
Elastic Behavior of Materials: Continuum

Aspects

When a real material is studied at progressively
diminishing scales, it is usually found to exhibit a
variation in properties from point to point. This
variation is called structure. The term is often used
with reference to a certain scale, e.g., atomic structure,
microstructure, etc. The mechanical response of ma-
terial to loading depends on its structure, and a large
section of materials science is devoted to the analysis
of this dependence. However, some fundamental
aspects of mechanical behavior can be understood
very well if the material is considered to be structure-
less, a solid continuum.

Solids respond to applied external loads by develop-
ing internal forces. If an imaginary section through the
solid is considered, the components of internal force
acting on a unit elemental area are called stresses.
Under the action of stresses solids deform, so that the
distances between points change. However, provided
the stresses are sufficiently small, the solid recovers its
original shape and volume once the load is removed.
This type of behavior is called elastic. Continuum
elasticity considers the consequence of atomic inter-
actions in solids, but disregards their nature. The
atomic aspects of elastic deformation are considered in
Elastic Beha�ior of Materials: Physical Basis. Non-
elastic behavior is manifested in residual deformation
persisting after load removal, and often gives rise to
residual stress.

Under very low loads, deformation is found to be
proportional to stress. The case of linear continuum
elasticity is the main subject of this article. First, the
foundations of stress and strain are laid out in the
infinitesimal limit. Then simple forms of the elastic
equations for isotropic bodies are introduced using
Lame! ’s constants, as well as Young’s modulus and
Poisson’s ratio.

1. Deformation and Strain

Each point in a solid continuum can be referred to by
its initial position with respect to a certain coordinate
system, x¯ (x

"
, x

#
, x

$
). During deformation, the

displacement of each point can be described by
the vector u¯ (u

"
, u

#
, u

$
). In Cartesian coordinates,

the initial distance between any two closely posi-
tioned points is given by

dl¯o(dx#

"
­dx#

#
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$
)

After deformation it changes to
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The displacement differences du
i

can be written in

terms of displacement gradients at point x
j
(Fig. 1).

Introducing the expression
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the elemental length can be expressed as

dl«#¯dl#­2ε
ij
dx

i
dx

j
­o(rdxr#)

Here o(rdxr#) denotes the terms which decay more
rapidly than rdxr# as dx vanishes. The terms discarded
here contain strain gradients, i.e., higher-order spatial
derivatives of displacements. These terms can be taken
into account in formulating a linear dependence of
stress upon strain. They give rise to characteristic
length scales related to the lattice structure of the
crystal (see note in article Elastic Beha�ior of Single
Crystals: Anisotropy and references therein). Follow-
ing Cauchy, the last term in ε

ij
is usually neglected

for small deformations, so that
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The terms ε
ij
defined according to Eqn. (1) are called

strains, and form a symmetric second-rank tensor
called the strain tensor. Strains can be separated into
two groups. If i¯ j, then, e.g., ε

""
¯ ¦u

"
}¦x

"
, ε

##
, ε

$$
are called normal strains, and describe elongation
or contraction. Otherwise, i 1 j, and ε

"#
¯

"

#
( ¦u

"
} ¦x

#
­¦u

#
}¦x

"
), ε

#$
, ε

$"
are called shear strains,

and describe the change in the angle between two
initially straight lines along the coordinate axes
(Fig. 1).

By rotation, an alternative orthonormal system of
axes can be found with respect to which shear strains

Figure 1
Illustration of strain.
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vanish. The remaining normal strains with respect to
these principal axes are called principal strains. A
volume originally occupying an elemental cube with
face normals along the principal axes deforms into
a parallelepiped. The relative volume change (the
dilatation) is described by the sum of normal strains,
∆¯ ε

""
­ε

##
­ε

$$
. The sum of normal strains is in-

variant, i.e., remains the same with respect to any
coordinate system.

For small deformations, uniform strains are ad-
equately approximated by the ratios of elongations ∆l

i

to original gauge lengths l
j
, e.g., ε

""
¯∆l

"
}l

"
, etc., and

are referred to as engineering strains. For larger
distortions, true or logarithmic strains ε

T
¯ ln(1­ε)

are often used.

2. Stress

A general element of area dA possesses orientation
described by the unit normal n¯ (n

"
, n

#
, n

$
), and

transmits an internal force dF¯ (dF
"
, dF

#
, dF

$
). The

force has magnitude dF¯ sdA, and can be resolved
into the normal σdA and shear τdA components (Fig.
2). In particular, for each rectangular element dA

i
with

normal in the direction Ox
i
, internal force can be

resolved into three Cartesian components written as
dF

j
¯σ

ij
dA

i
. The terms σ

ij
form a second rank tensor

called the stress tensor. Components of torque exerted
on an elemental volume dV by the surrounding solid
can be written down as (σ

#$
®σ

$#
)dV, (σ

$"
®σ

"$
)dV,

(σ
"#

®σ
#"

)dV. The symmetry of the stress tensor, σ
ij
¯

σ
ji
, follows from the requirement that this expression

must vanish in equilibrium. This assumption holds in
the absence of body torque exerted by long range
forces, e.g., by a magnetic field on magnetic crystals.

If i¯ j, the terms σ
""

, σ
##

, σ
$$

are called normal
stresses, and can be classified further into tensile

Figure 2
Illustration of stress.

(positive) and compressive (negative). Otherwise, i 1
j, and the terms σ

#$
, σ

"$
, σ

"#
are called shear stresses. By

rotation an alternative orthonormal system of axes
(the principal axes) can be found with respect to which
shear stresses vanish, and an elemental cube is sub-
jected to normal stresses only (called the principal
stresses). The sum of normal stresses σ

""
­σ

##
­σ

$$
¯

®3P is invariant, i.e., remains the same in any rotated
system. It represents the hydrostatic component of the
stress state, where P denotes pressure (assumed posi-
tive when compressive).

3. Strain Energy Density

The increment of strain energy density (i.e., elastic
energy per unit volume) in a deforming solid is equal
to the work done by the stresses to alter the strains, dU
¯σ

ij
dε

ij
. The relationship between stresses and strains

can therefore be expressed in terms of the strain energy
density as

σ
ij
¯

¥U

¥ ε
ij

(2)

The energy density U may be expanded into series in
terms of strains. If the initial state of the solid is
assumed to be stress free, then for ε

ij
¯ 0 so must

σ
ij
¯ 0. Hence, the linear terms in the expansion must

vanish, and the expression for strain energy density
should contain expressions quadratic in terms of
strains,

U¯U
!
­3

ijkl
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#
c
ijkl

ε
ij
ε
kl

(3)

Alongside deformation terms, the total internal
energy of a solid contains entropy terms. These terms
are neglected in the present analysis, although they
may make a substantial contribution to the elastic
effects in the case of configurational entropy of long
molecules in polymeric solids (see Elastic Beha�ior of
Materials: Physical Basis). For detailed discussion
of the thermodynamics of elasticity, see Elasticity:
Thermodynamic Treatment.

Equations (2) and (3) describe a linear relationship
between stresses and strains,

σ
ij
¯3

kl

c
ijkl

ε
kl

(4)

Higher-order terms give rise to nonlinear stress–
strain dependence. A mathematical treatment of non-
linear elastic deformations can be found in Ogden
(1984).

Equation (4) states the generalized Hooke’s law for
a linear elastic solid continuum. The terms c

ijkl
are
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called stiffness coefficients, and form a fourth rank
tensor. For strains to be found in terms of stresses, the
above expression may be inverted,

ε
ij
¯3

kl

s
ijkl

σ
kl

(5)

The terms s
ijkl

are called compliance coefficients, and
form a fourth rank tensor equal to the inverse of
tensor c

ijkl
.

The tensorial property of ε
ij
, c

ijkl
(and σ

ij
, s

ijkl
) is

manifested in their behavior under the rotation of a
coordinate system. If a new Cartesian coordinate
system is defined by the equation

x«
i
¯3

j

t
ij
x

j
(6)

then the tensor components in the new system are
related to the original ones by
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pq
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4. Contracted Notation

Tensors ε
ij

and σ
ij

are symmetric with respect to the
interchange of their indices, which must be reflected in
the symmetry of c

ijkl
and s

ijkl
. Equation (3) shows

further that c
ijkl

and s
ijkl

must remain unaltered if the
first pair of indices is interchanged with the last. To
take advantage of these symmetries, contracted no-
tation can be introduced, giving six-component vec-
tors for stress and strain, defined as follows:
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The contraction of each pair of indices into one is
carried out according to the rule:

11! 1, 22! 2, 33! 3, 23,32! 4, 31,13!

5,12,21! 6 (9)

The 6¬6 stiffness matrix is introduced using the index
transformation rule (9) as follows:

cαβ ¯ c
ijkl

, (α,β¯ 1…6, i, j, k, l¯ 1…3) (10)

so that Equation (4) becomes

σα ¯ 3
β="...'

cαβ εβ (11)

It would be desirable to obtain an expression for the
six-strains in terms of six-stresses and the compliance
matrix in the same form as above,

εα ¯ 3
β="...'

sαβ σβ (12)

This, however, requires the introduction of factors 2
and 4 as follows:

sαβ ¯ s
ijkl

, when both α and β are 1, 2, or 3;

sαβ ¯ 2s
ijkl

, when either α or β are 4, 5, or 6;

sαβ ¯ 4s
ijkl

, when both α and β are 4, 5 or 6.

(13)

In contracted notation, the number of stiffness or
compliance components used to specify the elastic
material properties is reduced from 3¬3¬3¬3¯ 81
to 6­5­4­3­2­1¯ 21 terms out of 6¬6¯ 36.
This is the maximum number of independent elasticity
coefficients needed to describe a general anisotropic
continuum solid. Elastic symmetry characteristic of
single crystal systems reduces this number further
(Elastic Beha�ior of Single Crystals: Anisotropy).
Many polycrystalline solids display directional de-
pendence of elastic properties due to preferred orien-
tation of their constituents. These systems can be
described as anisotropic elastic continuua (Elastic
Beha�ior of Polycrystals).

The lack of symmetry in the way six-vectors are
introduced may be avoided by choosing an ortho-
normal dyadic base (Pedersen 1995), so that the
fourth-rank unit tensor is represented by a unit 6¬6
matrix. All off-diagonal stress and strain terms must
be multiplied by o2, and the equivalent of Equation
(13) (with 2!o2 and 4!2) must be used for both c

ijkl

and s
ijkl

.

5. Elastic Isotropy

A practically important case concerns a body that
develops the same strain independently of the direction
in which stress is applied, and is called elastically
isotropic. Although few single crystals approach this
type of behavior, glasses and amorphous solids may be
treated as macroscopically isotropic, as can poly-
crystals possessing no preferred orientation (Elastic
Beha�ior of Polycrystals).

The strain energy density (Eqn. (3)) of isotropic
solids must depend on two second-order scalars
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composed of the strain components, and can be
written as follows:

U¯U
!
­

λ

2
3
i

ε#
ii
­µ3

i,j

ε#
ij

(14)

Isotropic elasticity is fully described by two parameters
λ and µ, known as Lame! ’s constants. Hooke’s law
for the isotropic body is obtained by differentiation
according to Eqn. (2):

σ
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¯ 2µε
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­λδ

ij
3
i

ε
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(15)

Here Kronecker’s delta symbol δ
ij
¯ 1 if i¯ j, and δ

ij

¯ 0 if i1 0. Inverting Eqn. (15) gives

ε
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6. Uniform Deformation

Simplest cases of deformation are observed when the
strain tensor is uniform throughout the solid body.

6.1 Uniaxial Tension

A slender rod subjected to longitudinal tension
develops uniform strains ε

ij
, and uniform stresses σ

ij
.

Any section transmits axial stress alone, σ
""

, while all
other stress components are equal to zero. This state of
stress is called uniaxial tension. From Equation (16),
the axial elongation ε

""
is found as

ε
""

¯σ
""

(λ­µ)

µ(3λ­2µ)
¯

σ
""

E
,

E¯
µ(3λ­2µ)

(λ­µ)
(17)

The coefficient E is called Young’s modulus. The
ratio of transverse contraction experienced by the rod
to axial elongation is called Poisson’s ratio, and is
given by

ν¯®
ε
##

ε
""

¯
λ

2(λ­µ)
(18)

6.2 Equiaxial Compression

Consider a body subjected to hydrostatic pressure P,
σ

ij
¯®Pδ

ij
. The bulk modulus K of an isotropic body

is found as the ratio of P to the relative volume

decrease, ∆¯Σε
ii
. Summing up Equation (15) for i¯

j¯ 1…3:
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E
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(19)

6.3 Pure Shear

Consider uniform pure shear ε
"#

(all other strain
components are zero). The only nonzero stress com-
ponent is

σ
"#

¯ 2Gε
"#

(20)

The coefficient G is called the shear modulus, or
modulus of rigidity,

G¯µ¯
E

2(1­ν)
(21)

6.4 General Uniform Strain

In the general case of isotropic material subjected to
uniform deformation, the principal stresses and strains
are related as follows:

ε
"
¯

1

E
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"
®ν(σ

#
­σ

$
)] (22)

σ
"
¯

E

(1­ν)(1®2ν)
[(1®ν)ε
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#
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$
)] (23)

7. Thermoelasticity

Consider a body in a reference (undeformed) state at
temperature T

!
. Increasing the temperature by a small

amount ∆T in the absence of external body force
usually results in expansion. The strain energy density
U must now contain strain tensor components not
only as quadratic, but also as linear terms. For the
isotropic body the only appropriate linear scalar
combination is the sum ∆ of normal strains ε

ii
. For

small ∆T, the additional term in Eqn. (14) may be
assumed to be proportional to ∆T, i.e.,

U¯U
!
®Kβ∆T3

i

ε
ii
­
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2
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ε#
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­µ3

i,j

ε#
ij

(14a)

and

σ
ij
¯®Kβ∆Tδ

ij
­2µε

ij
­λδ
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3
i

ε
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(15a)
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In a body expanding without constraint no stresses
arise and σ

ij
¯ 0. It follows that ε

ij
must be pro-

portional to δ
ij
. Taking into account Eqn. (19), it

follows that Σε
ii
¯ δ

ij
β∆T, where β represents the

volumetric thermal expansion coefficient. Normal
strain in any direction is given by ε¯α∆T, where α is
the linear thermal expansion coefficient, and β¯ 3α.

Anisotropy of thermal properties results in the
orientation dependence of linear thermal expansion of
crystals and polycrystals.

8. Plane Stress and Plane Strain

Plane problem of elasticity arises when deformation
can be fully described in two-dimensional Cartesian
coordinates. Two practically important cases are
distinguished: plane stress and plane strain.

For plane stress, let x
$
be the direction normal to the

surface of a thin flat plate loaded only along its edges.
Then the out-of-plane stress components σ

"$
, σ

#$
, σ

$$
can be neglected, and values of the in-plane stresses
σ
""

, σ
##

, σ
"#

can be averaged through the thickness.
Strains due to the in-plane stresses can be found from
Eqns. (20) and (22):
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] (24)

The only nonzero out-of-plane strain is found to be ε
$¯®(υ}E)(σ

"
­σ

#
).

Plane strain conditions arise if displacements every-
where in a solid body are perpendicular to the axis
Ox

$
, and do not depend on the corresponding co-

ordinate x
$
. Then from Eqn. (1) strain components ε

"$
,

ε
#$

, ε
$$

vanish, and from Eqns. (20) and (22) it follows
that σ

"$
¯ σ

#$
¯ 0, and σ
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¯ υ(σ
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from Eqn. (22) that
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Note that Eqn. (25) can be given the form of Eqn. (24),
if ‘‘plane strain elastic constants’’ are introduced:

E«¯
E

(1®ν#)
, ν«¯

ν

1®ν
(26)

Table 1
Elastic properties of some engineering alloys.

Engineering alloys
Young’s modulus

(GPa) Poisson’s ratio

Aluminum 65–72 0.33–0.34
Copper 100–120 0.34–0.35
Magnesium 45 0.3–0.35
Nickel 200–220 0.31
Steels 200–215 0.27–0.29
Titanium 110–120 0.36
Zinc 105 0.35

This circumstance allows the use to the term plane
problem of elastiicty to refer both to plane stress and
plane strain.

9. Elastic Constants

In engineering practice, elastic properties of materials
are often quoted in terms of Young’s modulus and
Poisson’s ratio. Table 1 lists these parameters for
common metallic alloys, Table 2 for ceramics and
glasses, and Table 3 for polymers. Poisson’s ratios of
ceramics lie in the range 0.1–0.3, while for metallic
alloys they are close to 0.3. Poisson’s ratio of a polymer
is not a constant, but shows strong dependence on
stress, temperature, and time. Values generally lie in
the range 0.3–0.5; those appearing in the table are
given only as guidelines. Young’s modulus shows a
higher degree of variability between material classes,
associated with the nature of atomic bonding (see
Elastic Beha�ior of Materials: Physical Basis). Elastic
properties of single crystals are discussed in article
Elastic Beha�ior of Single Crystals: Anisotropy.

10. Equations of Equilibrium

In order for a solid body to remain in equilibrium, the
balance of internal forces acting on any elemental
volume within the body must be maintained. By
considering a parallelepiped with edges along the
coordinate axes (Fig. 2), the following equation is
obtained:

¥σ
ij

¥x
j

­F
i
¯ 0 (27)

where F
i

denotes the volume density of long-range
forces, e.g., gravity. Deformation of a solid body is
quasistatic if inertial forces in this equation can be
neglected. When nonquasistatic deformations are con-
sidered, as in the case of elastic vibrations and waves
(Elastic Wa�e Propagation in Materials), the right-
hand side of this equation must contain the term ρuX

i
.

If the elemental volume considered lies at the
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Table 2
Elastic properties of some engineering ceramics and glasses.

Engineering ceramics and
glasses

Young’s modulus
(GPa) Poisson’s ratio

Titanium diboride, TiB
#

540 0.11
Silicon carbide, SiC 400 0.19
Titanium carbide, TiC 440 0.19
Tungsten carbide, WC 670–710 0.24
Silicon nitride, Si

$
N

%
110–325 0.22–0.27

Alumina, Al
#
O

$
345–414 0.21–0.27

Beryllium oxide, BeO 300–317 0.26–0.34
Zirconia, ZrO

#
97–207 0.32–0.34

Fused silica 71 0.17
Soda-lime glass 69 0.24
Aluminosilicate glass 88 0.25
Borosilicate glass 63 0.20
High-lead glass 51 0.22

Table 3
Elastic properties of some engineering polymers.

Polymers
Young’s modulus

(GPa) Poisson’s ratio

Acrylics 2.4–3.1 0.33–0.39
Epoxys 2.6–3.1 0.33–0.37
Polystyrenes 3.1 0.33
Low-density polyethylene 0.1–0.3 0.45
High-density polyethylene 0.4–1.4 0.34
Polypropylene 0.5–1.9 0.36–0.40
PTFE 0.4–1.6 0.40–0.46
Polyurethanes 0.006–0.4 0.49

boundary, the internal stresses must be balanced by
the surface tractions f

i
, so that

σ
ij
n
j
¯ f

i
(28)

where n
i

denotes the components of the outward
surface normal.

11. Fundamental Solutions

Mechanical behavior of real materials is strongly
dependent on the presence within them of various
defects, such as vacancies, dislocation lines and loops,
inclusions, etc. These defects create self-equilibrated
fields of stress and strain around them, which can be
calculated on the basis of linear elasticity. The system
of linear elastic equations introduced in the previous
section admits fundamental singular solutions called
strain nuclei (Mindlin and Chen 1950), which play
a role similar to the concentrated and distributed
charges in electrostatics.

An example of strain nucleus is given by an edge
dislocation in an infinite solid. The boundary con-

ditions are given in terms of the displacement dis-
continuity u

#
(x

#
­0)®u

#
(x

#
®0)¯ b, prescribed over

the half plane x
#
¯ 0, x

"
"0. The displacement jump b

is called the Burgers vector. The stress field around an
edge dislocation is given by the following equations
(Hull and Bacon 1984), sometimes also referred to as
the Sneddon equations:
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, σ
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¯σ
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¯ 0 (29)

The stresses are inversely proportional to the dis-
tance from the dislocation line in the plane (x

"
, x

#
).

The strain energy associated with the edge dislocation
may be obtained by integration in the form W¯
ln(Λ}c)Gb#}4π(1®υ), where the outer dislocation
radius Λ and the dislocation core radius c must be
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introduced to avoid divergence. Although continuum
elastic description of defects such as dislocations
breaks down in their immediate vicinity, it has been
used successfully to model their interaction, as well
as their effects on residual stress and deformation
behavior.

See also: Elastic Behavior of Materials: Physical Basis;
Elastic Behavior of Single Crystals: Anisotropy;
Elastic Behavior of Polycrystals; Elasticity: Thermo-
dynamic Treatment; Viscoelasticity}Anelasticity;
Elastic Wave Propagation in Materials; Cosserat
Media
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