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Abstract: A control strategy based on a mean-variance objective and expected value constraints
is proposed for systems with additive and multiplicative stochastic uncertainty. Subject to a
mean square stabilizability condition, the receding horizon objective can be obtained by solving
a system of Lyapunov equations. An algorithm is proposed for computing the unconstrained
optimal control law, which is the solution of a pair of coupled algebraic Riccati equations, and
conditions are given for its convergence. A receding horizon controller based on quasi-closed loop
predictions is defined. The control law is shown to provide a form of stochastic convergence of
the state, and to ensure that the time average of the state variance converges to known bounds.
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1. INTRODUCTION

The receding horizon control methodology provides com-
putationally tractable optimal control laws by solving con-
strained control problems online. Most real-life control
problems are not only subject to constraints but also
involve multiplicative or additive stochastic uncertainty.
However realistic formulations of such control problems do
not usually admit analytical solutions, and this motivates
the development of computational optimal control laws
that take explicit account of stochastic uncertainty.

A well-established method of formulating an optimal con-
trol problem so as to incorporate information on the dis-
tribution of model uncertainty is to consider the expected
value of a quadratic cost index. Earlier LQG formula-
tions were generalized to incorporate system constraints
by Lee and Cooley (1998) and Batina et al. (2002). More
recent work has developed efficient non-conservative meth-
ods (van Hessem and Bosgra, 2002; Couchman et al.,
2006a; Primbs, 2007) that have improved the applicability
of the approach. To provide a means of incorporating
probabilistic measures in the control problem, performance
indices with mixed mean and variance terms have been
proposed (Zhu et al., 2004; Freiling et al., 1999). Control
objectives of this type enable conflicting requirements of
nominal performance and minimum variance to be bal-
anced. This paper is concerned with the use of a mean-
variance objective in conjunction with a constrained re-
ceding horizon control framework for stochastic systems.

Earlier work (Couchman et al., 2006b) considered mul-
tiplicative and additive model uncertainty, and provided
analytical expressions for a mean-variance cost and a
basic framework for analyzing closed-loop stability. The
current paper extends this work in two main respects. We
present an algorithm for solving coupled algebraic Riccati
equations (CARE) enabling the offline computation of the
unconstrained optimal control law, and provide conditions

for its convergence. In addition we extend the convergence
analysis of the closed loop system under constrained reced-
ing horizon control. The paper is organized as follows. The
plant model and control problem are defined in Sections 2
and 3, and the receding horizon performance objective is
defined in Section 4. Section 5 considers the unconstrained
LQ optimal control law, Section 6 analyzes closed loop sta-
bility and convergence of the receding horizon controller,
and Section 7 concludes with a numerical example.

2. PLANT MODEL

Consider the stochastic discrete time plant model

x(k + 1) = Akx(k) + Bku(k) + dk, y(k) = Cx(k) (1)

with x ∈ Rnx , u ∈ Rnu , and

[Ak Bk dk] = [Ā B̄ 0] +
m

∑

j=1

[A(j) B(j) d(j)]q(j)
k

where q(j)
k are random variables with known mean and

variance. Let qk = [q(1)
k · · · q(m)

k ]T . It is assumed that
{qk, k = 0, 1, . . .} is stationary and that {qk, qj} are
statistically independent for all k "= j. Without loss of
generality we assume that q has mean E(q) = 0 and
covariance Cov(q) = I. It is also assumed that (A, B) is
mean square stabilizable, i.e. for any symmetric Σ # 0
there exist K ∈ Rnu×nx and symmetric Π # 0 satisfying

Π − E
[

(A + BK)T Π(A + BK)
]

= Σ. (2)

Let r be a reference for the plant output yk, and let x̄ss

satisfy the steady state conditions:

x̄ss = Āx̄ss + B̄uss, r = Cx̄ss.

Let w(k) = u(k)−uss, z(k) = y(k)− r, and v(k) = x(k)−
x̄ss (in the following we also use vk to denote v(k)), then

v(k + 1) = Akv(k) + Bkw(k) + δk, z(k) = Cv(k) (3)

where δk = (Bk − B̄)uss + dk =
∑

j(B̃juss + d̃j)q
j
k. The

aim of the controller is to regulate vk about the origin.
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3. CONTROL OBJECTIVE AND CONSTRAINTS

Denote the expectation of v(k + i) conditional on vk as
v̄(k + i|k) = Ek(v(k + i)), and let ṽ(k + i|k) = v(k + i|k)−
v̄(k+i|k). Assuming that vk is known at time k, the control
objective is the minimization of a quadratic cost:

J(vk,wk) =
∞
∑

i=0

[

‖v̄(k + i|k)‖2
Q + ‖w̄(k + i|k)‖2

R

]

+ κ2
∞
∑

i=0

Ek

[

‖ṽ(k + i|k)‖2
Q + ‖w̃(k + i|k)‖2

R

]

(4)

for Q,R # 0. Here wk = {w(k + i|k), i = 0, 1, . . . } is a
sequence of predicted future control inputs and κ > 0 de-
fines a trade-off between mean and variance of state/input
predictions. This form of objective was proposed for opti-
mal portfolio selection (Zhu et al., 2004) and sustainable
development problems (Couchman et al., 2006a,b). If v(k+
i|k), w(k + i|k) are normally distributed, then the stage
cost in (4) has an interpretation in terms of bounds on
state and input trajectories that hold with a probability
specified by κ (Couchman et al., 2006b). The cost (4) is
to be minimized subject to linear constraints:

F v̄(k + i|k) + Gw̄(k + i|k) ≤ h, i = 0, 1, . . . , (5)
on the expected values of predicted state/input variables.

4. COST FUNCTION

This section expresses the cost (4) in a form that can be
optimized online. To obtain a finite parameterization of the
infinite horizon cost, the input sequence wk is specified as

w(k + i|k) = Kv(k + i|k) + f(i|k), i = 0, 1 . . .
f(i|k) = 0, i = N, N + 1 . . .

(6)

where f(i|k), i = 0, . . . , N − 1 are optimization variables.
The corresponding predicted state sequence satisfies

v(k + i + 1|k) = Φiv(k + i|k) + Bif(i|k) + δi
Φ = A + BK.

(7)

Assume that K is chosen so that Φ is mean square stable.
Then Φ̄ = Ā + B̄K is stable and the first sum in (4) is
therefore well defined. Furthermore it can be shown that
the covariance of v(k + i|k) converges if Φ is mean square
stable: limi→∞ E[ṽ(k + i|k)ṽ(k + i|k)T ] = Θ, where

Θ− E[ΦΘΦT ] = E[δδT ]. (8)
But this implies that the terms summed in (4) satisfy

lim
i→∞

E
[

‖ṽ(k + i|k)‖2
Q + ‖w̃(k + i|k)‖2

R

]

= tr(ΘS)

S =Q + KTRK

and hence J is necessarily infinite. To obtain a finite cost
we therefore redefine the objective function as

V (vk, fk) =
∞
∑

i=0

[

‖v̄(k + i|k)‖2
Q + ‖w̄(k + i|k)‖2

R

]

+ κ2
∞
∑

i=0

Ek

[

‖ṽ(k + i|k)‖2
Q + ‖w̃(k + i|k)‖2

R − tr(ΘS)
]

.

(9)

Note that, although V "≥ 0, minimizing J over wk is
equivalent to minimizing V over fk = [fT (0|k) · · · fT (N−
1|k)]T . To evaluate V (vk, fk) it is convenient to use an
autonomous formulation of prediction dynamics (6)-(7):

zi+1 =

[

Φi BiE δi
0 M 0
0 0 1

]

zi, zk =

[

vk

fk

1

]

with v(k + i|k) = [Inx
0 0]zk+i, w(k + i|k) = [K E 0]zk+i,

and

M =







0 Inu
0 · · · 0

0 0 Inu
0...

...
...

0 0 0 · · · 0






, E = [Inu

0 · · · 0] .

Lemma 1. Along trajectories of (7) the cost (9) is given by

V (vk, fk) = zT
k Pzk, P =

[

Pv Pvf Pv1

Pfv Pf Pf1

P1v P1f P1

]

(10)

where P = (1−κ2)X +κ2Y for matrices X, Y with blocks
(conformal to the partitioning of zk and P ) defined by

[

Xv Xvf

Xfv Xf

]

−

[

Φ̄ B̄E
0 M

]T [

Xv Xvf

Xfv Xf

] [

Φ̄ B̄E
0 M

]

=

[

S KT RE
ET RK ET RE

]
(11a)

[X1v X1f ] = [0 0] , X1 = 0 (11b)
and
[

Yv Yvf

Yfv Yf

]

− E

([

Φ BE
0 M

]T [

Yv Yvf

Yfv Yf

] [

Φ BE
0 M

])

=

[

S KT RE
ET RK ET RE

]
(12a)

[Y1v Y1f ]

(

I −

[

Φ̄ B̄E
0 M

])

= E
(

δT Yv [Φ BE]
)

(12b)

Y1 = −tr(ΘYv). (12c)

Proof: Using E(‖ṽ‖2) = E(‖v‖2)−‖v̄‖2, V can be rewritten

V(vk,fk) = (1−κ2)
∞
∑

i=0

[

‖v̄(k+i|k)‖2
Q+‖w̄(k+i|k)‖2

R

]

+ κ2
∞
∑

i=0

Ek

[

‖v(k+i|k)‖2
Q+‖w(k+i|k)‖2

R−tr(ΘS)
]

(13)

Given that Φ̄ is stable and Φ is mean square stable by
assumption, standard Lyapunov arguments can be used
to show that the two sums in (13) are equal to zT

k Xzk and
zT
k Y zk respectively. !

5. UNCONSTRAINED LQ OPTIMAL CONTROL

This section discusses the offline computation of the gain
K in (6). We show that, if constraints are inactive, then
the minimizing control for (9) is affine state feedback with
a linear gain matrix defined by a CARE. We propose,
and analyze the convergence of, an iterative solution
method similar to the Lyapunov iterations proposed for
CAREs associated with related continuous time control
problems (Gajic and Borno, 1995; Freiling et al., 1999).

Dynamic programming is not applicable since the cost
defined in Section 4 is non-separable. In particular, (13)
consists of two performance indices: one evaluated along
trajectories of the stochastic plant model, the other along
trajectories of the deterministic model given by the ex-
pected values of plant parameters. We therefore derive the
optimal control law by considering the asymptotic proper-
ties of the problem of minimizing V (vk, fk) as N → ∞.
Lemma 2. The minimizer f∗(vk) = arg minf V (vk, f) is
unique and satisfies

f∗(vk) = −P−1
f Pfvvk − P−1

f Pf1. (14)
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Proof: For Γ = [K E], (11a) implies
[

Xv Xvf

Xfv Xf

]

− Ψ̄T

[

Xv Xvf

Xfv Xf

]

Ψ̄ * ΓΓT , Ψ =

[

Φ̄ B̄E
0 M

]

where, by construction, Ψ̄ is stable and (Ψ̄,Γ) is observ-
able. It follows that

[

Xv Xvf

Xfv Xf

]

# 0. (15)

Similarly, subtracting (11a) from (12a) gives
[

Yv−Xv Yvf −Xvf

Yfv−Xfv Yf −Xf

]

− Ψ̄T

[

Yv−Xv Yvf −Xvf

Yfv−Xfv Yf −Xf

]

Ψ̄ * 0

which implies that
[

Yv Yvf

Yfv Yf

]

−

[

Xv Xvf

Xfv Xf

]

* 0. (16)

From (15),(16) and P = X + κ2(Y − X), it follows that
Pf # 0 for all κ > 0 and all N ≥ 1. Hence f∗(vk) is defined
uniquely by (14). !

The following theorem is based on the observation that
if f∗(vk) is independent of vk for all N , then the input
sequence generated by f∗(vk) in (6) coincides with the
closed loop optimal control law.

Theorem 3. The cost (13) is minimized over all input
sequences wk by the affine state feedback control law
w(k + i|k) = Kv(k + i|k) + b with

K = −D−1
[

(1 − κ2)B̄T XvĀ + κ2
E(BT YvA)

]

(17a)

b = −D−1κ2
[

B̄T Yv1 + E(BT Yvδ)
]

(17b)

and D = R + (1 − κ2)B̄T XvB̄ + κ2E(BT YvB).

Proof: From (14), f∗ is independent of vk iff Pfv = 0. But

Pfv−MTPfvΦ̄ = ET
[

RK+(1−κ2)B̄TXvΦ̄+κ2
E(BT YvΦ)

]

from (12a), and hence Pfv = 0 for all N if and only if
K satisfies (17a). Under this condition (12b) implies that
each element of f∗ is equal to b defined in (17b). !

Corollary 4. The optimal feedback gain is defined by the
solution of the coupled algebraic Riccati equations:

Xv = (Ā + B̄K)T Xv(Ā + B̄K) + Q + KTRK (18a)

Yv = E
[

(A + BK)T Yv(A + BK)
]

+ Q + KTRK (18b)

where K = −D−1[(1 − κ2)B̄T XvĀ + κ2E(BT YvA)].

Proof: (18a,b) follow directly from (11), (12) and (17a). !

The problem of solving (18) for (Xv, Yv, K) is non-convex
and, unlike the conventional algebraic Riccati equation,
there is no transformation that leads to a LMI formulation.
We propose the following iteration for computing K.

Algorithm 1. Set X(0)
v = Y (0)

v = Q. For i = 0, 1, . . . set:

K(i) = arg min
K(i)

tr(P (i+1)
v ) (19a)

X(i+1)
v = Φ̄(i)T X(i)

v Φ̄(i) + Q + K(i)T RK(i) (19b)

Y (i+1)
v = E(Φ(i)T Y (i)

v Φ(i)) + Q + K(i)T RK(i) (19c)

where P (i)
v = (1−κ2)X(i)

v +κ2Y (i)
v , Φ̄(i) = Ā+ B̄K(i), and

Φ(i) = A + BK(i).

The proof that {X(i)
v , Y (i)

v } converges to a solution of
(18a,b) relies on the following result.

Lemma 5. tr(P (i)
v ) ≤ γ for all i, for some γ > 0.

Proof: Given any mean square stabilizing linear feedback
gain K̂, there exist X̂v, Ŷv # 0 satisfying

X̂v = ˆ̄ΦT X̂v
ˆ̄Φ + Q + K̂T RK̂, ˆ̄Φ = Ā + B̄K̂ (20a)

Ŷv = E(Φ̂T ŶvΦ̂) + Q + K̂T RK̂, Φ̂ = A + BK̂. (20b)

The optimality of K(i) in (19a) implies that tr(WP (i+1)
v )

is minimized for any W =WT #0, so that any K̂ yields

tr(WP (i+1)
v ) ≤ κ2tr

[

E(Φ̂W Φ̂T )Y (i)
v

]

+ (1 − κ2)tr
[ ˆ̄ΦW ˆ̄ΦT X(i)

v

]

+ tr
[

W (Q + K̂T RK̂)
]

. (21)

For κ ≤ 1, we therefore have

tr(WP (i+1)
v ) ≤ tr

[

E(Φ̂W Φ̂T )P (i)
v

]

+ tr
[

W (Q + K̂T RK̂)
]

which, with (20a), gives

tr[W (P (i+1)
v − Ŷv)] ≤ tr

[

E(Φ̂W Φ̂T )(P (i)
v − Ŷv)

]

and since this holds for all W =WT #0, P (i)
v + Ŷv therefore

implies P (i+1)
v + Ŷv. Hence P (i)

v + Ŷv for all i if P (0)
v + Ŷv.

For κ > 1, it can be shown using (21) that there exist

K̂ and W * E(Φ̂W Φ̂T ) # 0 satisfying tr(WP (i+1)
v ) ≤

tr(WP (i)
v ) whenever tr(WP (i)

v ) is sufficiently large, and
hence tr(P (i)) is bounded uniformly in i. !

For any sequence {K(i), i = 0, . . . N − 1} generated by
Algorithm 1, define {Sk, k = 0, . . . N − 1} by

Sk+1 = E(Φ(N−k−1)SkΦ
(N−k−1)T ) (22)

with S0 = ST
0 * 0. We next show that SN necessarily

converges as N → ∞ since {P (i)} is bounded, then use this
result to demonstrate convergence of the iteration (19).

Theorem 6. For any S0 * 0, the sequence {Sk} generated
by (22) satisfies limN→∞ SN = 0.

Proof: Pre-multiplying both sides of (19c) by Sk, where
k = N − i − 1, extracting the trace and using (22) gives

tr(SkY (i+1)
v ) = tr(Sk+1Y

(i)
v ) + tr

[

Sk(Q + K(i)T RK(i))
]

,

Since this equation holds for i = 0, . . . N − 1 we obtain

tr(S0Y
(N)
v ) =

N−1
∑

i=0

tr
[

SN−i−1(Q+K(i)TRK(i))
]

+tr(SNY (0)
v ).

However the definition of P (i)
v implies that κ2Y (i)

v + P (i)
v

if κ ≤ 1 and Y (i)
v + P (i)

v if κ > 1, and it follows from

Lemma 5 that tr(S0Y
(N)
v ) ≤ ∞ for all N . Therefore

lim
N→∞

N−1
∑

i=0

tr
[

SN−i−1(Q+K(i)T RK(i))
]

+tr(SNY (0)
v ) < ∞

and hence SN → 0 as N → ∞ since Q#0 and Sk*0. !

Corollary 7. K(i) → K satisfying (17a) and X(i)
v , Y (i)

v

converge to solutions of (18a,b) as i → ∞.

Proof: Theorem 6 implies that tr(S0Y
(i)
v ) converges to a

finite limit for any S0 * 0, and therefore {X(i)
v , Y (i)

v , K(i)}
converges to a fixed point of (19a-c) as i → ∞. Moreover
any fixed point of (19a-c) is a solution of (18a,b). !

6. RECEDING HORIZON CONTROL, STABILITY
AND CONVERGENCE

The optimal control no longer has the form of a fixed
affine feedback law when constraints (5) are active. We
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therefore propose a receding horizon control law which
is to be computed online by minimizing (9) numerically
subject to constraints. This section demonstrates that a
stochastic form of stability holds, and derives bounds on
the convergence of the time-average of the state covariance.

The problem formulation considered here does not assume
that bounds are available on the stochastic plant parame-
ters. Therefore it is not possible to guarantee the feasibility
of constraints applied to predictions. Instead we denote the
feasible set for the linear constraints (5) as F , and define
the following receding horizon optimization control law.

Algorithm 2. At times k = 0, 1, . . .:
1. If vk ∈ F , minimize the cost (9) by computing

f∗(vk) = arg min
f

V (vk, f) subject to (5) (23)

2. If vk "∈ F , minimize the constraint violation via

f∗(vk) = arg min
f

max
i

F v̄(k + i|k) + Gw̄(k + i|k) − h

subject to V (vk, f) ≤ V (vk, Mf∗(vk−1)) (24)

3. Implement wk = Kvk + Ef∗(vk).

Note that (23) is a linearly constrained quadratic program,
whereas (24) is a quadratically constrained linear program,
and the constraint in (24) is necessarily feasible. The
purpose of the constraint in (24) is to enforce a Lyapunov-
like inequality on the increment in predicted cost; this
forms the basis of the convergence analysis below.

6.1 The case of κ ≥ 1

For κ ≥ 1 the following lemma shows that the predicted
cost corresponding to the solution of (23) or (24) neces-
sarily decreases whenever ‖(vk, wk)‖ is sufficiently large.

Lemma 8. Let V ∗(vk) = V (vk, f∗(vk)), then the receding
horizon application of Algorithm 2 ensures that

V ∗(vk)−EkV ∗(vk+1) ≥ ‖vk‖
2
Q +‖wk‖

2
R−κ2tr(ΘS). (25)

Proof: Using (11) and (12) it can be shown that

V ∗(vk) − EkV (vk+1, Mf∗(vk))

=

[

vk

f∗(vk)

]T [

S KT RE
ET RK ET RE

][

vk

f∗(vk)

]

− κ2tr(ΘS)

+ (κ2−1)
m

∑

j=1

‖(A(j)+B(j)K)vk+B(j)Ef∗(vk)+δ(j)‖2
Xv

(26)

However the objective in (23) and the constraint in (24)
ensure that V ∗(vk) ≤ V (vk, Mf∗(vk−1)), and therefore

EkV ∗(vk+1) ≤ EkV (vk+1, Mf∗(vk)). (27)

Combining (26),(27), and noting that the last term in (26)
is non-negative for κ ≥ 1 yields the inequality (25). !

From Lemma 8 we obtain the following bound on the mean
of ‖(vk, wk)‖ in closed loop operation.

Theorem 9. Under Algorithm 2 the closed loop state and
input trajectories satisfy:

lim
n→∞

1

n

n−1
∑

k=0

E0(‖vk‖
2
Q + ‖wk‖

2
R) ≤ κ2tr(ΘS). (28)

Proof: Taking expectations and summing both sides of (25)
over k = 0, . . . , n − 1 gives

n−1
∑

k=0

E0

[

‖vk‖
2
Q +‖wk‖

2
R −κ2tr(ΘS)

]

≤ V ∗(v0)−E0V
∗(vn),

which implies (28) since V ∗(v0) is finite by assumption
and, from (13), V ∗(v) has a finite minimum value. !

Remark 10. For κ = 1, Theorem 9 implies that the stage
cost ‖vk‖2

Q + ‖wk‖2
R in closed loop operation converges in

mean for to a value no greater than that obtained along
the predicted trajectories of (6),(7). However for κ > 1
the receding horizon controller places greater emphasis on
minimizing the variance E(‖vk−v̄k‖2

Q+‖wk−w̄k‖2
R) at the

expense of increased expected values ‖v̄k‖Q and ‖w̄k‖R.

If the additive disturbance δk in (3) were non-persistent,
with limk→∞ E(δkδT

k ) = 0, so that Θ = 0 in (8), then (25)
would imply mean square stability of the closed loop
system and hence ensure convergence: vk → 0 with prob-
ability 1 (w.p.1) (Kushner, 1971). For the more general
problem considered here mean square stability does not
apply, however it is possible to obtain an alternative char-
acterization of stability based on convergence of vk to a
set Ω defined by Ω = {v : vT Qv ≤ κ2tr(ΘS)}.

Theorem 11. If v0 "∈ Ω, then the closed loop system under
Algorithm 2 satisfies vk ∈ Ω for some i > k w.p.1.

Proof: Define a sequence {v̂k} by

v̂k =

{

vk if ‖vi‖
2
Q > κ2tr(ΘS) ∀i = 0, . . . , k − 1

v̂k−1 if ‖vi‖
2
Q ≤ κ2tr(ΘS) for any i = 0, . . . , k − 1

then (25) implies

V ∗(v̂k) − EkV ∗(v̂k+1) ≥ ‖v̂k‖
2
Q − κ2tr(ΘS) ≥ 0

for all k, implying that V ∗(v̂k) is a supermartingale.
Since V ∗(v̂k) is lower-bounded, it follows that ‖v̂k‖2

Q →
κ2tr(ΘS) w.p.1. (Kushner, 1971). !

Remark 12. Theorem 11 demonstrates that every state
trajectory of the closed loop system (3) converges to the
set Ω, although subsequently it may not remain in Ω. The
same result shows that the state continually returns to Ω.

6.2 The case of κ < 1

With κ < 1 the expected value of V ∗(vk) in (25) may not
decrease even when the state and input are large. In order
to quantify the convergence of the closed loop system in
this case, we therefore use an input-state stability argu-
ment that does not rely on monotonicity of the optimal
cost V ∗(vk). Throughout this section it is assumed that K
is defined as the unconstrained LQ optimal feedback gain.

The approach uses bounds on the first element f∗(0|k) of
the optimal solution f∗(vk) for (23) or (24) in Algorithm 2.
These bounds are derived below by considering only the
terms in the cost (10) that depend on fk. If K is LQ opti-
mal, then for given vk, minimizing V (vk, fk) is equivalent
to minimizing

Vf (fk) = fT
k Pffk + 2fT

k Pf1

where

Pf =







D
. . .

D






, Pf1 =







g
...
g






,

D is defined in Theorem 3 and g = κ2[B̄T Yv1+E(BT Yvδ)].
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Lemma 13. f∗ computed by Algorithm 2 satisfies
n−1
∑

k=0

E0

[

‖f∗(0|k)‖2
W +2gT f∗(0|k)

]

≤ V ∗

f,0−E0V
∗

f,n−1 (29)

where V ∗

f,k denotes Vf

(

f∗(vk)
)

.

Proof: The objective in (23) and the constraint in (24)
ensure that V (f∗(vk)) ≤ V (Mf∗(vk−1)) for all k. Given
the structure of Pf and Pf1 it follows that

V ∗

f,k − EkV ∗

f,k+1 ≥ ‖f∗(0|k)‖2
W + 2gT f∗(0|k), (30)

and (29) is obtained by taking expectations and summing
both sides of this inequality for k = 0, . . . , n − 1. !

We next show that the dynamics of the closed loop system
mapping f∗(0|k) to vk have finite l2-gain.

Theorem 14. There exist β > 0 and Ŷ # 0 satisfying
n−1
∑

k=0

(

E0[v
T
kSvk]−tr(ΘS)

)

≤
n−1
∑

k=0

E0

[

β‖f∗(0|k)‖2+2ĝTf∗(0|k)
]

+ vT
0 Ŷvv0 − E0(v

T
n Ŷvvn) (31)

for any given ĝ ∈ Rnu .

Proof: Since Φ = A + BK is mean square stable by
construction, there necessarily exists Ŷv # 0 satisfying

Ŷv − E
[

ΦT ŶvΦ
]

− S # 0.
It follows that the condition:





Ŷv − S 0 0
0 βI ĝ
0 ĝT γ



 − E

{





ΦT

BT

δT



 Ŷv [Φ B δ]

}

* 0 (32)

is satisfied for γ ≥ E(δT Ŷvδ) ≥ tr(ΘS) and sufficiently
large (but finite) β. Pre- and post-multiplying (32) by
(vk, f∗(0|k), 1) gives

vT
k Ŷvvk − Ek(vT

k+1Ŷvvk+1) + β‖f∗(0|k)‖2 + 2ĝT f∗(0|k)

≤ vT
k Svk − tr(ΘS).

Taking expectations and summing both sides of this in-
equality for k = 0, . . . , n − 1 yields (31). !

Bounds on the convergence of the state in closed loop
operation can be obtained by combining Lemma 13 and
Theorem 14.
Theorem 15. The closed loop state trajectories under Al-
gorithm 2 satisfy

lim
n→∞

1

n

n−1
∑

k=0

E0(v
T
k Svk) ≤ tr(ΘS) (33)

Proof: If ĝ in (31) is chosen as βg/σ(W ) (where σ(W )
denotes the minimum singular value of W ), then

E0

[

β‖f∗(0|k)‖2+ 2ĝTf∗(0|k)
]

≤
β

σ(W )
E0

[

‖f∗(0|k)‖2
W + 2gTf∗(0|k)

]

.

From (29) and (31) we therefore have
n−1
∑

k=0

(

E0[v
T
kSvk] − tr(ΘS)

)

≤
β

σ(W )
(V ∗

f,0 − E0V
∗

f,n−1) + vT
0 Ŷvv0 − E0(v

T
n Ŷvvn).

(34)

Each term on the RHS is finite since V ∗

f,0, vT
0 Ŷ v0 are finite

by assumption and V ∗

f,n−1 has lower bound −P1fP−1
f Pf1.

Hence (34) implies (33). !

Remark 16. The bound (33) implies that the time-average
of E(vT

k Svk) for the closed loop system is asymptotically
no greater than the state covariance under the fixed linear
feedback law wk = Kvk. This bound is achieved even
though Algorithm 2 allows for the handling of constraints
that are not accounted for explicitly by the linear feedback
law.

7. EXAMPLE

A randomly selected, open loop unstable plant is used to
demonstrate the action of the proposed control law:

Ā =

[

1.00 0.16 −0.50
−0.06 0.35 −0.18
−0.52 0.10 0.74

]

B̄ =

[

0
−0.28
−0.12

]

CT =

[

0.11
−1.86
0.71

]

A(1) =

[

−0.09 −0.05 0.07
−0.09 0 0.02
0.06 0 0.07

]

B(1) =

[

0.01
−0.02
0.02

]

d(1) =

[

0.03
0.04
0.09

]

A(2) =

[

−0.06 0.07 0.06
−0.03 0.03 0.09
0.10 0.07 0.05

]

B(2) =

[

0.02
−0.09
0.01

]

d(2) =

[

0.07
0.10
0.09

]

The reference is set as r = 10, which gives xss =
[−4.1466 − 6.4038 − 2.0492]T and uss = 17.1. The linear
feedback gain K is chosen to be LQ optimal, computed
using Algorithm 1. Figure 1 shows the evolution of the
eigenvalues of Pv

(k) at iteration k of Algorithm 1 for
κ = 1.9 (for which K = [−11.7 − 0.913 9.02]) and for
κ = 0.5 (for which K = [−10.1 − 0.750 7.87]).

For initial condition x(0) = [15.9 − 6.40 − 2.05]T ,
Fig. 2 shows the ensemble average of the system output
response y(k) under receding horizon control with κ = 1.9.
Note from this plot that the output mean converges to
a lower value than r, this is due to the trade off in the
cost between mean and the variance. For comparison the
output response under the linear feedback law is also
shown, and the dashed lines show the bounds of mean
±1 standard deviation. Clearly linear feedback has much
greater variance but achieves zero mean error in steady
state. The horizontal black lines indicate r±1 standard
deviation as given by (CΘCT )0.5.

If constraints are inactive, the difference between output
responses for receding horizon and linear feedback laws
becomes less significant as κ is reduced (Fig. 3). However
the variance of the receding horizon controller is again
reduced when constraints are active. This is shown in
Figure 4, where the constraint that the expected value
of y(k) should be less than 15 is imposed.
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