour
at large distances from the dislocation and at large dislocation radii,
and energies of circular dislocations embedded in an elastic half space
are found.

2. Dislocation solutions in the infinite space

Expressed concisely, the results of [3] are as follows:
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The Papkovich-Neuber potential solutions for the Somigliana ring
dislocations lying on the plane z = 0 are given by the two harmonic
functions: the scalar potential ψ and the axial component of the vec-
tor potential φ. These two functions are related to a single harmonic
potential, given by a Lipschitz-Hankel integral, in the following way

ψ(r, z) =
2µa

(κ+ 1)
η Jn0;−1(r/a, z/a), (1)

φ(r, z) =
2µa

(κ+ 1)
∂

∂z
Jn0;−1(r/a, z/a), (2)

where

for the axial glide dislocation n = 1, η = (κ− 1)/2, and

for the radial edge dislocation n = 0, η = (κ+ 1)/2.
In the above expressions µ is the shear modulus, and κ = 3 − 4ν,

where ν is the Poisson’s ratio; a denotes the ring radius.

3. Preliminaries

In order for the full space solutions given in the previous section to be
generalised to the case of dislocations in elastic half spaces, two results
concerning the transformation rules for the Papkovich potentials must
be available.

3.1. Translation of the coordinate system

The transformation rule for the Papkovich potentials under translation
of the coordinate system is given by the following Lemma.

Let the state of stress in an isotropic homogeneous infinite elastic
solid be characterized by the Papkovich potentials φo

i and ψo defined
with respect to a Cartesian coordinate system (y1, y2, y3). Then with
respect to another system of coordinates (x1, x2, x3) given by

y1 = x1 − x′1,
y2 = x2 − x′2, (3)
y3 = x3 − x′3,

the Papkovich potentials have the form

φ1(x1, x2, x3) = φo
1(x1 − x′1, x2 − x′2, x3 − x′3),

φ2(x1, x2, x3) = φo
2(x1 − x′1, x2 − x′2, x3 − x′3), (4)

φ3(x1, x2, x3) = φo
3(x1 − x′1, x2 − x′2, x3 − x′3),

ψ(x1, x2, x3) = ψo(x1 − x′1, x2 − x′2, x3 − x′3)− x′i φo
i (x1 − x′1, x2 − x′2, x3 − x′3).
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This lemma is verified by the substitution of both sides of equations
(4) into equations for the displacements in terms of the Papkovich
potentials ([3], equation (1)).

Applying the Lemma, the Somigliana ring dislocation solutions for
a ring lying on the plane z = z′ are found from the results of [3]:

ψ(r, z) =
2µa

(κ+ 1)

[
η Jn0;−1(ρ, ζ − ζ ′) + ζ ′ Jn00(ρ, ζ − ζ ′)

]
, (5)

φ(r, z) = − 2µ
(κ+ 1)

Jn00(ρ, ζ − ζ ′), (6)

where the notation has been introduced ρ = r/a, ζ = z/a, ζ ′ = z′/a.

3.2. Dissimilar elastic half spaces

The second result required concerns the transformation rule for the
Papkovich-Neuber potentials when a half space of the original mate-
rial is replaced with elastically dissimilar medium. A general theorem
concerning this operation was given by Aderogba [6].

The following notation is used. In the coordinate system (x1, x2, x3),
the nucleus of strain is assumed to lie within the half space x3 > 0. The
cylindrical coordinates (r, z, θ) are introduced so that r = (x2

1 +x2
2)

1/2,
z = x3, x1 = r cos θ, x2 = r sin θ. A ‘reflected’ coordinate system will be
used as well, where the axial coordinate is y such that y = −z = −x3.

The Dundurs parameters α and β are conventionally used to describe
materials mismatch. They are

α =
µ2(κ1 + 1)− µ1(κ2 + 1)
µ2(κ1 + 1) + µ1(κ2 + 1)

(7)

β =
µ2(κ1 − 1)− µ1(κ2 − 1)
µ2(κ1 + 1) + µ1(κ2 + 1)

(8)

(9)

Certain combinations of material elastic constants appear in the for-
mulation of Aderogba’s theorem. Some of them may be related to the
Dundurs parameters. In particular, we will need the following

Γ =
µ2

µ1
, (10)

A =
(Γ− 1)

(Γκ1 + 1)
=
α− β
1 + β

, (11)

B =
(Γκ1 − κ2)
(Γ + κ2)

=
α+ β

1− β
. (12)
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Here we specialise Aderogba’s theorem to the particular case when
only two of the Papkovich-Neuber potential functions, ψ and φ = φ3

are non-zero [7]. The following corollary ensues:
Let a subregion of an isotropic homogeneous infinite elastic solid be

subjected to any admissible loading condition characterized by axisymmetric
Papkovich potentials ψo and φo (i.e. such that φo

1 = φo
2 = 0, φo = φo

3),
where all the singularities of these functions lie in the half space x3 > 0.
Let an elastically dissimilar material be introduced into the half space
z = x3(= −y) < 0 so that the perfect bond continuity conditions are
satisfied at the interface. Then the new displacements and stresses are
generated by the following potentials:

For material 1:

ψ(1) = ψo(r, z)−Aκ1ψ
o(r,−z)− (Aκ2

1 −B)
2

∫
φo(r,−z)dz

φ(1) = φo(r, z)−Aκ1φ
o(r,−z)− 2A

∂

∂z
ψo(r,−z) (13)

and for material 2:

ψ(2) = (A+ 1)ψo(r,−y)− (Aκ2
1 −B)
2

Γ
∫
φo(r,−y)dy

φ(2) = −(B + 1)φo(r,−y) (14)

Now consider a particular case when material 2 is void, µ2 = ν2 = 0.
Then the bimaterial constants assume the values Γ = 0, A = B = −1,
and one further result is obtained:

In the conditions of Corollary 1, let material 2 be void, µ2 = 0, κ2 =
3. Then the new displacements and stresses in the elastic half space
filled with material 1 are generated by the following potentials:

ψ(1) = ψo(r, z) + κ1ψ
o(r,−z) +

(κ2
1 − 1)
2

∫
φo(r,−z)dz

φ(1) = φo(r, z) + κ1φ
o(r,−z) + 2

∂

∂z
ψo(r,−z) (15)

4. Dislocation solutions for half spaces

In order to specialise these result further to the problems considered in
this paper, let the Papkovich potentials for a given strain nucleus in an
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infinite elastic half space be related to a single function Ω(ρ, ζ) so that

ψo(ρ, ζ) = ηΩ− ζ ′Ω,ζ , (16)
φo(ρ, ζ) = Ω,ζ , (17)

Here we use the coordinates normalised with respect to the dislocation
ring radius a: ρ = r/a, ζ = z/a, and ζ ′ = z′/a, where z′ is the axial
coordinate of the plane of the dislocation. A comma in the subscript
denotes differentiation, Ω,ζ = ∂Ω/∂ζ. From equations (1-2) and (5-6),
the infinite space dislocation solutions are obtained when the function
Ω(ρ, ζ) is given by a multiple of the modified Lipschitz-Hankel integral
[3, 7]

Ω(ρ, ζ) =
2µa

(κ+ 1)
Jn0;−1(ρ, ζ − ζ ′). (18)

Let us introduce an ‘image’ function

Ω̄(ρ, ζ) = Ω(ρ,−ζ), (19)

where the overbar denotes the substitution of −ζ instead of ζ in the
function argument.

From the properties of the modified Lipschitz-Hankel potentials ([3],
equation (43)) it follows that

Ω̄(ρ, ζ) =
2µa

(κ+ 1)
J̄n0;−1 = (−1)(n+1) 2µa

(κ+ 1)
Jn0;−1(ρ, ζ + ζ ′), (20)

As a consequence of this convention the following relationship holds

(Ω,ζ) = −Ω̄,ζ . (21)

Using the notation introduced, the solution for the elastic fields of
a circular dislocation embedded in one of two bonded half spaces may
be recorded, so that in material 1:

ψ(1) = ηΩ− ζ ′Ω,ζ +
Aκ1(κ1 − 2η)−B

2
Ω̄−Aκ1ζ

′Ω̄,ζ , (22)

φ(1) = Ω,ζ +A(κ1 − 2η)Ω̄,ζ − 2Aζ ′Ω̄,ζζ , (23)

and in material 2:

ψ(2) = (A+ 1)(ηΩ + ζ ′Ω,ζ) +
(Aκ2

1 −B)Γ
2

Ω, (24)

φ(2) = (B + 1)Ω,ζ . (25)

In the above expressions the values of η and Ω must be chosen accord-
ingly with the type of dislocation considered, as in equations (1-2).
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Again considering the case of a single elastic half space separately,
we record the potentials in material 1 in the form

ψ(1) = ηΩ− ζ ′Ω,ζ +
1− κ1(κ1 − 2η)

2
Ω̄ + κ1ζ

′Ω̄,ζ , (26)

φ(1) = Ω,ζ − (κ1 − 2η)Ω̄,ζ + 2ζ ′Ω̄,ζζ . (27)

5. Displacements and stresses due to dislocations in bonded
elastic half spaces

In this section we give the expressions for stresses and displacements
due to radial edge and axial glide circular Somigliana dislocations. In or-
der to make the expressions as concise as possible, we introduce one fur-
ther notation convention. We drop the arguments of Hankel-Lipschitz
integral potentials to write

Jnpq = Jnpq(ρ, ζ − ζ ′), (28)
Inpq = Jnpq(ρ, ζ + ζ ′) (29)

Here Inpq is obtained from Jnpq(ρ, ζ − ζ ′) by replacing the whole com-
bination (ζ − ζ ′) with (ζ + ζ ′).

Note that this operation is not identical with replacing ζ with −ζ,
which yields

J̄npq = Jnpq(ρ,−(ζ + ζ ′)), (30)

(cf. equation (20)), i.e. a result that differs by a factor of (−1)(n+p+q).
From the above discussion it is evident that given the values of

the potential functions Ω(ρ, ζ) and Ω̄(ρ, ζ) and of the parameter η in
equations (1-2), full elastic fields may be determined. In the following
sections we record the displacements and stresses arising due to the
two types of dislocations.

5.1. Axial glide dislocation

Parameter η =
(κ1 − 1)

2
.

Potential functions:

Ω(ρ, ζ) =
2µ1a

(κ1 + 1)
J10;−1 , Ω(ρ, ζ) =

2µ1a

(κ1 + 1)
I10;−1 . (31)

Displacements and stresses in material 1:

(κ1 + 1)ur =
κ1 − 1

2
J110 − (ζ − ζ ′)J111 (32)
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+
Aκ1 −B

2
I110 −A(ζ − κ1ζ

′)I111 − 2Aζζ ′I112,

(κ1 + 1)uz = −κ1 + 1
2

J100 − (ζ − ζ ′)J101 (33)

−Aκ1 +B

2
I100 −A(ζ + κ1ζ

′)I101 − 2Aζζ ′I102,

σzz =
2µ

(κ1 + 1)a

[
J101 + (ζ − ζ ′)J102 (34)

+
A+B

2
I101 +A(ζ + ζ ′)I102 + 2Aζζ ′I103

]
,

σrr =
2µ

(κ1 + 1)a

[
J101 − (ζ − ζ ′)J102 −

κ1 − 1
2ρ

J110 +
ζ − ζ ′

ρ
J111(35)

+
3A−B

2
I101 −A(ζ − 3ζ ′)I102 − 2Aζζ ′I103

−Aκ1 −B
2ρ

I110 +
A(ζ − κ1ζ

′)
ρ

I111 +
2Aζζ ′

ρ
I112

]
,

σrz =
2µ

(κ1 + 1)a

[
(ζ − ζ ′)J112 (36)

−A−B
2

I111 +A(ζ − ζ ′)I112 + 2Aζζ ′I113

]
.

Displacements and stresses in material 2:

(κ1 + 1)
Γ

uz = −[(B + 1)ζ + (A+ 1)ζ ′]J101 (37)

−(κ1 + 1) +A(κ1 − 1) + Γ(Aκ2
1 −B)

2
J100,

(κ1 + 1)
Γ

ur = −[(B + 1)ζ + (A+ 1)ζ ′]J111 (38)

(κ1 − 1) +A(κ1 − 1) + Γ(Aκ2
1 −B)

2
J110.

σzz =
2µ

(κ1 + 1)a

[
B(κ1 + 1)−A(κ1 − 1)− Γ(Aκ2

1 −B) + 2
2

J101 (39)

+[(B + 1)ζ + (A+ 1)ζ ′]J102

]
,

σrr =
2µ

(κ1 + 1)a

[
B(3− κ1) +A(κ1 − 1) + Γ(Aκ2

1 −B) + 2
2

J101 (40)

−[(B + 1)ζ + (A+ 1)ζ ′]J102 +
(B + 1)ζ + (A+ 1)ζ ′

ρ
J111
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−(κ1 − 1) +A(κ1 − 1) + Γ(Aκ2
1 −B)

2ρ
J110

]
,

σrz =
2µ

(κ1 + 1)a

[
B(κ1 − 1)−A(κ1 − 1)− Γ(Aκ2

1 −B) + 2
2

J111 (41)

+[(B + 1)ζ + (A+ 1)ζ ′]J112

]
.

5.2. Radial edge dislocation

Parameter η =
(κ1 + 1)

2
.

Potential functions:

Ω(ρ, ζ) =
2µ1a

(κ1 + 1)
J00;−1 , Ω(ρ, ζ) = − 2µ1a

(κ1 + 1)
I00;−1 . (42)

Displacements and stresses in material 1:

(κ1 + 1)uz = −κ1 + 1
2

J000 − (ζ − ζ ′)J001 (43)

−Aκ1 −B
2

I000 −A(ζ − κ1ζ
′)I001 + 2Aζζ ′I002,

(κ1 + 1)ur =
κ1 + 1

2
J010 − (ζ − ζ ′)J011 (44)

+
Aκ1 +B

2
I010 −A(ζ + κ1ζ

′)I011 + 2Aζζ ′I012.

σzz =
2µ

(κ1 + 1)a

[
(ζ − ζ ′)J002 (45)

+
A−B

2
I001 +A(ζ − ζ ′)I002 − 2Aζζ ′I003

]
,

σrr =
2µ

(κ1 + 1)a

[
2J011 − (ζ − ζ ′)J002 −

κ1 + 1
2ρ

J010 +
ζ − ζ ′

ρ
J011(46)

+
3A+B

2
I001 −A(ζ + 3ζ ′)I002 + 2Aζζ ′I003

−Aκ1 +B

2ρ
I010 +

A(ζ + κ1ζ
′)

ρ
I011 −

2Aζζ ′

ρ
I012

]
,

σrz =
2µ

(κ1 + 1)a

[
−J011 + (ζ − ζ ′)J012 (47)

−A+B

2
I011 +A(ζ + ζ ′)I012 − 2Aζζ ′I013

]
.
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Displacements and stresses in material 2:

(κ1 + 1)
Γ

uz = −[(B + 1)ζ + (A+ 1)ζ ′]J001 (48)

+
(1− κ1) +A(κ1 + 1) + Γ(Aκ2

1 −B)
2

J000,

(κ1 + 1)
Γ

ur = −[(B + 1)ζ + (A+ 1)ζ ′]J011 (49)

+
(κ1 + 1) +A(κ1 + 1) + Γ(Aκ2

1 −B)
2

J010.

σzz =
2µ

(κ1 + 1)a

[
B(κ1 + 1)−A(κ1 + 1)− Γ(Aκ2

1 −B)
2

J001 (50)

+[(B + 1)ζ + (A+ 1)ζ ′]J002

]
,

σrr =
2µ

(κ1 + 1)a

[
B(3− κ1) +A(κ1 + 1) + Γ(Aκ2

1 −B) + 4
2

J001 (51)

−[(B + 1)ζ + (A+ 1)ζ ′]J002 +
(B + 1)ζ + (A+ 1)ζ ′

ρ
J011

−(κ1 + 1) +A(κ1 + 1) + Γ(Aκ2
1 −B) + 1

2ρ
J010

]
,

σrz =
2µ

(κ1 + 1)a

[
B(κ1 − 1)−A(κ1 + 1)− Γ(Aκ2

1 −B)− 2
2

J011 (52)

+[(B + 1)ζ + (A+ 1)ζ ′]J012

]
.

As a final note we mention that the elastic fields due to a Somigliana
ring dislocation in an elastic half space are obtained from the above ex-
pressions by substituting the special values of the bimaterial parameters
A = B = −1, Γ = 0.

6. Deformation energy and the force acting on a dislocation

As an example application of the solutions developed in the preced-
ing sections we calculate the elastic energy of a circular Somigliana
dislocation embedded in an elastic half space.

Let the half space occupy the domain z > 0. Consider an axial glide
dislocation with the Burgers vector b and radius a, lying on the plane
z = z′ > 0.
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It is well known that the deformation energy associated with a
straight dislocation, which is formally calculated using classical elastic-
ity principles, becomes unbounded. This happens because the stresses
are inversely proportional to the distance from the dislocation line, so
that the corresponding integral diverges at the two extremes: in the
immediate vicinity of the dislocation (the ‘core’ region) and at infinity.

The latter problem does not arise in the axisymmetric case, since the
stresses due to a circular dislocation decay more rapidly with distance.
This makes the energy integral converge at large distances, as will be
confirmed by the analysis below. Also, if a dislocation in an elastic half
space is considered, then the elastic body is bounded by the free surface.
From the discussion in the last section of [3] it is evident that the
dislocation may be created by introducing a displacement discontinuity
which is confined to the region between the plane of the dislocation line
and the free surface. The corresponding upper bound in the energy
integral is therefore finite.

The problem of the dislocation core energy may be addressed in the
usual way, whereby a separate ‘line tension’ term is introduced, which
is proportional to the length of the dislocation line and independent
of its curvature. This may be estimated from atomic considerations, so
that the dislocation core energy term is given by

Wc =
µb2

(κ+ 1)
. (53)

The full expression for the deformation energy is composed of two
terms: the ‘core’ termWc and the term accounting for the elastic energy
outside the core region We,

W = Wc +We. (54)

Let us evaluate the term We as follows. Introduce a cut over the
cylindrical surface r = a between the plane z = z′ and the free surface.
Displace the opposite faces of the cut with respect to each other by
the length b in the axial direction. The work of external shear forces
needed to perform this operation is given by the following integral

We = 2πa
∫ z′−ε/a

0
[bσrz(a, z)]× [−b/2] dz. (55)

Here ε << a, z′ is thedislocation core radius.
As before, σrz denotes the shear stress of the axial glide dislocation

with Burgers vector unity, and in terms of the Papkovich potentials is
given by

σrz =
(κ− 1)

2
φ,r − zφ,rz − ψ,rz. (56)
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The expression for the energy may then be rewritten in the form

We = πab2
[−(κ+ 1)

2
Φ,r + ψ,r + zφ,r

]z′−ε/a

0
, (57)

where Φ denotes the original of φ, Φ,z = φ, and the potential functions
are found from equations (26-27) with η = (κ− 1)/2,

ψ =
(κ− 1)

2
(Ω− Ω̄)− z′Ω,z + kz′Ω̄,z, (58)

φ = Ω,z − Ω̄,z + 2z′Ω̄,zz, (59)
Φ = Ω− Ω̄ + 2z′Ω̄,z, (60)

where

Ω =
2µa

(κ+ 1)
J10;−1(ρ, ζ − ζ ′), Ω̄ =

2µa
(κ+ 1)

J10;−1(ρ, ζ + ζ ′). (61)

Substitution then leads to

We = W∞
e +W i

e =
2µπab2

(κ+ 1)
{J110(1, ε/a)

−J110(1, 2ζ ′) + 2ζ ′
[
J111(1, ζ ′)− J111(1, 2ζ ′)− ζ ′J112(1, 2ζ ′)

]}
.

The dislocation energy is given here as a sum of two terms, that of a
dislocation in an infinite space, and the interaction term, which arose
due to the presence of the free surface. Note that the small parameter
ε has been dropped everywhere in the argument of J−integrals except
where it appears on its own, i.e. in the term J110(1, ε).

For the dislocation energy in an infinite space we obtain

W∞
e =

2µπab2

(κ+ 1)
J110(1, ε/a). (62)

This result may be verified by letting ζ ′ become very large in the ex-
pression for We. The values of J−integrals then may be found in terms
of the complete elliptic integrals of the first and second kind K(k) and
E(k) (see Appendix in [3, 5]). For large ζ ′ the elliptic modulus assumes
the value k ' 2/ζ ′. Using the series expansions for K and E, given
in [3], equations (77-78), it is readily verified that all the terms in We

vanish, except the term containing J110(1, ε).
This contribution to the dislocation energy is evaluated as follows.

Use

J110(ρ, ξ) =
2

πkρ1/2

[
2− k2

2
K−E

]
, (63)
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where k2 = 4ρ/[(1+ρ)2 +ξ2]. For small ξ = ε/a we have k ' (1−ξ2/4)
and k′ ' ξ/2. Also, for k → 1

K(k) ' ln(4/k′) ' ln(8a/ε), E(k) ' 1. (64)

Thus finally

W∞
e ' 2µab2

(κ+ 1)
[ln(8a/ε)] , (65)

a result which agrees with the expression given by Kroupa [1]. It is
curious to note that although the dislocation surfaces are different in
the two problems, the dislocation lines and the Burgers vectors are
identical, leading to the same deformation energies.

We may now turn our attention to the interaction term W i
e

W i
e =

2µπab2

(κ+ 1)
{
−J110(1, 2ζ ′) + 2ζ ′

[
J111(1, ζ ′)− J111(1, 2ζ ′)− ζ ′J112(1, 2ζ ′)

]}
.

(66)
By calculating the derivative of the dislocation energy with respect to
its axial coordinate z′ the force on the dislocation may be determined.
Since Wc and W∞

e do not depend on z′ we have

F (ζ ′) = −dW
dz′

= −1
a

dW i
e

dζ ′
=

=
4µπb2

(κ+ 1)

{
−J111(ζ ′) + ζ ′ J112(ζ ′)− ζ ′ J112(2ζ ′)− 2ζ ′2 J113(2ζ ′)

}
.

(67)
The dependence of the interaction energy and the force acting on the
dislocation on the distance from the free surface is shown in Fig.1. Note
that the dislocation is attracted to the surface if it lies at depths below
approximately 1.1a, and is repelled at larger depths.

7. Discussion

In this paper the solutions for the circular Somigliana dislocations in
one of two elastically dissimilar half spaces were obtained. The deriva-
tion is based on the Papkovich potential solutions for dislocations in
an infinite space, given in terms of the Lipschitz-Hankel integrals in [3],
and the application of Aderogba’s theorem [6].

The resulting elastic fields are composed of two parts: the infinite
space solution, identical with that given in [3], and the ‘image’ part,
arising due to the interaction between the dislocation loop and the
interface or free surface. This effect was analysed by evaluating the
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interaction energy and the force, acting on an axial circular dislocation
in an elastic half space. It was shown that the dislocation is repelled
from the surface for depths exceeding 1.1 dislocation line radii, and
attracted to the surface at lower depths. 1

Further results concerning the effect of bimaterial parameters on the
dislocation properties may be readily obtained from the general formu-
lae given in this paper. Further investigations may include the problems
of dislocations lying at planar or cylindrical bimaterial interfaces.
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Figure 1. Normalized interaction energy W i
e ∗ (κ + 1)/(2µπab2) and the force

F (κ + 1)/(2µπb2) acting on a circular glide dislocation in an elastic half space,
versus normalized dislocation depths z′/a
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