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Abstract: The paper develops a receding horizon control strategy to guarantee closed loop
convergence and feasibility in respect of soft constraints. Earlier work (Cannon et al., 2007)
presented results addressing closed loop stability in the case of multiplicative uncertainty only.
The present paper extends these results to the more general case of additive and multiplicative
uncertainty and proposes a method of handling probabilistic constraints. The results are
illustrated by a design study considering control of a wind turbine in order to maximize power
capture subject to constraints on fatigue damage.
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1. INTRODUCTION

Model predictive control (MPC) strategies are uniquely
suited to using available information on the current
state to optimize predicted behaviour in the presence
of constraints, thereby providing a practicable solution
to a closed-loop infinite dimensional optimization prob-
lem (Scokaert and Rawlings, 1998). Most applications
however, apart from being constrained, are also subject
to uncertainty. This could be handled by robust MPC
techniques (Kothare et al., 1996; Mayne et al., 2000) which
assume an uncertainty description that consists of bounds
on the unknown parameters. However, such an approach
is conservative because it fails to take account of infor-
mation that is often available about the distribution of
uncertainty. The difficulty here is that a systematic, non-
conservative, efficient means for propagating the effects
of uncertainty over a prediction horizon is needed; this
remains largely an open question despite several important
contributions (Batina et al., 2002; van Hessem et al., 2001).

A computationally convenient approach was proposed in
Cannon et al. (2007), based on an autonomous descrip-
tion of the dynamics governing the evolution of future
input and state predictions (Kouvaritakis et al., 2000).
The paper uses the concept of probabilistic invariance to
propose a strategy for handling soft constraints in the case
of multiplicative uncertainty. The purpose of the current
paper is to extend the approach to the more challenging
problem of systems subject to both additive and multi-
plicative uncertainty. The presence of additive uncertainty
implies that it is not possible to design control laws on the
basis of mean square stability criteria, under which the
convergence of state predictions would be ensured (with
probability 1). The paper therefore determines the non-
zero asymptotic limit of predicted behaviour and redefines
the control objective based on deviations away from this
limit. The paper then uses probabilistic invariance to con-
struct an algorithm that provides desirable closed loop
properties: asymptotic convergence of the state variance
and feasibility of particular types of soft constraints.

Motivated by problems involving fatigue constraints, the
soft constraints considered here take the form of limits on
the expected number of samples at which a generalized
system output exceeds specified bounds over a given
horizon. A simplified analysis method is presented to
demonstrate the effectiveness of probabilistic invariance
in converting these constraints into probabilistic state
constraints. The results of the paper are illustrated by a
design example based on a simulated wind turbine control
problem. The aim is to maximize profit by maximizing
power capture while respecting constraints on high cycle
fatigue damage (due to wind speed fluctuations) in order
to prevent fatigue failure of the turbine blades over the
required lifetime of the turbine.

2. PROBLEM FORMULATION

Consider the uncertain linear system described by
xk+1 = Akxk + Bkuk + dk, x ∈ Rnx , u ∈ Rnu . (1)

Let θk ∈ Rm denote the vector of elements of Ak, Bk, dk

that are subject to uncertainty, and assume that {θk, k =
0, 1, . . .} is a temporally independent and identically dis-
tributed (i.i.d.) sequence of Gaussian random variables:
θk ∼ N (θ̄, Σθ). Then θk = θ̄ + UΛ1/2qk, for i.i.d. qk ∼
N (0, I) (where U,Λ denote eigenvector and eigenvalue
matrices of the covariance matrix Σθ), so the uncertainty
description can be formulated as

[Ak Bk dk] =
[
Ā B̄ 0

]
+

m∑

j=1

[
Ãj B̃j g̃j

]
qk,j (2)

with qk = [qk,1 · · · qk,m]T ∼ N (0, I).

We define predicted future control sequences using a dual
mode prediction paradigm (Mayne et al., 2000), according
to which the control inputs over the first N steps are free
variables, and a prescribed state feedback law is assumed
over the subsequent infinite prediction horizon. Therefore
the future control sequence predicted at time k, {uk+i, i =
0, 1, . . .}, can be formulated as (e.g. Rossiter et al., 1998):
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uk+i =
{

Kxk+i + ci|k i = 0, . . . , N − 1
Kxk+i i = N, N + 1, . . .

(3)

The dependence of uk+i on the predicted state trajectory
xk+i (which is necessary due to the feedback law used in
predictions for i ≥ N) coupled with the Gaussian assump-
tion of (2) imply that input and state constraints must be
soft. This means that constraint violations may occur at
any given time, provided that the likelihood of constraint
violation does not exceed a specified bound. To make this
more precise, define ψk as a system output, which may be
subject to additive and multiplicative uncertainty:

ψk = Ckxk + Dkuk + ηk, ψk ∈ Rn
ψ

[Ck Dk ηk] =
[
C̄ D̄ 0

]
+

m∑

j=1

[
C̃j D̃j η̃j

]
qk,j

(4)

with qk = [qk,1 · · · qk,m]T ∼ N (0, I).

We consider the constraint that the expected number
of samples at which ψk lies outside a desired interval
Iψ = [ψL, ψU ] over a future horizon Nc should not exceed
a bound Nmax:

1
Nc

Nc−1∑

i=0

Pr{ψk+i %∈ Iψ} ≤ Nmax/Nc. (5)

This statement can be translated into probabilistic con-
straints on the model state (as discussed in section 4), and
hence into constraints invoked in the online MPC opti-
mization (discussed in section 6). Within this framework
soft input constraints are a special case of (4),(5) with
Ck = 0, Dk = I, ηk = 0.

The use of feedback and feedforward actions prescribed
by (3) leads to an autonomous description of the prediction
dynamics (Kouvaritakis et al., 2000). Thus predictions at
time k are generated by

zi+1|k = Ψk+izi|k + δk+i, i = 0, 1, . . .

z0|k =
[
xk

fk

]
, fk =




c0|k
...

cN−1|k





[Ψk δk] =
[
Ψ̄ 0

]
+

m∑

j=1

[
Ψ̃j γ̃j

]
qk,j

Ψ̄ =
[
Φ̄ B̄E
0 M

]
, Ψ̃j =

[
Φ̃j B̃jE
0 0

]
, γ̃j =

[
g̃j

0

]

(6)

where the plant state xk is assumed measurable at time k,
Φ̄ = Ā + B̄K, Φ̃j = Ãj + B̃jK, and

M =





0 I 0 · · · 0
0 0 I · · · 0
...

...
...

0 0 0 · · · 0



 , E = [I 0 · · · 0]

with I denoting the identity matrix in Rnu×nu . In this
formulation, the plant state xk+i predicted at time k is
then given by xk+i = ΓT zi, where Γ = [I 0]T .

The advantage of (6) over the conventional formulation of
prediction dynamics is that constraints on a predicted out-
put sequence at time k: {ψk+i, i = 0, 1, . . .} can be invoked
conveniently through constraints on the initial prediction
system state z0|k. Since (6) is autonomous, the implied

constraint set for z0|k can be computed using one-step-
ahead invariance considerations. This provides significant
computational advantages in the deterministic case, but in
the stochastic case it is of vital importance since it removes
the need to propagate the effects of uncertainty over the
prediction horizon. Given that both the predicted states
and the model parameters are stochastic, such propaga-
tion would require the distributions of future states to be
computed numerically (see Batina et al., 2002; Li et al.,
2002), implying a prohibitive computational load.

3. RECEDING HORIZON PERFORMANCE
OBJECTIVE

Let Ek(X) denote the expected value of a random variable
X, conditional on information available at time k, namely
the state measurement xk. This section considers the pre-
dictions made at a single instant k, and to simplify nota-
tion we therefore write zi = zi|k. Under the assumption
that (6) is mean square stable, it can be shown (see Kush-
ner, 1971) that the covariance matrix Ek(zizT

i ) converges
to a finite limit as i →∞ along the predicted trajectories
of (6), provided that Ψk+i and δk+i are independent. For
completeness we give the extension of this result to the
case that Ψk+i and δk+i are not independent.
Lemma 1. The sequence {zi, i = 0, 1, . . .} generated by
(6) satisfies limi→∞ Ek(zi) = 0 and limi→∞ Ek(zizT

i ) = Θ,
where Θ is the solution of the Lyapunov equation

Θ− Ψ̄ΘΨ̄T −
m∑

j=1

Ψ̃jΘΨ̃T
j =

m∑

j=1

γ̃j γ̃
T
j (7)

if and only if there exists P > 0 satisfying

P − Ψ̄T P Ψ̄−
m∑

j=1

Ψ̃T
j P Ψ̃j > 0. (8)

Proof: Given the linearity of (6), the sequence {zi} is
the sum of the sequences {ζi} and {ξi} generated by the
following two systems:

ζi+1 = Ψk+iζi, ζ0 = z0 (9a)
ξi+1 = Ψk+iξi + δk+i, ξ0 = 0 (9b)

Condition (8) is necessary and sufficient (see e.g. Boyd
et al., 1994) for mean square stability of (9a) and therefore
ensures that Ek(ζiζT

i ) → 0, and hence ζi → 0 almost
surely, as i → ∞. From (9b) we have Ek(ξi) = 0 for all
i, and it follows that Ek(zi) → 0 as i → ∞. Since ξi is
independent of Ψk+i, (9b) also gives

Ek(ξi+1ξ
T
i+1) = Ek{(Ψk+iξi + δk+i)(Ψk+iξi + δk+i)T }

= Ek(Ψk+iξiξ
T
i ΨT

k+i) + Ek(δk+iδ
T
k+i)

= Ψ̄Ek(ξiξ
T
i )Ψ̄T +

m∑

j=1

Ψ̃jEk(ξiξ
T
i )Ψ̃T

j +
m∑

j=1

γ̃j γ̃
T
j . (10)

Let Θ̂i = Ek(ξiξT
i )−Θ, then from (7) and (10) we have

Θ̂i+1 = Ψ̄Θ̂iΨ̄T +
m∑

j=1

Ψ̃jΘ̂iΨ̃T
j .

From the mean square stability condition of (8), it follows
that Θ̂i → 0, so that Ek(ξiξT

i ) → Θ as i → ∞. Finally,
note that Ek(zizT

i ) → Ek(ξiξT
i ) since ζi → 0 as i →∞. !
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For the case of no additive uncertainty, i.e. if γ̃j = 0
for j = 1, . . . ,m in (6), the existence of P satisfying (8)
implies that limi→∞ E(zizT

i ) = 0. In this case therefore,
the predicted cost

Jk =
∞∑

i=0

Ek(xT
k+iQxk+i + uT

k+iRuk+i)

=
∞∑

i=0

Ek(zT
i Q̃zi), Q̃ =

[
Q + KT RK KT RE

ET RK ET RE

] (11)

is well-defined, and hence is a suitable candidate for a
predicted performance cost to be minimized online by
a receding horizon control law. However in the case of
persistent non-zero additive uncertainty, it follows from
Lemma 1 that the stage cost of (11) converges to a nonzero
limit along trajectories of (6):

lim
i→∞

Ek(zT
i Q̃zi) = tr(ΘQ̃)

(where tr(M) denotes the trace of M). Therefore the
cost (11) is infinite in this case, and to obtain a finite
cost, the predicted cost defined in (11) must be modified:

Jk =
∞∑

i=0

Ek(Li), Li = zT
i Q̃zi − tr(ΘQ̃). (12)

The following result shows that the cost (12) can be
evaluated as a quadratic function of the initial state of
the prediction dynamics (6).
Theorem 2. The cost (12), evaluated along trajectories
of (6), is given by

Jk =
[
z0

1

]T

P̃

[
z0

1

]
, P̃ =

[
Pz Pz1

P1z P1

]

where Pz, P1z = PT
z1, and P1 are defined uniquely by

Pz − Ψ̄T PzΨ̄−
m∑

j=1

Ψ̃T
j PzΨ̃j = Q̃ (13a)

P1z =
m∑

j=1

γ̃T
j PzΨ̃j(I − Ψ̄)−1 (13b)

P1 = − tr(ΘPz). (13c)

Proof: Define Vi = zT
i Pzzi +zT

i Pz1 +P1zzi +P1, then from
zi+1 = Ψk+izi + δk+i we have

Ek(Vi)− Ek(Vi+1) = Ek

(
zT
i

[
Pz − E(ΨT

k+iPzΨk+i)
]
zi

)

+2
[
P1z(I−Ψ̄)−E(δT

k+iPzΨk+i

)
]Ek(zi)−E(δT

k+iPzδk+i).
(14)

But (13a) gives the first term of the RHS as

Ek

(
zT
i

[
Pz − E(ΨT

k+iPzΨk+i)
]
zi

)
= Ek(zT

i Q̃zi). (15)
Post-multiplying (7) by Pz and extracting the trace gives

tr(ΘPz − Ψ̄ΘΨ̄T Pz −
m∑

j=1

Ψ̃jΘΨ̃T
j Pz) =

tr(Θ[Pz − Ψ̄T PzΨ̄−
m∑

j=1

Ψ̃T
j PzΨ̃j ]) =

m∑

j=1

tr(γ̃j γ̃
T
j Pz)

and (13a) therefore implies

tr(ΘQ̃) =
m∑

j=1

γ̃T
j Pz γ̃j = E(δT

k+iPzδk+i). (16)

Substituting (15) and (16) into (14), and using (13b) gives
Ek(Vi)− Ek(Vi+1) = Ek(zT

i Q̃zi)− tr(ΘQ̃),
and by summing this recursion over all i ≥ 0 we obtain

V0 − lim
i→∞

Ek(Vi) =
∞∑

i=0

Ek(Li) = Jk.

The proof is completed by showing that Ek(Vi) → 0 as
i → ∞. This follows from the definition of Vi and (13c),
which give

Ek(Vi) = Ek(zT
i Pzzi) + 2P1zEk(zi)− tr(ΘPz)

and therefore
lim

i→∞
Ek(Vi) = lim

i→∞
Ek(zT

i Pzzi)− tr(ΘPz)

= lim
i→∞

tr
[
Ek(ziz

T
i )Pz

]
− tr(ΘPz) = 0

where limi→∞ Ek(zi) = 0 and limi→∞ Ek(zizT
i ) = Θ (from

Lemma 1) have been used. !

4. A FRAMEWORK FOR HANDLING SOFT
CONSTRAINTS

This section describes a method of analysis that enables
the conversion of soft constraints (5) into probabilistic
constraints on the state of (1). Let E1 ⊂ E2 ⊂ Rnx and
assume that xk can lie in either S1 = E1 or S2 = E2 −
E1. This scenario contravenes the assumption that the
uncertainty in (2) has infinite support, but it is based on
the assumption that E2 is defined so that the probability
of xk %∈ E2 is negligible. The analysis could be made less
conservative (and more realistic) by considering a sequence
of nested sets: E1 ⊂ · · · ⊂ Er, but r = 2 is used here to
simplify presentation.

Define the conditional probabilities
Pr(ψk %∈ Iψ | xk ∈ Sj) = pj , j = 1, 2. (17)

Under the assumption that p1 is small, so that S1 is the
safe region of state space, it is convenient (though possibly
conservative), to assume that S2 is unsafe and set p2 = 1.
Define also the matrix of transition probabilities

Π =
[
p11 p12

p21 p22

]
(18)

where pij is the probability that the online algorithm steers
the state in one step from from Sj to Si. Then over i steps
we have [

Pr(xk+i ∈ S1)
Pr(xk+i ∈ S2)

]
= Πi

[
Pr(xk ∈ S1)
Pr(xk ∈ S2)

]

so that the probability of a constraint violation at time
k + i is given by

Pr(ψk+i %∈ Iψ) = [p1 p2] Πi

[
Pr(xk ∈ S1)
Pr(xk ∈ S2)

]

Because of the special structure of Π (see Kushner, 1971),
its eigenvalue/vector decomposition is given by

Π =[ w1 w2]
[
1 0
0 λ2

] [
vT
1

vT
2

]
, 0 ≤ λ2 < 1.

Therefore, as i → ∞, the rate at which constraint viola-
tions accumulate given xk ∈ Sj tends to

Rj = [p1 p2]w1v
T
1 ej , j = 1, 2 (19)

where e1, e2 denote the first and second columns of the
2× 2 identity matrix. If R1 and R2 are less than the limit
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Nmax/Nc of (5), then it follows that there exists finite i∗

such that, for all i ≥ i∗, the total expected number of con-
straint violations will be less than i∗Nmax/Nc. Provided i∗

does not exceed the horizon Nc, it then follows that the
probabilistic formulation (17),(18) ensures that the soft
constraints (5) on ψ are satisfied.

5. PROBABILISTIC INVARIANCE AND
PROBABILISTIC CONSTRAINTS

In the scenario discussed in section 4, the satisfaction of
soft constraints on ψ is dependent on the probability pi

of constraint violation given that the state lies in the set
Ei and on the transition probabilities pij between these
sets. This section proposes a procedure for designing E1

and assigning probabilities to p1 and p11. This is done
below using the concept of probabilistic invariance, which
is defined as follows.
Definition 3. (Cannon et al., 2007). A set S ⊂ Rnx is in-
variant with probability p (i.w.p. p) under a given control
law if xk+1 ∈ S with probability p whenever xk ∈ S.

The approach is based on ellipsoidal sets, E ⊂ Rnx+Nnu

and Ex ⊂ Rnx defined:
E = {z : zT P̂ z ≤ 1}
Ex = {x : xT P̂xx ≤ 1}, P̂x = (ΓT P̂−1Γ)−1

so that Ex is the projection of E onto the x-subspace (i.e.
f exists such that z = [xT fT ]T ∈ E whenever x ∈ Ex).
Let Q denote a set that contains the vector of uncertain
parameters in (2) with a specified probability p:

Pr{qk ∈ Q} ≥ p. (20)
Since ‖qk‖22 has a chi-square distribution with m degrees
of freedom, a set with this property is the hypersphere
{q : ‖q‖2 ≤ r}, where Pr(χ2(m) ≤ r2) = p. Earlier
work (Cannon et al., 2007) used ellipsoidal confidence
regions derived from this hypersphere to compute i.w.p.
sets, but to accommodate the additive uncertainty in (1),
we assume here that Q is polytopic with vertices q(i),
i = 1, . . . , ν. Thus any polytope containing the hyper-
sphere {q : ‖q‖2 ≤ r} provides a convenient (possibly
conservative) choice for Q. The following Lemma gives
conditions for probabilistic invariance of Ex.
Lemma 4. Ex is i.w.p. p under (3) for any fk such that
z0|k ∈ E if there exists a scalar λ ∈ [0, 1] satisfying




P̂−1

x ΓT Ψ(q(i))P̂−1 ΓT γ(q(i))
P̂−1Ψ(q(i))T Γ λP̂−1 0

γ(q(i))T Γ 0 1− λ



 ≥ 0 (21)

for i = 1, . . . , ν, where Ψ(qk) = Ψ̄ +
∑m

j=1 Ψ̃jqk,j and
γ(qk) =

∑m
j=1 γ̃jqk,j .

Proof: From (20) it follows that Pr(xT
k+1P̂xxk+1 ≤ 1) ≥ p

if
xT

k+1P̂xxk+1 ≤ 1 ∀z0|k ∈ E , ∀qk ∈ Q (22)
where, under (3), xk+1 is given by xk+1 = ΓT Ψ(qk)z0|k +
ΓT γ(qk). By the S-procedure (22) is equivalent to the
existence of λ ≥ 0 satisfying
1− (Ψ(q)z + γ(q))T ΓP̂xΓT (Ψ(q)z + γ(q)) ≥ λ(1− zT P̂ z)
for all z and all q ∈ Q, or equivalently[

λP̂ 0
0 1− λ

]
−

[
Ψ(q)T

γ(q)T

]
ΓP̂xΓT [Ψ(q) γ(q)] ≥ 0, ∀q ∈ Q.

Using Schur complements this can be expressed as a LMI
in q, which, when invoked for all q ∈ Q is equivalent to (21)
for some λ ∈ [0, 1]. !

Additional constraints on P̂ are needed in order to con-
strain the conditional probability that ψk lies outside the
desired interval Iψ given that z0|k lies in E . Re-writing (4)
in the form:

ψk = Ĉ(qk)z0|k + η(qk)

Ĉ(qk) = C̄ΓT + D̄K̂ +
m∑

j=1

(C̃jΓT + D̃kK̂)qk,j

with K̂ = [K E], the following result is based on the
confidence region Q.
Lemma 5. Pr(ψk %∈ Iψ | z0|k ∈ E) ≤ 1− p if

ψL ≤ η(q(i)) ≤ ψU (23)
for i = 1, . . . , ν and

[
Ĉ(q(i))P̂−1Ĉ(q(i))T

]
jj
≤

[
ψU − η(q(i))

]2
j

(24a)
[
Ĉ(q(i))P̂−1Ĉ(q(i))T

]
jj
≤

[
η(q(i))− ψL

]2
j

(24b)

for i = 1, . . . , ν and j = 1, . . . , nψ, where [ ]ij denotes
element ij.

Proof: For given q, maxz∈E [Ĉ(q)z]j = [Ĉ(q)P̂−1Ĉ(q)T ]1/2
jj ,

and it follows from (20) that Pr(ψk ∈ Iψ) ≥ p whenever
z0|k ∈ E if

[
Ĉ(q)P̂−1Ĉ(q)T

]1/2

jj
≤

[
ψU − η(q)

]
j

(25a)
[
Ĉ(q)P̂−1Ĉ(q)T

]1/2

jj
≤

[
η(q)− ψL

]
j

(25b)

for all q ∈ Q and j = 1, . . . , nψ. Since (25a,b) are convex
in q, the equivalent constraints (23),(24a,b) are obtained
by invoking (25a,b) at each vertex of the polytope Q.

!

With E1 defined as Ex in the example outlined in section 4,
the values of p1 and p11 can specified using the constraints
of lemmas 4 and 5. To maximize the safe region of state
space, it is clearly desirable to maximize Ex, which can be
formulated as

maximize
P̂−1, λ∈[0,1]

det(P̂−1
x ) subject to (21),(23),(24a,b) (26)

Remark 6. If λ is a constant, then the constraints in (26)
are LMIs in P̂−1. Therefore Ex can be optimized by
successively maximizing det(P̂−1

x ) over the variable P̂−1

subject to (21),(23),(24a,b), with the scalar λ fixed at a
sequence of values in the interval [0, 1].
Remark 7. In the case of input constraints: uL ≤ uk ≤ uU ,
the constraints of lemma 5 reduce to uL ≤ 0 ≤ uU and

[
K̂T P̂−1K̂

]
jj
≤

[
uU

]2
j
,

[
K̂T P̂−1K̂

]
jj
≤

[
uL

]2
j

(27)

for j = 1, . . . , nu. In the example of section 4 with E1 = Ex,
this implies p1 = 0.

6. RECEDING HORIZON CONTROL

If the plant state is maintained inside the set Ex with
probability p11 and is returned to Ex with probability
greater than or equal to p12, then by the arguments of
section 4, both the predicted and closed loop responses
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are guaranteed to satisfy the constraints (5). The aim of
the online MPC is therefore two-fold: (a) minimize the
cost (12) subject to z0|k ∈ E whenever xk ∈ Ex; or (b)
return the state to Ex as quickly as possible whenever xk %∈
Ex. The latter is achieved by driving the expected value of
xk+1 as close to (or as far inside) Ex as possible. This
strategy is an indirect but computationally convenient
means of increasing the value of p12. The algorithm can
be stated as follows.
Algorithm 1. At times k = 0, 1, . . .:
1. If xk ∈ Ex, compute

f∗k = arg min
fk

[
z0|k
1

]T

P̃

[
z0|k
1

]
subject to zT

0|kP̂ z0|k ≤ 1.

(28)
2. If xk %∈ Ex, compute

f∗k = arg min
fk

zT
0|kΨ̄ΓP̂xΓT Ψ̄z0|k

subject to
[
z0|k
1

]T

P̃

[
z0|k
1

]
≤

[
xk

Mf∗k−1
1

]
T

P̃

[
xk

Mf∗k−1
1

]
. (29)

3. Implement uk = Kxk + Ef∗k .

Both (28) and (29) require the minimization of a convex
quadratic cost subject to a convex quadratic constraint,
which can be solved efficiently (using e.g. the technique
discussed in Kouvaritakis et al., 2002). The constraint
in (29) is introduced in order to ensure that the time-
average of the expected value of zT

0|kQ̃z0|k converges to a
finite limit, as shown by the following theorem.
Theorem 8. The closed loop response of (1) under algo-
rithm 1 satisfies

lim
n→∞

1
n

n∑

k=0

E0

([
xk

f∗k

]T

Q̃

[
xk

f∗k

])
≤ tr(ΘQ̃). (30)

Proof: Let J∗k denote the value of Jk corresponding to the
optimal f∗k computed by algorithm 1 at time k. Then

Ek(J∗k+1) = Ek(J∗k+1|xk+1 ∈ Ex) Pr(xk+1 ∈ Ex)
+ Ek(J∗k+1|xk+1 %∈ Ex) Pr(xk+1 %∈ Ex)

where J∗k+1 necessarily satisfies

J∗k+1 ≤
[
Ψkz0|k + δk

1

]T

P̃

[
Ψkz0|k + δk

1

]

(on account of the objective in (28) if xk+1 ∈ Ex or because
of the constraint in (29) if xk+1 %∈ Ex), and therefore

Ek(J∗k+1) ≤
[
z0|k
1

]T

E
([

Ψk δk

0 1

]T

P̃

[
Ψk δk

0 1

]) [
z0|k
1

]
.

(31)
However, from (13a,b,c) it follows that

E
([

Ψk δk

0 1

]T

P̃

[
Ψk δk

0 1

])
= P̃ −

[
Q̃ 0
0 − tr(ΘQ̃)

]

and (31) therefore implies that
J∗k − Ek(J∗k+1) ≥ zT

0|kQ̃z0|k − tr(ΘQ̃).
Recursion of this equation for k = 0, 1, . . . gives

lim
n→∞

1
n

(
J∗0−E0(J∗n)

)
≥ lim

n→∞

1
n

n∑

i=0

E0(zT
0|kQ̃z0|k)−tr(ΘQ̃)

and, since J∗n is lower bounded (because Pz > 0 in (13a)),
it follows that

lim
n→∞

1
n

n∑

i=0

E0(zT
0|kQ̃z0|k) ≤ tr(ΘQ̃)

which implies the time-average bound of (30). To complete
the proof, note that the constraint in (28) is feasible
whenever xk ∈ Ex due to the definition of Ex, and similarly
the feasibility of fk = Mf∗k−1 implies that the constraint
in (29) is necessarily feasible. !
Corollary 9. If the probabilities p11, p12 are such that,
for the conditional constraint violation probability p1,
the expected rates R1, R2 of accumulation of constraint
violations are within allowable limits, then the bound (5)
will be satisfied in closed loop operation under algorithm 1.

Proof: This follows directly from the assumptions on
R1, R2 and the arguments of section 4. !

The algorithm must be initialized by computing P̂ . A
possible procedure for this is as follows: specify initial
values p0

11, p
0
12 for p11, p12. Then, from the bound Nmax/Nc

on the allowed rate of accumulation of constraint viola-
tions, the analysis of section 4 can be used to compute
the minimum permissible value for p1. Given p11, p12 and
p1, the uncertainty set Q can be constructed and the
constraints (21),(23),(24a,b) formulated, allowing P̂ to be
optimized by solving (26). Once P̂ has been determined,
the actual value of p12 can be computed (e.g. by Monte
Carlo simulation); this must be greater than or equal to
p0
12 to ensure satisfaction of (5). If this is not the case, then

P̂ must be re-computed using reduced values for p0
11, p

0
12.

Note that the computation of P̂ is performed offline.
Remark 10. If several desired intervals are specified for ψ,
each with a bound on the expected number of violations,
then the appropriate value for p1 can be computed based
on a weighted average rate of constraint violation. This
situation is common when constraints on fatigue damage
due to stress cycles of varying amplitudes are considered.

7. SIMULATION EXAMPLE

Consider the problem of maximizing the power capture
of a variable pitch wind turbine while respecting limits on
turbine blade fatigue damage caused by wind fluctuations.
It is common practice to assume that the statistical
properties of the wind remain constant over a period
of order 10 minutes (Burton et al., 2001). Below rated
average wind speed (but above cut-off wind speed), the
control objective becomes that of maximizing efficiency,
which can be achieved by regulating blade pitch angle
about a given setpoint (determined by maximizing an
appropriate function of wind speed, pitch angle, and blade
angular velocity). This however is to be performed subject
to constraints on the stress cycles experienced by the
blades in order to achieve a specified fatigue life.

A simplified model of blade pitch rotation is given by

J
d2β

dt2
+ c

dβ

dt
= Tm − Tp (32)

where β is the blade pitch angle, Tm is a torque applied
by an actuator used to adjust β, and Tp is the pitching
torque due to fluctuations in wind speed, which is a known
function of wind speed and the blade’s angle of attack, α.
It should be noted that α is related (in a known manner)
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to wind speed and β. Therefore the model (32) is subject
to additive stochastic uncertainty (due to the dependence
of Tp on wind speed) and multiplicative uncertainty (due
to the dependence of Tp on β), and furthermore these two
sources of uncertainty are statistically dependent.

Blade fatigue damage depends on the resultant applied
torque, so fatigue constraints are invoked on ψ defined by

ψ = Tm − Tp.

By considering variations about a given setpoint for β, a
linear discrete model approximation was identified in the
form of an ARMA model:

yk+1 = ak,1yk + ak,0yk−1 + bk,1uk + bk,0uk−1 + wk (33)
using data applied to a continuous-time model of the
NACA 632-215(V) blade (Burton et al., 2001). Least
squares estimates of θ = [a1 a0 b1 b0 w]T were obtained
from 1000 simulation runs, each with a given fixed wind
speed. On the basis of these simulations, the mean θ̄ and
covariance Σθ of the parameter vector θ were determined.

The model (33) can be written in the form (1), with

Ak =
[
0 ak,2

1 ak,1

]
, Bk =

[
bk,2

bk,1

]
, dk =

[
0

wk

]
.

The identified parameters (θ̄, Σθ) indicate that B has
negligible uncertainty. For a sampling interval of 1 second
the corresponding uncertainty class is given by

[Ak dk] =
[
Ā 0

]
+

3∑

j=1

[
Ãj g̃j

]
qk,j (34)

Ā =
[
0 −0.97
1 1.56

]
, B̄ =

[
−0.20
−0.21

]
,

[
Ã1 d̃1

]
=

[
0 −0.09 0
0 0.13 0.02

]

[
Ã2 d̃2

]
=

[
0 0.21 0
0 −0.009 −0.06

]
,

[
Ã3 d̃3

]
=

[
0 −0.06 0
0 0.02 0.05

]

The Gaussian assumption on qk was validated by the
Jarque-Bera test at the 5% level. A discrete-time linearized
description of the output ψk was estimated using a similar
approach. The uncertainty in D was found to be negligible,
and the uncertainty class for [C η] was formulated as

[Ck ηk] =
[
C̄ 0

]
+

2∑

j=1

[
C̃j η̃j

]
qk,j (35)

C̄ = [0 729] , D̄ = 959
[
C̃1 η1

]
= [0 300 50] ,

[
C̃2 η2

]
= [0 50 100]

The number of degrees of freedom in predictions (3) was
chosen as N = 4, and Nc = 4 was also used as the
horizon over which to invoke the upper bound Nmax on the
permissible number of constraint violations. Miner’s rule
was used to determine Nmax/Nc, assuming (for simplicity)
a single threshold on the torque Tm− Tp. Accordingly, for
p0
11 = 0.9, p0

12 = 0.8, Nmax/Nc = 0.3, the permissible
value for p1 was found to be 0.2. For these values, the
optimization (26) resulted in

P̂x =
[
0.03 0.04
0.04 0.069

]

Closed loop simulations of algorithm 1, performed for an
initial condition x0 = [−7.88 7.31]T (which is close to the
boundary of Ex), gave an average number of constraint vi-
olations of 3 over a horizon of 40 steps, while the maximum
number of constraint violations on any one simulation run

was 4. From these simulations, the actual value of p12

was found to be 0.85, which exceeds p0
12, indicating that

algorithm 1 satisfies the fatigue constraints.

To establish the efficacy of algorithm 1, closed loop simu-
lations were performed for 1000 sequences of uncertainty
realizations, and compared in terms of cost and constraint
satisfaction with the mean square stabilizing linear feed-
back law uk = Kxk. Algorithm 1 gave an average closed
loop cost of 257, whereas the average cost for uk = Kxk

was 325. Algorithm 1 achieves this improvement in perfor-
mance by driving (during transients) the predictions hard
against the limits of the soft constraints. Both algorithm 1
and uk = Kxk on average resulted a total number of
constraint violations within the specified limit over a 40-
step horizon. This is to be expected since both control laws
achieve acceptable rates of constraint violation in steady
state. However the average numbers of constraint viola-
tions over n steps, for 0 < n ≤ 16, indicate that uk = Kxk

exceeded the allowable limits during transients, whereas
algorithm 1 gave average constraint violation rates less
than Nmax/Nc = 0.3 for all n ≥ i∗ = 4.

REFERENCES
I. Batina, A.A. Stoorvogel, and S. Weiland. Optimal

control of linear, stochastic systems with state and input
constraints. In Proc. 41st IEEE Conf. Decision and
Control, pages 1564–1569, 2002.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan.
Linear Matrix Inequalities in System and Control The-
ory. SIAM, 1994.

T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi. Wind
Energy Handbook. Wiley, 2001.

M. Cannon, B. Kouvaritakis, and X. Wu. Stochastic pre-
dictive control with probabilistic constraints. Submitted
to Automatica, 2007.

M.V. Kothare, V. Balakrishnan, and M. Morari. Robust
constrained model predictive control using linear matrix
inequalities. Automatica, 32(10):1361–1379, 1996.

B. Kouvaritakis, J.A. Rossiter, and J. Schuurmans. Effi-
cient robust predictive control. IEEE Trans. Automatic
Control, 45(8):1545–1549, 2000.

B. Kouvaritakis, M. Cannon, and J.A. Rossiter. Who
needs QP for linear MPC anyway? Automatica, 38(5):
879–884, 2002.

H.J. Kushner. Introduction to stochastic control. Holt,
Rinehart and Winston, 1971.

P. Li, M. Wendt, and G. Wozny. A probabilistically
constrained model predictive controller. Automatica, 38
(7):1171–1176, 2002.

D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M.
Scokaert. Constrained model predictive control: Stabil-
ity and optimality. Automatica, 36(6):789–814, 2000.

J.A. Rossiter, B. Kouvaritakis, and M.J. Rice. A numer-
ically robust state space approach to stable predictive
control strategies. Automatica, 34(1):65–73, 1998.

P.O.M. Scokaert and J.B. Rawlings. Constrained linear
quadratic regulation. IEEE Trans. Automatic Control,
43(8):1163–1169, 1998.

D.H. van Hessem, C.W. Scherer, and O.H. Bosgra. LMI-
based closed-loop economic optimization of stochastic
process operation under state and input constraints.
In Proc. 40th IEEE Conf. Decision and Control, pages
4228–4233, 2001.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6­11, 2008

15302


