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ABSTRACT
We study a distributed allocation process where, repeatedly
in time, every player renegotiates past allocations with neigh-
bors and allocates new revenues. The average allocations
evolve according to a doubly (over time and space) averaging
algorithm. We study conditions under which the average allo-
cations reach consensus to any point within a predefined tar-
get set even in the presence of adversarial disturbances. Moti-
vations arise in the context of coalitional games with transfer-
able utilities (TU) where the target set is any set of allocations
that make the grand coalitions stable.

Index Terms— Game theory, networks, allocations.
We consider a two-step distributed allocation process

where at every time players first renegotiate their past alloca-
tions and second generate a new revenue and allocate it. The
cumulative (over time) allocations (states) evolve according
to discrete-time linear dynamics which involve an averaging
(over space) process. The goal is to let all allocations reach
consensus to any value in a predefined set even in the pres-
ence of an adversarial disturbance. A similar problem has
been addressed in [1] for the time-averaged allocations.
Motivations. The problem arises in the context of dynamic
coalitional games with Transferable Utilities (TU games) [5].
A coalitional TU game consists in a set of players, who can
form coalitions, and a characteristic function that provides a
value for each coalition. The predefined set introduced above
can be thought of as (but it is not limited to) the core of the
game. This is the set of imputations under which no coali-
tion has a value greater than the sum of its members’ payoffs.
Therefore, no coalition has incentive to leave the grand coali-
tion and receive a larger payoff.
Main contribution. We analyze conditions under which
there exist contractive and invariant sets for the cumulative
allocations (Theorem 1).
Related literature. Coalitional games with transferable util-
ities (TU) were first introduced by von Neumann and Mor-
genstern [8]. Here, a main issue is to study whether the core
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is an “approachable” set, and which allocation processes can
drive the “complaint vector” to that set. Approachability the-
ory was developed by Blackwell in the early ’56, [2], and is
captured in the well known Blackwell’s Theorem. The geo-
metric (approachability) principle that lies behind the Black-
well’s Theorem is among the fundamentals in allocation pro-
cesses in coalitional games [4]. The discrete-time dynamics
analyzed in the paper follows the rules of typical consensus
dynamics (see, e.g., [6] and references therein). among mul-
tiple agents, where an underlying communication graph for
the agents and balancing weights have been used with some
variations to reach an agreement on common decision vari-
able in [6, 7] for distributed multi-agent optimization.

The paper is organized as follows. In Section, 1, we for-
mulate the problem In Section 2, we illustrate the main re-
sults. Finally, in Section 3, we provide concluding remarks
and future directions. Though the proofs of the results are an
essential contribution of the paper, we find it more convenient
for readability to collect them all in an appendix.
Notation. We let x′ denote the transpose of a vector x,
and ‖x‖ denote its Euclidean norm. An n × n matrix A
is row-stochastic if the matrix has nonnegative entries aij
and

∑n
j=1 a

i
j = 1 for all i = 1, . . . , n. For a matrix

A, we use aij or [A]ij to denote its ijth entry. A matrix
A is doubly stochastic if both A and its transpose A′ are
row-stochastic. We use |S| for the cardinality of a given
finite set S. We write PX [x] to denote the projection of a
vector x on a set X , and we write dist(x,X) for the dis-
tance from x to X , i.e., PX [x] = arg miny∈X ‖x − y‖ and
dist(x,X) = ‖x− PX [x]‖, respectively.

1. DISTRIBUTED REWARD ALLOCATION

Every player in a set N = {1, . . . , n} is characterized by an
average allocation vector xi(t) ∈ Rn. At every time he rene-
gotiates with neighbors all past allocations and generates a
new allocation vector ui(t). Then, the cumulative (over time)
allocation xi(t) to player i evolves as follows:

xi(t+ 1) =

 n∑
j=1

aij(t)xj(t)

+ ui(t), t = 0, 1, . . . (1)



where ai = (ai1, . . . , a
i
n)′ is a vector of nonnegative weights

consistent with the sparsity of the communication graph
G(t) = (N, E(t)). A link (j, i) ∈ E(t) exists if player j is
a neighbor of player i at time t, i.e. if player i renegotiates
allocations with player j at time t.

aij(t)

i

j

Fig. 1. Communication graph.

For each player i ∈ N , the input ui(·) is the payoff of a
repeated two-player game between player i (Player i1) and an
(external) adversary (Player i2). Let S1 and S2 be the finite
set of actions of players i1 and i2 respectively and let us de-
note the set of mixed actions pairs by ∆(S1) × ∆(S2) (set
of probability distributions on S1 and S2). For every pair of
mixed strategies (p(t), q(t)) ∈ ∆(S1) ×∆(S2) for player i1
and i2 at time t, the expected payoff is

ui(t) =
∑
j∈S1,k∈S2

pj(t)φ(j, k)qk(t),∑
j∈S1

pj(t) = 1∑
k∈S2

qk(t) = 1.
(2)

Essentially, in the above game φ(j, k) is the vector payoff
when players i1 and i2 play pure strategies j ∈ S1 and k ∈ S2

respectively.
Our goal is to study contractivity and invariance of sets

for the collective dynamics (1)-(2).
In the sequel, we rewrite dynamics (1)-(2) in the compact
form: 

xi(t+ 1) = wi(t) + ui(t),

wi(t) =
[∑n

j=1 a
i
j(t)xj(t)

]
.

ui(t) =
∑
j∈S1,k∈S2

pj(t)φ(j, k)qk(t),

(p(t), q(t)) ∈ ∆(S1)×∆(S2).

(3)

p(t) ∈ ∆(S1)

R|S1|

q(t) ∈ ∆(S2)

R|S2|

Fig. 2. Spaces of mixed strategies for the two players.

1.1. Motivations

The set X introduced above can be thought of as the core of
a coalitional game with Transferable Utilities (TU game).

A coalitional TU game is defined by a pair < N, η >,
where N = {1, . . . , n} is a set of players and η : 2N →
R a function defined for each coalition S ⊆ N (S ∈ 2N ).
The function η determines the value η(S) assigned to each
coalition S ⊂ N , with η(∅) = 0. We let ηS be the value η(S)
of the characteristic function η associated with a nonempty
coalition S ⊆ N . Given a TU game < N, η >, let C(η) be
the core of the game,

C(η) =

x ∈ Rn
∣∣∣ ∑
j∈N

[x]j = ηN ,

∑
j∈S

[x]j ≥ ηS for all nonempty S ⊂ N

 .

Essentially, the core of the game is the set of all alloca-
tions that make the grand coalition stable with respect to all
subcoalitions. Condition

∑
j∈N [x]j = ηN is also called

efficiency condition. Condition
∑
j∈S [x]j ≥ ηS for all

nonempty S ⊂ N is referred to as “stability with respect
to subcoalitions”, since it guarantees that the total amount
given to the members of a coalition exceeds the value of the
coalition itself.

1.2. Main assumptions

Following [6] (see also [5]) we can make the following as-
sumptions on the information structure. We let A(t) be the
weight matrix with entries aij(t).

Assumption 1 Each matrix A(t) is doubly stochastic with
positive diagonal. Furthermore, there exists a scalar α > 0
such that aij(t) ≥ α whenever aij(t) > 0.

At any time, the instantaneous graph G(t) need not be
connected. However, for the proper behavior of the process,
the union of the graphs G(t) over a period of time is assumed
to be connected.

Assumption 2 There exists an integer Q ≥ 1 such that the
graph

(
N,
⋃(t+1)Q−1
τ=tQ E(τ)

)
is strongly connected for every

t ≥ 0.

For simplicity the one-shot vector-payoff game (S1, S2, xi)
is denoted by Gi.

Let λ ∈ Rn. Denote by 〈λ,Gi〉 the zero-sum one-shot
game whose set of players and their action sets are as in the
game Gi, and the payoff that player 2 pays to player 1 is
λ′φ(j, k) for every (j, k) ∈ S1 × S2.

The resulting zero-sum game is described by the matrix

Φλ = [λ′φ(j, k)]j∈S1,k∈S2
.



As a zero-sum one-shot game, the game 〈λ,Gi〉 has a value,
denoted

vλ := min
p∈∆S1

max
q∈∆S2

p′Φλq = max
q∈∆S2

min
p∈∆S1

p′Φλq.

Following [2, 3], we assume next that the value of the
projected game is always negative.

Assumption 3 The payoff of the game φ(j, k) is bounded and
it holds

vλ < 0, for all λ ∈ Rn.

The above condition is among the foundations of approach-
ability theory as it guarantees that the average vector payoff
of a two-player repeated game converges almost surely to X
(see, e.g., [2] and also [3], chapter 7).

2. MAIN RESULT

The main result of this paper establishes contractivity and in-
variance for the collective dynamics (3). Before stating the
theorem, we need to introduce two lemmas. The next lemma
establishes that the space averaging step in (1) reduces the to-
tal distance (i.e. the sum of distances) of the states from the
set X .

Lemma 1 Let Assumption 1 hold. Then the total distance
from X decreases when replacing the states xi(t) by their
space averages wi(t), i.e.,

n∑
i=1

dist(wi(t), X) ≤
n∑
i=1

dist(xi(t), X).

Proof. Given in the appendix. �
As a preliminary step to the next result, observe that, from

the definition of dist(·, X) and from (1) and (3), it holds

dist(xi(t+ 1), X)2 = ‖xi(t+ 1)− PX [xi(t+ 1)]‖2

≤ ‖xi(t+ 1)− PX [wi(t)]‖2

= ‖wi(t) + ui(t)− PX [wi(t)]‖2

= ‖wi(t)− PX [wi(t)]‖2 + ‖ui(t)‖2

+ 2(wi(t)− PX [wi(t)])
′ui(t).

(4)

The following lemma states that, under the approachabil-
ity assumption, the new input ui(t) reduces the distance of
each single average state wi(t) from X .

Lemma 2 Let Assumption 3 hold. Then, there exists a lower
bound for dist(wi(t), X) such that

dist(xi(t+ 1), X) < dist(wi(t), X), ∀i = 1, . . . , n.

Proof. Given in the appendix. �

Denote by

Φ =
{
x ∈ Rn|dist(xi(t), X) ≥ L

2φ ,

φ ≥ − vλ
dist(xi(t),X) , for all λ ∈ Rn

}
Ψ =

{
(x1, . . . , xn) ∈ Rn × . . .× Rn|∑n

i=1 dist(xi(t), X)2 ≤
∑n
i=1

(
L
2φ

)2

+ nL
} (5)

We are now ready to state the main result.

Theorem 1 (Contractivity and invariance) Let Assump-
tions 1-3 hold and assume that xi(t) ∈ Φ for all i = 1, . . . , n.
Then it holds

n∑
i=1

dist(xi(t+ 1), X)2 <

n∑
i=1

dist(xi(t), X)2. (6)

On the other hand, if xi(t) 6∈ Φ ⊂ Ψ for all i = 1, . . . , n

n∑
i=1

dist(xi(t+ 1), X)2 ≤
n∑
i=1

(
L

2φ

)2

+ nL. (7)

Proof. Given in the appendix. �
Essentially the above result proves that there exist both

contractive sets and invariant sets for the collective dynamics.

Φ
Xxi(t)

xi(t+ 1)

Ψ

(a) (b)

Fig. 3. Theorem 1: contractivity (a) and invariance (b)

3. CONCLUSIONS

We have analyzed convergence conditions of a distributed al-
location process arising in the context of TU games. Future
directions include the extension of our results to population
games with mean-field interactions, and averaging algorithms
driven by Brownian motions.
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Appendix
Proof of Lemma 1. By convexity of the distance function
dist(·, X) and from (3) we have

dist(wi(t), X) ≤
n∑
j=1

aij(t)dist(xj(t), X).

Summing over i = 1, . . . , n both sides we obtain

n∑
i=1

dist(wi(t), X) ≤
n∑
i=1

n∑
j=1

aij(t)dist(xj(t), X)

=

n∑
j=1

(
n∑
i=1

aij(t)

)
dist(xj(t), X) =

n∑
j=1

dist(xj(t), X),

where the last equality follows from the stochasticity of A(t)
in Assumption 1. This concludes the proof.

Proof of Lemma 2. Rearranging equation (4) we obtain

‖xi(t+ 1)− PX [xi(t+ 1)]‖2

−‖wi(t)− PX [wi(t)]‖2 ≤
‖ui(t)‖2 + 2(wi(t)− PX [wi(t)])

′ui(t).

(8)

Now, from Assumption 3 we also have that for any
wi(t) ∈ Rn, there exists a mixed strategy p(t) ∈ ∆(S1)
for Player i1 such that, for all mixed strategy q(t) ∈ ∆(S2)
of Player i2, there exists L > 0 s.t. ∀t ≥ 0 ‖ui(t)‖2 ≤ L,
and ui(·) satisfies

(wi(t)− PX(wi(t)))
′
ui(t) ≤ −φ‖wi(t)−PX(wi(t))‖ < 0,

where ui(t) =
∑
j∈S1

∑
k∈S2

pj(t)φ(j, k)qk(t).
Then there exists a great enough value for ‖wi(t) −

PX [wi(t)]‖ such that from Assumption 3 the left hand side in
(8) is negative. From the boundedness of setX and of vectors
ui(t)we have

dist(xi(t+ 1), X)2 − dist(wi(t), X)2

≤ (L− 2φ‖wi(t)− PX [wi(t)]‖).
(9)

Taking ‖wi(t)− PX [wi(t)]‖ > L
2φ > 0 we have

dist(xi(t+ 1), X)2 − dist(wi(t), X)2

≤ (L− 2φ‖wi(t)− PX [wi(t)]‖) < 0
(10)

and this concludes the proof.

Proof of Theorem 1. From Lemma 1 and 2 and rearrang-
ing (4), we have

n∑
i=1

[
dist(xi(t+ 1), X)2 − dist(xi(t), X)2

]
≤

n∑
i=1

[
‖ui(t)‖2 + 2(wi(t)− PX [wi(t)])

′ui(t)
]

≤ nL− 2φ

n∑
i=1

‖wi(t)− PX [wi(t)]‖

≤ nL− 2φ

n∑
i=1

dist(xi(t+ 1, X)) < 0

where the last inequality is due to Assumption 3. Summing
over t = 0, . . . , τ − 1, and noting that ‖ui(t)‖2 is bounded
(from Assumption 3), we obtain

n∑
i=1

[
dist(xi(τ), X)2 − dist(xi(0), X)2

]
≤ τn[L− 2φε]

which concludes the first part of the proof (contractivity).
For the second part (controlled invariance) suppose

dist(xi(t), X) ≤ L
2φ . Then we have

n∑
i=1

[
dist(xi(t+ 1), X)2 − dist(xi(t), X)2

]
≤ nL < 0

from which we obtain

n∑
i=1

dist(xi(t+ 1), X)2 ≤
n∑
i=1

dist(xi(t), X)2 + nL

≤
n∑
i=1

(
L

2φ

)2

+ nL

and this concludes our proof.


