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1 Performance objective and closed-loop convergence

The performance objective of a Model Predictive Control algorithm determines

the optimality, stability and convergence properties of the closed loop control

law. In this section we consider how to generalize the quadratic cost typically

employed in linear optimal control problems to account for stochastic model

uncertainty. The emphasis is placed on a mean-variance formulation, which

provides a trade-off between the objectives of minimizing the predicted perfor-

mance of a nominal model and that of minimizing the variance of predicted

future states and inputs. We derive expressions for the cost when evaluated

over an infinite prediction horizon, and consider the closed loop properties of

the optimal receding horizon controller. Under an assumption of generic soft

constraints we discuss two convergence analyses, one based on bounds on l2

gain, the other on a supermartingale property of the optimal value of predicted

cost. Two types of convergence guarantees are obtained: asymptotic bounds

on the time-average of the stage cost appearing in the performance objective,

and repeated convergence of the system state to a region of state space.

1.1 Stochastic system models

Linear models for predicting time series data typically contain both auto-

regressive (AR) and moving average (MA) components. Denoting the input

(control variable) and system output sequences as {uk, k = 0, 1, . . .} and

{yk, k = 0, 1, . . .}, an nth order ARMA model has the form

yk =
n∑

i=1

αi,k yk−i +
n∑

i=i

βi,k uk−i + γk, k = 0, 1, . . . (1.1)

with {γk} denoting a zero-mean disturbance sequence. This form of model is

typically identified using black-box methods, and is employed in diverse fields

including process control and econometrics (Box and Jenkins, 1976; Brockwell

and Davis, 2002). Although given here for the single-input single-output case,

(1.1) is easily generalized to the case that uk and yk are vectors with nu and

ny elements respectively.
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The input-output response of the ARMA model in (1.1) could equivalently be

generated using a state space realization of the system:

xk+1 = Akxk + Bkuk + dk, yk = Cxk (1.2)

where xk is the n-dimensional state vector. Matrices A, B, C depend linearly on

αi, βi, and are non-unique in general (see e.g. Kailath, 1980). This section uses

state space models because of their greater convenience for control design and

estimation, and since since they are better suited to the dynamic programming

recursions associated with cost evaluation and (in the next section) constraint

handling over an infinite horizon.

If the disturbance γ and model coefficients αi, βi are random variables, then

(1.1) defines very general form of linear stochastic system model. We assume

that the model parameters αi, βi and disturbance γ are time-varying with sta-

tionary Gaussian distributions, and have means and covariance matrices that

are known either from empirical identification algorithms or phenomenologi-

cal modelling. Under these assumptions the parameters of the state space

model (1.2) can be written as a linear expansion over a set of scalar random

variables {q(1), . . . , q(m)}:

[
Ak Bk dk

]
=

[
Ā B̄ 0

]
+

m∑

i=1

[
A(i) B(i) d(i)

]
q(i)
k (1.3)

where qk = [q(1)
k · · · q(m)

k ]T is a normally distributed random vector with zero

mean and known covariance matrix Sq (denoted qk ∼ N (0, Sq)). The following

result shows that it is always possible to choose the basis {A(i), B(i), d(i)}
over which the expansion of (1.3) is performed so that the elements of qk are

uncorrelated, and hence Sq = I can be assumed without loss of generality.

Lemma 1.1. There exist {Â(i), B̂(i), d̂(i)} satisfying

[
Ak Bk dk

]
=

[
Ā B̄ 0

]
+

m∑

i=1

[
Â(i) B̂(i) d̂(i)

]
q̂(i)
k (1.4)

with q̂k = [q̂(1)
k · · · q̂(m)

k ]T ∼ N (0, I) if A, B, d satisfy (1.3) and qk ∼ N (0, Sq).
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Proof. From (1.2) and (1.3) we have

xk+1 = Āxk + B̄uk +
[
A(1)xk+B(1)uk+d(1) · · · A(m)xk+B(m)uk+d(m)

]
qk.

Noting that Sq is necessarily symmetric and positive definite, let Sq = V V T

and define q̂k = V −1qk. Then q̂k ∼ N (0, I) and

xk+1 = Āxk+B̄uk+
[
A(1)xk+B(1)uk+d(1) · · · A(m)xk+B(m)uk+d(m)

]
V q̂k

hence, with vij denoting the ijth element of V , we have

xk+1 = Āxk + B̄uk +
m∑

i=1

m∑

j=1

[
A(i) B(i) d(i)

]



xk

uk

1



 vij q̂
(j)
k

= Āxk + B̄uk +
m∑

j=1

( m∑

i=1

[
A(i) B(i) d(i)

]
vij

)



xk

uk

1



 q̂(j)
k

so that
[
Â(j) B̂(j) d̂(j)

]
=

m∑

i=1

[
A(i) B(i) d(i)

]
vij in (1.4).

We make the further simplifying assumption that qk and qi are independent at

all sampling instants k #= i. Unlike the assumption that the expansion (1.3)

is chosen so that the elements of qk are uncorrelated, this property is not

necessarily satisfied by the general linear stochastic model (1.2-1.3). However

it can be ensured through a suitable augmentation of the state vector provided

qk and qi are independent whenever |k − i| is sufficiently large.

Given the value of the state xk, the predictions of state and input trajecto-

ries based on xk are denoted {xk+i|k, uk+i|k, i = 0, 1, . . .}, with xk|k = xk.

In practice xk may not be directly measurable, in which case the measured

state may be replaced by an observer estimate based on measurements of the

output, yk. We do not consider this output feedback problem explicitly here;

instead we simply note that state estimation errors could be incorporated in

the disturbance term of the prediction model (1.2).

Let r be a reference for the plant output yk, and let x̄ss be the expected value

of the state satisfying the steady state conditions:

x̄ss = Āx̄ss + B̄uss, r = Cx̄ss.
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The problem of forcing yk to track r is converted to one of regulating xk to

the origin if the following variable transformations are used:

xk ← xk − x̄ss

uk ← uk − uss

yk ← yk − r

dk ← (Bk − B̄)uss + dk =
m∑

i=1

(B(i)uss + d(i))q(i)
k

In the following we assume that these transformations have been applied to the

state space model (1.2-1.3), and we therefore consider the aim of the controller

to be regulation of xk about the origin in a statistical sense.

1.2 Performance cost

The future predicted state trajectories of the model (1.2-1.3) are sequences

of random variables, and perhaps the simplest way to account for this in the

definition of a quadratic performance cost is to take expectations. Denoting

the expectation operator conditional on information available at time k (namely

the state xk) as Ek, consider the LQG cost (Astrom, 1970; Lee and Cooley,

1998):

J(xk,uk) =
∞∑

i=0

Ek

[
‖xk+i|k‖2

Q + ‖uk+i|k‖2
R

]
(1.5)

for Q, R ' 0. Here uk = {uk|k, uk+1|k, . . . } denotes a sequence of future

control inputs predicted at time k and ‖x‖2
Q = xTQx, ‖u‖2

R = uTRu.

To ensure that the stage cost Ek[‖xk+i|k‖2
Q + ‖uk+i|k‖2

R] converges to a finite

limit as i →∞, we make the assumption that the pair (A, B) is mean-square

stabilizable in the following sense.1

Assumption 1. For any symmetric positive definite S ∈ Rnx×nx there exists

K ∈ Rnu×nx and positive definite P ∈ Rnx×nx satisfying

P − E
[
(A + BK)TP (A + BK)

]
= S. (1.6)

1See Kushner (1971) for a discussion of mean square stability
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Given the model uncertainty (1.3), it is easy to show using Schur complements

that condition (1.6) is satisfied for some K and P whenever the following LMI

in variables Π and Γ is feasible:




Π (ĀΠ + B̄Γ)T (A(1)Π + B(1)Γ)T · · · (A(m)Π + B(m)Γ)T Π

$ Π 0 · · · 0 0

$ $ Π · · · 0 0
...

... . . . ...

$ $ $ · · · Π 0

$ $ $ · · · 0 S−1





+ 0.

In the absence of additive disturbances (i.e. if dk = 0 in (1.2) for all k), it

can be shown (see e.g. Boyd et al., 1994) that Assumption 1 ensures that

the optimal value of the quadratic cost J(xk,uk) is finite. As a result the

optimal predicted trajectories for xk+i|k and uk+i|k would converge to zero as

i → ∞ with probability 1 (w.p.1) in this case (Kushner, 1971). However,

for non-zero additive disturbance (dk #= 0), Assumption 1 implies that the

stage cost in (1.5) converges to a non-zero value, and this in turn implies

that J(xk,uk) is infinite. While this is not problematic for LQG control design

(since the unconstrained optimal control can be obtained in closed form by

solving a Riccati equation for the optimal linear feedback gain), it could cause

difficulties for the computation of a predictive control law based on numerical

optimization of J(xk,uk) subject to state and input constraints. To avoid

this difficulty we redefine the MPC performance objective by subtracting the

steady state value of the stage cost in (1.5). First however, it is necessary to

determine this steady state value.

In order to define a predicted input sequence over an infinite horizon while

requiring only a finite number of free variables to parameterize it, we make use

of a dual mode prediction strategy (see e.g. Mayne et al., 2000). This specifies

predicted inputs as a fixed linear feedback law at all times beyond an initial

finite horizon of N steps:

uk+i|k = Kxk+i|k, i = N, N + 1, . . . . (1.7)

The steady state mean and variance of predicted state and input trajectories
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are given by the following result.

Lemma 1.2. Under the control law (1.7), xk+i|k and uk+i|k satisfy

lim
i→∞

Ek(xk+i|k) = 0, lim
i→∞

Ek(uk+i|k) = 0

and

lim
i→∞

Ek

[
‖xk+i|k‖2

Q + ‖uk+i|k‖2
R

]
= tr(ΘL), L = Q + KTRK (1.8a)

where Θ = limi→∞ Ek(xk+i|kx
T
k+i|k) is the positive definite solution of

Θ− E
[
(A + BK)Θ(A + BK)T

]
= E(ddT ) (1.8b)

if and only if K satisfies (1.6) for some S, P ' 0.

Proof. The linearity of (1.2) implies that xk+i|k = ζk+i|k + ξk+i|k for all i ≥ N

where ζk+i|k and ξk+i|k generated by the following pair of systems:

ζk+i+1|k = Φk+iζk+i|k, ζk+N |k = xk+N |k (1.9a)

ξk+i+1|k = Φk+iξk+i|k + dk+i, ξk+N |k = 0 (1.9b)

in which Φk = Ak +BkK. Condition (1.6) is necessary and sufficient for mean

square stability of Φk and (1.9a) therefore gives Ek(ζk+i|kζ
T
k+i|k) → 0, and

hence ζk+i|k → 0 w.p.1, as i → ∞. From (1.9b) we have Ek(ξk+i|k) = 0 for

all i ≥ 0, and it follows that Ek(xk+i|k) → 0 and Ek(uk+i|k) → 0 as i → ∞.

Noting also that ξk+i|k is independent of Φk+i, (1.9b) gives

Ek(ξk+i+1|kξ
T
k+i+1|k) = Ek

[
(Φk+iξk+i|k + dk+i)(Φk+iξk+i|k + dk+i)

T
]

= Ek(Φk+iξk+i|kξ
T
k+i|kΦ

T
k+i) + Ek(dk+id

T
k+i) (1.10)

Let Θ̂k+i|k = Ek(ξk+i|kξ
T
k+i|k) − Θ, where Θ is the solution of (1.8b) then

from (1.8b) and (1.10) we have

Θ̂k+i+1|k = Ek(Φk+iξk+i|kξ
T
k+i|kΦ

T
k+i)− Ek(Φk+iΘΦT

k+i)

= Ek(Φk+iΘ̂k+i|kΦ
T
k+i).

The mean square stability of Φk therefore implies that Θ̂k+i|k → 0, so that

Ek(ξk+i|kξ
T
k+i|k) → Θ as i → ∞. But Ek(xk+i|kx

T
k+i|k) → Ek(ξk+i|kξ

T
k+i|k)

since ζk+i|k → 0 as i →∞, and thus limi→∞ Ek(xk+i|kx
T
k+i|k) = Θ.
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On the basis of Lemma 1.2, we redefine the LQG cost (1.5) as

J(xk,uk) =
∞∑

i=0

{
Ek

[
‖xk+i|k‖2

Q + ‖uk+i|k‖2
R

]
− tr(ΘL)

}
. (1.11)

This performance objective has several desirable properties:

• computational convenience — in Section 1.3 we show that it can be

expressed as a quadratic function of the degrees of freedom in predictions

• a closed-form solution for the optimal uk in the absence of constraints

(which is identical to the optimal feedback law for the original LQG

cost (1.5))

• the optimal value can be used to define a stochastic Lyapunov function

when used in a receding horizon control law (as discussed in Section 1.5).

However the LQG cost (1.11) optimizes just one aspect of the distribution of

predicted trajectories, namely the second moment. Moreover it is generally

desirable to use a cost that can trade off conflicting requirements for nominal

performance (computed using a nominal model, such as the model that is

obtained by setting all uncertain parameters to their expected values) against

the worst case performance that corresponds a specified confidence level on

model parameters. This is the motivation for the mean-variance cost proposed

in Couchman et al. (2006b) and Cannon et al. (2007), which is of the form

V (xk,uk) =
∞∑

i=0

[
‖x̄k+i|k‖2

Q + ‖ūk+i|k‖2
R

]

+ κ2
∞∑

i=0

{
Ek

[
‖xk+i|k − x̄k+i|k‖2

Q + ‖uk+i|k − ūk+i|k‖2
R

]
− tr(ΘL)

}
.

(1.12)

Here x̄k+i|k = Ek(xk+i|k) and ūk+i|k = Ek(uk+i|k), so that

x̄k+i+1|k = Āx̄k+i|k + ūk+i|k,

and κ is a design variable that controls the relative weighting of mean and

variance terms in the cost.

If Ak = Ā in (1.3), so that the uncertainty in the model parameters is restricted

to the input map Bk and additive disturbance dk, then the state predictions
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xk+i|k are normally distributed for all i. If, in addition, Q = CCT and R = 0,

so that ‖x‖2
Q = y2, then the parameter κ can be interpreted in terms of

probabilistic bounds on the predicted output trajectory {yk+i|k, i = 1, 2, . . .}
(Cannon et al., 2007). To see this, let λk+i|k and υk+i|k be lower and upper

bounds on yk+i|k that hold with a given probability p:

Pr(yk+i|k ≥ λk+i|k) ≥ p

Pr(yk+i|k ≤ υk+i|k) ≥ p
(1.13)

then, for the case that yk+i|k is normally distributed it is straightforward to

show that

ȳ2
k+i|k + κ2Ek(yk+i|k − ȳk+i|k)

2 = 1
2λ

2
k+j|k + 1

2υ
2
k+j|k

provided κ satisfies N(κ) = p, where N is the normal distribution function:

Pr(z ≤ Z) = N(Z) for z ∼ N (0, 1).

For the general case in which Ak contains uncertain parameters, the state

predictions xk+i|k are not normally distributed for i ≥ 2, and κ does not

therefore have an interpretation in terms of probabilistic bounds on predic-

tions. However the cost (1.12) does provide a means of balancing nominal and

minimum-variance performance objectives, and this form of objective has been

proposed for applications such as optimal portfolio selection (Zhu et al., 2004)

and sustainable development problems (Couchman et al., 2006a,b). We allow

κ to take any (fixed) value in the range 0 ≤ κ < ∞ in (1.12), and the special

cases of:

• the nominal cost if κ = 0

• the LQG cost (1.5) if κ = 1

• minimum variance cost in the limit as κ →∞

are therefore included in this framework.

1.3 Cost evaluation

This section considers how to express the cost (1.12) as a function of the de-

grees of freedom in state and input trajectories in order to obtain the objective
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function in a form that can be optimized online.

We define the predicted trajectory for uk+i|k using the closed loop paradigm

of Kouvaritakis et al. (2000), which embeds the feedback law of (1.7) into

input predictions at all future times:

uk+i|k = Kxk+i|k + fi|k, i = 0, 1, . . . (1.14a)

fi|k = 0, i = N, N + 1, . . . (1.14b)

Here K is assumed to satisfy the mean square stability condition (1.6) in As-

sumption 1, and ideally K should be optimal in the absence of input and state

constraints. Though infinite, the input sequence defined by (1.14) contains

a finite number of free variables fi|k, i = 0, . . . , N − 1, making numerical

optimization of a predicted cost practicable.

For the class of predicted inputs defined by (1.14), the dynamics (1.2) give the

predicted state trajectories as

xk+i+1|k = Φk+ixk+i|k + Bk+ifi|k + dk+i, Φk = Ak + BkK. (1.15)

To express the performance cost as a function of fk =
[
fT

0|k · · · fT
N−1|k

]T
we

use an autonomous formulation of the prediction dynamics, which generates

the predictions of (1.14-1.15) via:

zk+i+1|k = Ψk+izk+i|k, zk|k =




xk

fk

1



 , Ψk =




Φk BkE dk

0 M 0

0 0 1



 (1.16a)

M =





0 Inu 0 . . . 0

0 0 Inu 0
...

...
...

0 0 0 . . . 0




, E =

[
Inu 0 . . . 0

]
(1.16b)

with xk+i|k =
[
Inx 0 0

]
zk+i|k, uk+i|k =

[
K E 0

]
zk+i|k.

This formulation is autonomous in respect of the control input over the pre-

diction horizon (although it retains the exogenous multiplicative and additive

disturbances present in (1.2-1.3)). It can be interpreted as dynamic feedback
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f+ = Mf ! E ! x+ = Ax + Bu + d

K "

#
!

u·|k! !
+

+ x·|k
plant model

i.c. xki.c. fk

Figure 1: Block diagram representation of the autonomous prediction sys-

tem (1.16a). The optimization variables are the initial controller state fk

law applied to (1.2), with the degrees of freedom in predictions contained in

the controller state at the beginning of the prediction horizon (see Fig. 1).

The advantage of this formulation is that it enables the two components of

the cost (1.12) to be computed by solving a pair of Lyapunov matrix equa-

tions, as described in the following theorem. By a slight abuse of notation

we denote V evaluated along trajectories of the prediction system (1.16a) as

V (xk, fk).

Theorem 1.3. Along trajectories of (1.16a) the cost (1.12) is given by

V (xk, fk) = zT
k|kPzk|k, P =




Px Pxf Px1

Pfx Pf Pf1

P1x P1f P1



 (1.17a)

P = (1− κ2)X + κ2Y (1.17b)

where X, Y are partitioned into blocks that are conformal to the partition of

P in (1.17a) and defined by

[
Xx Xxf

Xfx Xf

]
−

[
Φ̄ B̄E

0 M

]T [
Xx Xxf

Xfx Xf

] [
Φ̄ B̄E

0 M

]
=

[
L KTRE

ETRK ETRE

]

(1.18a)
[
X1x X1f

]
=

[
0 0

]
, X1 = 0 (1.18b)

1.3 Cost evaluation 11

and
[

Yx Yxf

Yfx Yf

]
− E

([
Φ BE

0 M

]T [
Yx Yxf

Yfx Yf

] [
Φ BE

0 M

])
=

[
L KTRE

ETRK ETRE

]

(1.19a)

[
Y1x Y1f

] (
I −

[
Φ̄ B̄E

0 M

])
= E

(
dTYx

[
Φ BE

])
(1.19b)

Y1 = −tr(ΘYx) (1.19c)

with Φ = A + BK and Φ̄ = Ā + B̄K.

Proof. Using the identity E(‖x − x̄‖2
Q = E(‖x‖2

Q) − ‖x̄‖2
Q, V (xk, fk) can be

rewritten as:

V (xk, fk) = (1− κ2)
∞∑

i=0

[
‖x̄k+i|k‖2

Q + ‖ūk+i|k‖2
R

]

+ κ2
∞∑

i=0

{
Ek

[
‖xk+i|k‖2

Q + ‖uk+i|k‖2
R

]
− tr(ΘL)

}
.

(1.20)

Consider the first sum on the RHS of (1.20). Taking expectations of (1.16a)

and using (1.18) gives

z̄T
k+i|kXz̄k+i|k − z̄T

k+i+1|kXz̄k+i+1|k = ‖x̄k+i|k‖2
Q + ‖ū2

k+i|k‖2
R.

Summing both sides of this equation over all i ≥ 0 and noting that Lemma 1.2

implies that limi→∞ z̄k+i|k = 0, it follows that

zT
k|kXzk|k =

∞∑

i=0

[
‖x̄k+i|k‖2

Q + ‖ūk+i|k‖2
R

]
. (1.21)

Next consider the second sum in (1.20). From (1.16a) we have

zT
k+i|kY zk+i|k − Ek(z

T
k+i+1|kY zk+i+1|k) =

[
xk+i|k

fk+i|k

]T {[
Yx Yxf

Yfx Yf

]
− E

([
Φ BE

0 M

]T [
Yx Yxf

Yfx Yf

] [
Φ BE

0 M

])} [
xk+i|k

fk+i|k

]

+ 2

{[
Y1x Y1f

] (
I −

[
Φ̄ B̄E

0 M

])
− E

(
dTYx

[
Φ BE

])} [
xk+i|k

fk+i|k

]

− E(dTYxd)
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and using (1.19) therefore gives

zT
k+i|kY zk+i|k−Ek(z

T
k+i+1|kY zk+i+1|k) = Ek(‖xk+i|k‖2

Q+‖uk+i|k‖2
R)−E(dTYxd).

(1.22)

Furthermore, from equation (1.8b) defining Θ we have

tr
(
ΘYx − E(ΦΘΦT )Yx

)
= tr

(
Θ[Yx − E(ΦTYxΦ

T )]
)

= tr
(
E(ddT )Yx

)

so that (1.19a) implies

E(dTYxd) = tr(ΘL) (1.23)

which, when substituted into (1.22) gives

zT
k+i|kY zk+i|k−Ek(z

T
k+i+1|kY zk+i+1|k) = Ek(‖xk+i|k‖2

Q + ‖uk+i|k‖2
R)− tr(ΘL).

Summing both sides over all i ≥ 0 and noting that limi→∞ Ek(zT
i|kY zi|k) = 0

(since fk+i|k = 0 for i ≥ N , while from Lemma 1.2 limi→∞ Ek(xi|k) = 0 and

limi→∞ Ek(xi|kx
T
i|k) = Θ, so that Ek(zT

i|kY zi|k) → Ek(xT
i|kYxxi|k)−tr(ΘYx) → 0

as i →∞), we therefore have

zT
k|kY zk|k =

∞∑

i=0

{
Ek

[
‖x̄k+i|k‖2

Q + ‖ūk+i|k‖2
R

]
− tr(ΘL)

}
. (1.24)

From (1.21) and (1.24) it follows that the cost (1.12) is given by (1.17).

1.4 Unconstrained optimal control

In this section we discuss how to compute an optimal value for the gain K

in predictions (1.14-1.15). We show that, in the absence of input and state

constraints, or whenever such constraints are inactive, the minimizing control

for (1.12) is an affine state feedback law with a linear gain matrix defined

by a pair of coupled algebraic Riccati equations (CAREs). In the interests

of optimality, and to ensure the closed-loop convergence properties given in

Section 1.5, we define K as this unconstrained optimal feedback gain. An

iterative method for solving for K is described, which is similar to the Lyapunov

iterations proposed for CAREs associated with related continuous-time control

problems (Gajic and Borno, 1995; Freiling et al., 1999). We give necessary

1.4 Unconstrained optimal control 13

and sufficient conditions for convergence of the iteration to the unconstrained

optimal feedback gain.

To determine the unconstrained optimal feedback policy we define the following

dynamic programming problem.

Vk(xk, uk, i) = κ2(‖xk‖2
Q + ‖uk‖2

R

)
+ (1− κ2)

[
‖Ei(xk)‖2

Q + ‖Ei(uk)‖2
R

]

+ Ei

[
Vk+1(xk+1, u

∗
k+1, i)

]
(1.25a)

u∗k(xk) = arg min
uk

Vk(xk, uk, k) (1.25b)

This is connected to the performance index in (1.12) by the fact that V(xk, uk, k)

is equivalent to V (xk,uk) if uk is defined by the infinite sequence {u∗k, u∗k+1 . . .}.
Unlike the dynamic programming problem associated with the LQG cost (1.5),

Bellman’s principle of optimality (Bellman, 1952) does not hold for this prob-

lem. This is because the expected value of the optimal cost-to-go at the kth

stage is not equal to the expectation of the k+1th-stage optimal cost, i.e.

Ek

[
Vk+1(xk+1, u

∗
k+1, k)

]
#= Ek

[
Vk+1(xk+1, u

∗
k+1, k + 1)

]
.

However it is possible to use dynamic programming recursions to determine

the optimal control law, as demonstrated next.

Lemma 1.4. The optimal value function and optimal control law in (1.25) are

given by

Vk(xk, u
∗
k, k) = κ2(xT

k Y (k)
x xk + 2Y (k)

1x xk + Y (k)
1 )

+ (1− κ2)(xT
k X(k)

x xk + 2X(k)
1x xk + X(k)

1 ) (1.26a)

u∗k(xk) = K(k)xk + l(k) (1.26b)

where

K(k) = −(D(k))−1[κ2E(BTY (k+1)
x A) + (1− κ2)B̄TX(k+1)

x Ā
]

(1.27a)

l(k) = −(D(k))−1[κ2E(BTY (k+1)
x d) + κ2B̄TY (k+1)

x1 + (1− κ2)B̄TX(k+1)
x1

]

(1.27b)

with D(k) = R+κ2E(BTY (k+1)
x B)+(1−κ2)B̄TX(k+1)

x B̄. Here Y (k)
x , Y (k)

x1 , Y (k)
1
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and X(k)
x , X(k)

x1 , X(k)
1 are defined by recursion relations, and specifically:

Y (k)
x = E

[
(A + BK(k))TY (k+1)

x (A + BK(k))
]
+ Q + K(k)TRK(k) (1.28a)

X(k)
x = (Ā + B̄K(k))TX(k+1)

x (Ā + B̄K(k)) + Q + K(k)TRK(k). (1.28b)

Proof. The quadratic form in (1.26a) can be shown by induction on k, and the

affine control law (1.26b) is a direct consequence of this.

Before considering the convergence of the dynamic programming recursions

given in (1.28), we first discuss the link between the optimal control in (1.26b)

and the unconstrained solution to the problem of minimizing V (xk, fk).

Lemma 1.5. The minimizer f∗(xk) = arg minf V (xk, f) is unique and satisfies

f∗(xk) = −P−1
x Pfxxk − P−1

x Pf1. (1.29)

Proof. For Γ =
[
K E

]
, (1.18a) implies

[
Xx Xxf

Xfx Xf

]
− Ψ̄T

xf

[
Xx Xxf

Xfx Xf

]
Ψ̄xf + ΓΓT , Ψ̄xf =

[
Φ̄ B̄E

0 M

]

where, by construction, Ψ̄xf is stable and (Ψ̄xf , Γ) is observable. From a

well-known property of Lyapunov matrix equations, it follows that
[

Xx Xxf

Xfx Xf

]
' 0. (1.30)

Similarly, subtracting (1.18a) from (1.19a) gives
[

Yx −Xx Yxf −Xxf

Yfx −Xfx Yf −Xf

]
− Ψ̄T

xf

[
Yx −Xx Yxf −Xxf

Yfx −Xfx Yf −Xf

]
Ψ̄xf + 0

which implies that
[

Yx Yxf

Yfx Yf

]
−

[
Xx Xxf

Xfx Xf

]
+ 0. (1.31)

From (1.30), (1.31) and P = X + κ2(Y −X), it follows that Pf ' 0 for all

κ > 0 and all N ≥ 1. Hence f∗(xk) is defined uniquely by (1.29).
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The optimal f∗k given in (1.29) is the solution of an open-loop optimal control

problem, since the elements f ∗i|k of f∗k are in general functions of xk rather

than functions of xk+i|k. However an exception to this is the special case in

which f∗k is independent of xk. The following theorem uses this observation

to show that, if f∗k is independent of xk, then the predicted input trajectory

corresponding to the optimal open-loop solution f∗k for N = ∞ is identical

to the optimal feedback law in (1.25) for the infinite horizon case, so that

uk+i|k = u∗k+i(xk+i|k).

Theorem 1.6. The cost (1.12) is minimized over all input sequences uk by

the affine state feedback control law uk+i|k = Kxk+i|k + l with

K = −D−1[(1− κ2)B̄TXxĀ + κ2E(BTYxA)
]

(1.32a)

l = −D−1κ2[E(BTYxd) + B̄TYx1
]

(1.32b)

and D = R + (1− κ2)B̄TXxB̄ + κ2E(BTYxB).

Proof. From (1.29), f∗ is independent of xk iff Pfx = 0. But

Pfx −MTPfvΦ̄ = ET
[
RK + (1− κ2)B̄TXxΦ̄ + κ2E(BTYxΦ)

]

from (1.19a), and hence Pfx = 0 for all N if and only if K satisfies (1.32a).

Under this condition (1.19b) implies that each element of f∗ is equal to l

defined in (1.32b).

Comparing (1.32) with (1.27) and comparing the definitions of Xx, Yx in (1.18-

1.19) with the recursion (1.28), it is clear that the optimal feedback gain in

Theorem 1.6 corresponds to a fixed point of the iteration (1.28). This can be

stated as follows.

Corollary 1.7. The optimal feedback gain in (1.32a) is defined by the solution

of the coupled algebraic Riccati equations (CARE):

Xx = (Ā + B̄K)TXx(Ā + B̄K) + Q + KTRK (1.33a)

Yx = E
[
(A + BK)TYx(A + BK)

]
+ Q + KTRK (1.33b)

where K = −D−1[(1− κ2)B̄TXxĀ + κ2E(BTYxA)].
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The problem of solving (1.33) for (Xx, Yx, K) is non-convex and, unlike the

conventional algebraic Riccati equation, there is no transformation that leads

to a LMI formulation. We therefore propose to compute (Xx, Yx, K) using the

dynamic programming iteration given in Lemma 1.4.

Algorithm 1. Set X(0)
x = Y (0)

x = Q. For k = −1,−2 . . ., compute K(k) using

(1.27a) and Y (k)
x , X(k)

x using (1.28a,b). Stop when ‖K(k) − K(k+1)‖ < ε for

some suitably small tolerance ε, and set K = K(k).

It is not immediately obvious that the iteration employed in Algorithm 1 con-

verges since, as mentioned previously, the principle of optimality does not apply

to the dynamic programming problem in (1.25). However it is possible to show

that Algorithm 1 converges in a finite number of iterations using the following

theorem.

Theorem 1.8. The sequence {K(k), X(k)
x , Y (k)

x , k = 0,−1,−2 . . .} gener-

ated by the iteration (1.27a-1.28a,b) converges as k → −∞ to a fixed point

satisfying (1.33) if and only if (A, B) satisfies the stabilizability condition of

Assumption 1.

A sketch of the proof is as follows.

1. It can be shown that X(k)
x and Y (k)

x are bounded for all k if and only if

Assumption 1 holds. This is a consequence of K(k) in (1.27a) satisfying

K(k) = arg min
K(k)

tr
[
(1− κ2)X(k)

x + κ2Y (k)
x

]
subject to (1.28a,b)

and the fact that, for any κ ≥ 0, it is always possible to choose K(k) so

that tr[(1−κ2)X(k)
x +κ2Y (k)

x ] < tr[(1−κ2)X(k+1)
x +κ2Y (k+1)

x ] whenever

tr(X(k+1)
x ) or tr(Y (k+1)

x ) are sufficiently large.

2. From the Bolzano-Weierstrass theorem, it then follows that the sequence

{K(k), X(k)
x , Y (k)

x , k = 0,−1,−2 . . .} has at least one accumulation point

Kreyszig (2006). Given the autonomous nature of the iteration (1.27a-

1.28a,b), the sequence K(k) therefore must converge as k → −∞ either

to a fixed point satisfying (1.33) or to a limit cycle {K(k), k = 1, . . . , n},
with K(1) = K(n). The latter case can be ruled out since it would imply
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that the optimal input sequence for (1.12) is one of n periodic feedback

laws, and would thus contradict the uniqueness result of Lemma 1.5.

1.5 Receding horizon control, stability and convergence

The unconstrained optimal control law described in Section 1.4 will not meet

constraints in general, and it becomes necessary instead to approach the con-

strained optimization of performance in a receding horizon manner, by min-

imizing the predicted cost online over the vector of degrees of freedom fk,

subject to constraints. This section defines a general MPC law for systems

with soft constraints, demonstrates that a stochastic form of stability holds

for the resulting closed loop system, and derives bounds on the convergence

of the time-average of the state covariance.

Given that no bounds have been assumed for the stochastic parameter qk

in (1.3), it is unrealistic to expect that state constraints will be satisfied for all

realizations of uncertainty along predicted trajectories. Instead, we consider in

this section the case of soft input and state constraints which are stated in

terms of the nominal model dynamics:

Fx̄k+i|k + Gūk+i|k ≤ h, i = 0, 1, . . . (1.34)

Let F denote the feasible region in which xk must lie so that (1.34) can be met

over the prediction horizon for some fk. Given the linearity of the model (1.2)

and constraints (1.34), F is a polytopic set, which can computed using the

approach of Gilbert and Tan (1991), or otherwise can be inner-approximated

by an ellipsoidal set which is invariant with respect to the nominal dynamics

(e.g. the projection onto the x-subspace of an augmented invariant set in

(x, f)-space proposed in Kouvaritakis et al. (2000)). We define the following

receding horizon control law

Algorithm 2. At times k = 0, 1, . . .:

1. If xk ∈ F , minimize the cost (1.17) by computing

f∗(xk) = arg min
f

V (xk, f) subject to (1.34) (1.35)
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2. If xk #∈ F , minimize the maximum constraint violation via

f∗(xk) = arg min
f

max
i

Fx̄(k + i|k) + Gū(k + i|k)− h

subject to V (xk, f) ≤ V (xk, M f∗(xk−1)) (1.36)

3. Implement uk = Kxk + Ef∗(xk).

Note that (1.35) and (1.36) are convex, and that (1.35) is a linearly constrained

quadratic program, whereas (1.36) is a quadratically constrained linear pro-

gram. For both of these problems efficient solvers are available. Furthermore,

due to the definition of V , the constraint in (1.36) is necessarily feasible. The

purpose of this constraint is to enforce the property that the expected value

of V (xk, f∗(xk)) decreases whenever the state is sufficiently large.

For the general case of κ ≥ 0, stability is analyzed using input-state stability

arguments, whereas a supermartingale analysis is used in Section 1.6 for the

special case of κ ≥ 1. The input-state stability approach requires knowledge of

the structure of some of the blocks of P in (1.17), and, under the assumption

that K is the unconstrained optimal feedback gain, this is provided in the result

below.

Lemma 1.9. If K satisfies (1.32a), then the blocks Pfx, Pf , Pf1 of P are given

by

Pxf = 0, Pf = diag{D . . . D}, Pf1 = [gT . . . gT ]T

where D is as defined in Theorem 1.6 and g = κ2
[
E(BTYxd) + B̄TYx1

]
.

Proof. Pxf = 0 follows directly from Theorem 1.6. The block structure of

Pf and Pf1 is due to the structure of E and M in the prediction dynamics

(1.16a); for brevity we omit the derivation.

In the sequel it is assumed that K is the unconstrained optimal feedback gain,

and the cost V (xk, fk) can therefore be expressed:

V (xk, fk) = Vf(fk) + Vx(xk) (1.37a)

Vf(f) = fTPf f + 2fTPf1 (1.37b)

Vx(x) = xTPxx + 2xTPx1 + P1 (1.37c)
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The following stability analysis derives bounds on f ∗0|k and uses these to bound

a quadratic function of the state. To simplify analysis we consider only Vf(fk),

with the understanding that, for given xk, minimizing V is equivalent to min-

imizing Vf .

Lemma 1.10. Let V ∗
f,k = Vf

(
f∗(xk)

)
. Then f∗ in (1.35) satisfies

n−1∑

k=0

E0

[
‖f ∗0|k‖2

D + 2gTf ∗0|k

]
≤ V ∗

f,0 − E0(V
∗
f,n−1). (1.38)

Proof. From the objective in (1.35) and the constraint in (1.36), we obtain

V (xk, f∗k ) ≤ V (xk, M f∗k−1) which implies that Vf(f∗k ) ≤ Vf(M f∗k−1). But

Lemma 1.9 and (1.37) imply Vf(M f∗k−1) = Vf(f∗k−1) − ‖f ∗0|k−1‖2
D − 2gTf ∗0|k

and therefore

Ek−1
[
Vf(f

∗
k )

]
≤ Vf(f

∗
k−1)− ‖f ∗0|k−1‖2

D − 2gTf ∗0|k. (1.39)

The inequality (1.38) is obtained by applying the operator E0 to both sides of

(1.39), using the property that E0
[
Ei[·]

]
= E0[·] for all i > 0, and summing

over k = 1, . . . , n.

We next show that the dynamics of the closed loop system mapping f ∗0|k to xk

have finite l2-gain.

Theorem 1.11. For any given ĝ ∈ Rnu, there exist β > 0 and Ŷx ' 0 such

that

n−1∑

k=0

(
E0

[
xT

k Lxk

]
− tr(ΘL)

)
≤

n−1∑

k=0

E0
[
β‖f ∗0|k‖2 + 2ĝTf ∗0|k

]

+ xT
0 Ŷxx0 − E0

[
xT

n Ŷxxn

]
. (1.40)

Proof. Given that Φ = A + BK is mean square stable, let Ŷx = Yx + Π,

where Π − E(ΦTΠΦ) = S for some S ' 0. Then, since (1.19a) implies

Yx − E(ΦTYxΦ) = L, we have Ŷx ' Yx and

Ŷx − E(ΦT ŶxΦ) ' L. (1.41)

Also (1.23) gives tr(ΘL) = E[dTYxd], and it follows that

E(dT Ŷxd) ≥ tr(ΘL). (1.42)
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Using (1.41) and (1.42) it can be shown that the condition



Ŷx − L 0 0

0 βI ĝ

0 ĝT γ



− E









ΦT

BT

dT



 Ŷx

[
Φ B d

]




+ 0 (1.43)

is satisfied for γ ≥ E(dT Ŷxd) ≥ tr(ΘL) and sufficiently large (but finite) β.

Pre- and post-multiplying (1.43) by
[
xT

k fT
0|k 1

]
and its transpose gives

xT
k Ŷxxk − Ek(x

T
k+1Ŷxxk+1) + β‖f ∗0|k‖2 + 2ĝTf ∗0|k ≤ xT

k Lxk − tr(ΘL).

Finally, taking expectations and summing both sides of this inequality over

k = 0, . . . n− 1 yields (1.40).

It is now possible to derive bounds on the convergence of the closed loop

system state by combining Lemma 1.10 and Theorem 1.11.

Theorem 1.12. Under Algorithm 2, the state of (1.2) satisfies

lim
n→∞

1

n

n−1∑

k=0

E0(x
T
k Lxk) ≤ tr(ΘL). (1.44)

Proof. If ĝ in Theorem 1.11 is chosen as ĝ = βg/σ(D), with σ(·) denoting

the minimum singular value, we obtain

E0
[
β‖f ∗0|k‖2 + 2ĝTf ∗0|k

]
≤ β

σ(D)
E0

[
‖f ∗0|k‖2

D + 2gTf ∗0|k
]

so that the combination of (1.38) and (1.40) yields

n−1∑

k=0

[
E0(x

T
k Lxk)− tr(ΘL)

]
≤ β

σ(D)

[
V ∗

f,0 − E0(V
∗
f,n−1)

]

+ xT
0 Ŷxx0 − E0(x

T
n Ŷxxn)

To complete the proof, note that each term on the RHS of this inequality is

finite since V ∗
f,0 and xT

0 Ŷxx0 are finite by assumption and since V ∗
f,n−1 has a

finite lower bound given by −P1fP
−1
f Pf1.

Theorem 1.12 allows the following comparison of Algorithm 2 with the linear

feedback law uk = Kxk. If uk = Kxk, then E0(‖xk‖2
Q+‖uk‖2

R) = E0(xT
k Lxk),

1.6 Supermartingale convergence analysis 21

and since x̄k → 0 as k →∞ along trajectories of the closed loop system under

uk = Kxk, from (1.8a) we obtain E0(xT
k Lxk) → tr(ΘL) so the time-average

of E0(xT
k Lxk) must converge to tr(ΘL) as k →∞. However in (1.44), tr(ΘL)

is an upper bound for the time-average of the expected value of xT
k Lxk in closed

loop operation under Algorithm 2. Thus Theorem 1.12 implies that this bound

is achieved even though Algorithm 2 allows for the handling of constraints that

are not accounted for explicitly by fixed linear feedback law uk = Kxk.

1.6 Supermartingale convergence analysis

For κ ≥ 1 it is possible to present an alternative treatment of the convergence

analysis which allows some insight into the behaviour of the actual cost V ,

and this is undertaken in this section. The following lemma shows that the

predicted cost corresponding to the solution of (1.35) or (1.36) necessarily

decreases whenever ‖xk‖2
Q + ‖uk‖2

R is sufficiently large.

Lemma 1.13. Let V ∗(xk) = V (xk, f∗(xk)), then the receding horizon appli-

cation of Algorithm 2 ensures that

V ∗(xk)− Ek

[
V ∗(xk+1)

]
≥ ‖xk‖2

Q + ‖uk‖2
R − κ2tr(ΘL). (1.45)

Proof. From the expression for V in (1.17) we have

V ∗(xk)− Ek

[
V (xk+1, M f∗(xk))

]
= (1− κ2)zT

k

[
X − Ek(Ψ

TXΨ)
]
zk

+ κ2zT
k

[
Y − Ek(Ψ

TY Ψ)
]
zk. (1.46)

However (1.18) and (1.19) imply that

zT
k

[
X − Ek(Ψ

TXΨ)
]
zk = ‖xk‖2

Q + ‖uk‖2
R − zT

k

[
E(ΨTXΨ)− Ψ̄TXΨ̄

]
zk

(1.47)

zT
k

[
Y − Ek(Ψ

TY Ψ)
]
zk = ‖xk‖2

Q + ‖uk‖2
R − tr(ΘL) (1.48)

and the definitions of Ψ and zk in (1.16a) give

zT
k

[
E(ΨTXΨ)− Ψ̄TXΨ̄

]
zk =

m∑

j=1

‖Φ(j)xk + B(j)Efk + d(j)‖2
Xx

. (1.49)
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Setting fk = f∗(xk) in (1.49) and substituting (1.47-1.49) into (1.46) gives:

V ∗(xk)− Ek

[
V (xk+1, M f∗(xk))

]
= ‖xk‖2

Q + ‖uk‖2
R − κ2tr(ΘL)

+ (κ2 − 1)
m∑

j=1

‖Φ(j)xk + B(j)Ef∗(xk) + d(j)‖2
Xx

(1.50)

However the objective in (1.35) and the constraint in (1.36) ensure that, for

all realizations of model uncertainty at time k, the optimal value of the cost

V ∗(xk+1) can be no greater than V (xk+1, M f∗(xk)). Moreover, if κ ≥ 1,

then the last term on the RHS of (1.50) is positive, and hence this implies

(1.45).

Lemma 1.13 can be used to obtain an asymptotic bound on ‖xk‖2
Q + ‖uk‖2

R

in closed-loop operation.

Theorem 1.14. For κ ≥ 1, under Algorithm 2 the closed-loop state and input

trajectory satisfy

lim
n→∞

1

n

n−1∑

k=0

E0(‖xk‖2
Q + ‖uk‖2

R) ≤ κ2tr(ΘL). (1.51)

Proof. Taking expectations and summing both sides of the inequality (1.45)

over k = 0, . . . , n− 1 gives

n−1∑

k=0

[
E0(‖xk‖2

Q + ‖uk‖2
R)− κ2tr(ΘL)

]
≤ V ∗(x0)− E0

[
V ∗(xn)

]
(1.52)

which implies (1.51) since V ∗(x0) is finite and, by (1.8a) and (1.12) V ∗(xn)

has a finite minimum value.

For κ = 1, Theorem 1.14 implies that the stage cost ‖xk‖2
Q + ‖uk‖2

R in closed

loop operation converges in mean to a value no greater than that obtained

along the predicted trajectories of (1.15). However for κ > 1 the receding

horizon controller places greater emphasis on minimizing the variance, mea-

sured by the sum of ‖x − x̄‖2
Q + ‖u − ū‖2

R, at the expense of the mean,

measured by the sum of ‖x̄‖2
Q + ‖ū‖2

R, and the asymptotic bounds on the

mean of ‖x‖2
Q + ‖u‖2

R consequently increase.
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If the additive disturbance dk were non-stationary with limk→∞ E(dkdT
k ) = 0,

so that Θ = 0 in (1.8b), then (1.45) would imply mean square stability of the

closed loop system and hence ensure convergence: xk → 0 with probability 1

(w.p.1) as k →∞ Kushner (1971). For the more general problem considered

here, mean square stability does not apply, however it is possible to obtain an

alternative characterization of stability based on convergence of xk to a set Ω

defined by

Ω =
{
v : vTQv ≤ κ2tr(ΘL)

}
. (1.53)

Theorem 1.15. If x0 /∈ Ω, then the closed loop system under Algorithm 2

satisfies xk ∈ Ω for some k > 0 w.p.1.

Proof. Define the sequence {x̂k, k = 1, 2, . . . } by

x̂k =





xk if ‖xi‖2

Q > κ2tr(ΘL) for all i = 0, . . . k − 1

x̂k−1 if ‖xi‖2
Q ≤ κ2tr (ΘL) for any i = 0, . . . , k − 1

(1.54)

Then (1.45) implies

V ∗(x̂k)− Ek

[
V ∗(x̂k+1)

]
≥ ‖x̂k‖2

Q − κ2tr(ΘL) ≥ 0 (1.55)

for all k, which establishes that {V ∗(x̂k), k = 0, 1, . . .} is a supermartingale.

Since V ∗(x̂k) is lower-bounded, it follows that ‖x̂k‖2
Q → κ2tr(ΘL) w.p.1.

(Kushner, 1971).

Theorem 1.15 demonstrates that every state trajectory of the closed loop sys-

tem (1.2) converges to the set Ω, although subsequently it may not remain in

Ω. The same result shows that the state continually returns to Ω.

1.7 Numerical Example

This section demonstrates the action of the proposed stochastic predictive

control law by applying it to a randomly selected, open loop unstable plant
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with model parameters:

Ā =




1.00 0.16 −0.50

−0.06 0.35 −0.18

−0.52 0.10 0.74



 , B̄ =




0

−0.28

−0.12



 , CT =




0.11

−1.86

0.71





A(1) =




−0.09 −0.05 0.07

−0.09 0 0.02

0.06 0 0.07



 , B(1) =




0.01

−0.02

0.02



 , d(1) =




0.03

0.04

0.09





A(2) =




−0.06 0.07 0.06

−0.03 0.03 0.09

0.10 0.07 0.05



 , B(2) =




0.02

−0.09

0.01



 , d(2) =




0.07

0.10

0.09





The reference is r = 10, which gives xss =
[
−4.1466 −6.4038 −2.0492

]T

and uss = 17.1. The linear feedback gain K is chosen to be the unconstrained

optimal computed using Algorithm 1. Figure 2 shows the evolution of the

eigenvalues of Px
(k) at iteration k of Algorithm 1 for κ = 1.9 (for which K =[

−11.7 −0.913 9.02
]
) and for κ = 0.5 (K =

[
−10.1 −0.750 7.87

]
).
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Figure 2: Variation of eigenvalues of Px with iteration of Algorithm 1, for

κ = 1.9 (solid lines) and κ = 0.5 (dashed lines)

For initial condition x0 =
[
15.9 −6.4 −2.05

]T
, Fig. 3 shows the ensemble
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average of the system output response yk under receding horizon predictive

control with κ = 1.9. Note from this plot that the output mean converges to

a lower value than r, this being due to the trade off in the cost between mean

and variance. For comparison, the output response under the linear feedback

law is also shown, and the dashed lines show the bounds of mean ±1 standard

deviation. Clearly, linear feedback has much greater variance but achieves zero

mean error in steady state. The horizontal black lines indicate r ± 1 standard

deviation as given by (CΘCT )0.5.
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Figure 3: For κ = 1.9: ensemble averages (solid lines) and mean ±1 standard

deviation (dashed) for output responses y(k) under Algorithm 2 (blue) and

linear feedback (red); bounds r ±
√

CΘssCT shown in black.

If constraints are inactive, the difference between output responses from reced-

ing horizon and linear feedback laws becomes less significant as κ is reduced

(Fig. 4). However the variance of the receding horizon controller is again re-

duced when constraints are active. This is shown in Fig. 5, where the constraint

that the expected value of yk should be less than 15 is imposed.
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Figure 4: For κ = 0.5: ensemble averages (solid lines) and mean ±1 standard

deviation (dashed) for y(k) under receding horizon control (blue) and linear

feedback (red).
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Figure 5: For κ = 0.5 and constraint E(y) ≤ 15: ensemble averages (solid)

and bounds showing mean ± one variance (dashed) for y(k) under Algorithm 2

(blue) and linear feedback (red).
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2 Probabilistic Constraints

The constraints handled by predictive control strategies are traditionally treated

either as hard constraints in the sense that they may never be violated, or as

soft constraints, in which case the degree to which they are violated must

be minimized in some sense. The probabilistic constraints introduced in this

section here are a form of soft input/state constraint, the probability of vio-

lation of which is subject to hard limits. This form of probabilistic constraint

has the advantage that it can take account of the distribution of model or

measurement uncertainty, and thus avoid the conservativeness that can be

introduced by using a hard-constraint strategy based on the worst-case un-

certainty, which may be highly unlikely. Another important advantage is that

probabilistic constraints are easier to design and interpret than soft-constraint

strategies that are based on incorporating penalties on constraint violation into

the MPC cost.

This section considers the same state space model and uncertainty descrip-

tion as used in Section 1. We also make use of the autonomous prediction

model (1.16a) as well as the framework for defining the MPC cost and receding

horizon optimization problem, and thus inherit the stability and convergence

properties discussed in Section 1.5. The probabilistic constraints are defined

in respect of a system output ψk, which may be subject to additive and mul-

tiplicative uncertainty:

ψk = Ckxk + Dkuk + ηk, ψk ∈ Rnψ

[
Ck Dk ηk

]
=

[
C̄ D̄ 0

]
+

m∑

j=1

[
C(j) D(j) η(j)

]
q(j)
k

(2.1)

with qk =
[
q(1)
k · · · q(m)

k

]T
∼ N (0, I).

We consider the constraint that the expected number of samples at which ψk

lies outside a desired interval Iψ = [ψL, ψU ] over a future horizon Nc should

not exceed a bound Nmax:

1

Nc

Nc−1∑

i=0

Pr{ψk+i #∈ Iψ} ≤ Nmax/Nc. (2.2)
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This statement can be translated into probabilistic constraints on the model

state (as discussed in Section 2.2), and hence into constraints invoked in the

online MPC optimization (discussed in Section 2.3). Within this framework

soft input constraints are a special case of (2.1-2.2) with Ck = 0, Dk = I,

ηk = 0.

2.1 Propagation of uncertainty

A systematic, non-conservative and computationally efficient means for prop-

agating the effects of uncertainty over a prediction horizon is needed; this re-

mains largely an open question despite several important contributions (Batina

et al., 2002; van Hessem et al., 2001). The difficulty is that methods based

on applying probabilistic constraints to predictions require the receding horizon

optimization to be performed over closed-loop feedback policies, since other-

wise there is no guarantee of the probabilistic constraints begin satisfied in

closed-loop operation. This has had the effects of either restricting stochastic

MPC to limited uncertainty classes (such as the additive uncertainty consid-

ered in van Hessem et al. (2001)) or requiring enormous computational effort

to solve an approximate stochastic dynamic programming problem online (e.g.

Batina et al., 2002).

This section describes a computationally convenient approach proposed in Can-

non et al. (2008b,c), which is based on the autonomous description (1.16a)

of the dynamics governing the evolution of future input and state predictions.

We use Markov chain models to approximate the closed-loop evolution of the

probability distributions for predicted states over the prediction horizon. These

models are based on a discretization of the state space, which is computed

offline using conditions for probabilistic invariance to ensure specified bounds

on transition probabilities within the Markov chain model. Thus the approach

effectively derives deterministic constraints offline in order to ensure the ex-

pected rate of constraint violation in closed-loop operation remains within the

permitted bounds.
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2.2 Markov Chain models

This section describes a method of analysis that enables the conversion of

soft constraints (2.2) into probabilistic constraints on the state of (1.2). Let

E1 ⊂ E2 ⊂ Rnx and assume that xk can lie in either S1 = E1 or S2 = E2 − E1.

This scenario contravenes the assumption that the uncertainty in (1.3) has

infinite support, but it is based on the assumption that E2 is defined so that

the probability of xk #∈ E2 is negligible. The analysis could be made less

conservative (and more realistic) by considering a sequence of nested sets:

E1 ⊂ · · · ⊂ Er (Fig. 6 depicts the case of r = 3), but r = 2 is used here to

simplify presentation.

S1

S2

S3

Figure 6: A pair of probabilistically invariant sets S1 and S2, and an invariant

set S3

Define the conditional probabilities

Pr(ψk #∈ Iψ | xk ∈ Sj) = pj, j = 1, 2 (2.3)

where Iψ is the constraint interval for ψ in (2.2). Under the assumption that

p1 is small, so that S1 is a safe region of state space, it is convenient (though

possibly conservative), to assume that S2 is unsafe and thus assume p2 > p1.

Define also the matrix of transition probabilities

Π =

[
p11 p12

p21 p22

]
(2.4)

where pij is the probability that the online algorithm steers the state in one
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step from from Sj to Si (Fig. 7). Then over i steps we have
[
Pr(xk+i ∈ S1)

Pr(xk+i ∈ S2)

]
= Πi

[
Pr(xk ∈ S1)

Pr(xk ∈ S2)

]

so that the probability of a constraint violation at time k + i is given by

Pr(ψk+i #∈ Iψ) =
[
p1 p2

]
Πi

[
Pr(xk ∈ S1)

Pr(xk ∈ S2)

]

S3

S1 S2

p
11

p
22

p
33

p
12

p
21

p
13

p
32 p

23
p

31

Figure 7: A 3-state Markov chain model with states S1, S2, S3 and transition

probabilities pij

By definition the transition matrix Π has the property that each column sums

to 1. Its eigenvalue/vector decomposition therefore has the structure (see e.g.

Kushner, 1971):

Π =
[
w1 w2

] [
1 0

0 λ2

] [
vT

1

vT
2

]
, 0 ≤ λ2 < 1.

It follows that the rate at which constraint violations accumulate as i → ∞
given xk ∈ Sj tends to

Rj =
[
p1 p2

]
w1v

T
1 ej, j = 1, 2 (2.5)

where e1, e2 denote the first and second columns of the 2× 2 identity matrix.

If R1 and R2 are less than the limit Nmax/Nc of (2.2), then it follows that

there exists finite i∗ such that, for all i ≥ i∗, the total expected number of

constraint violations will be less than i∗Nmax/Nc. Provided i∗ does not exceed
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the horizon Nc, it then follows that the probabilistic formulation (2.3),(2.4)

ensures that the soft constraints (2.2) on ψ are satisfied.

The argument is illustrated by Figure 8. Here the minimum horizon over which

the rate of accumulation of constraint violations satisfies the required bound

is 8, and hence the constraint (2.2) is satisfied for this example if Nc ≥ 8.

It can also be seen from the upper solid line (corresponding to the expected

number of constraint violations given initial conditions in S2), that the expected

rate of constraint violations may initially be higher than the maximum rate

R̄ = Nmax/Nc. This is possible because the slope of the solid lines converge

to the asymptotic rates Rj < R̄, j = 1, 2.

Figure 8: The expected number of constraint violations (N) over a k-step

horizon

2.3 Probabilistically invariant sets

In the scenario discussed in section 2.2, the satisfaction of soft constraints on

ψ is dependent on the probability pi of constraint violation given that the state
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lies in the set Ei and on the transition probabilities pij between these sets. This

section proposes a procedure for designing E1 and assigning probabilities to p1

and p11. This is done below using the concept of probabilistic invariance, which

is defined as follows.

Definition 1 (Cannon et al., 2008b). A set S ⊂ Rnx is invariant with prob-

ability p (i.w.p. p) under a given control law if xk+1 ∈ S with probability p

whenever xk ∈ S.

The approach is based on ellipsoidal sets defined in the state space of the

prediction model (1.16a). For convenience the prediction model is restated

here in an equivalent form with an explicit additive disturbance term:

ζk+i+1|k = Ξk+iζk+i|k+δk+i, ζk|k =

[
xk

fk

]
, δk =

[
dk

0

]
, Ξk =

[
Φk BkE

0 M

]
.

(2.6)

We define ellipsoids E ⊂ Rnx+Nnu and Ex ⊂ Rnx in the space of ζ and x

respectively, by

E = {ζ : ζT P̂ ζ ≤ 1}
Ex = {x : xT P̂xx ≤ 1}

}
P̂x = (ΓT P̂−1Γ)−1

where ΓT =
[
I 0

]
is the projection matrix such that xk+i = ΓT ζk+i|k. With

this definition it is easy to show that Ex is the projection of E onto the x-

subspace (i.e. f exists such that ζ = [xT fT ]T ∈ E whenever x ∈ Ex). Let Q
denote a set that contains the vector of uncertain parameters in (1.3) with a

specified probability p:

Pr{qk ∈ Q} ≥ p. (2.7)

Since ‖qk‖2
2 has a chi-square distribution with m degrees of freedom, a set with

this property is the hypersphere {q : ‖q‖2 ≤ r}, where Pr(χ2(m) ≤ r2) = p.

Earlier work (Cannon et al., 2008b) used ellipsoidal confidence regions derived

from this hypersphere to compute i.w.p. sets, but to accommodate the additive

uncertainty in (1.2), we assume here that Q is polytopic with vertices qi,

i = 1, . . . , ν. Thus any polytope containing the hypersphere {q : ‖q‖2 ≤ r}
provides a convenient (possibly conservative) choice for Q. The following

Lemma gives conditions for probabilistic invariance of Ex.
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Lemma 2.1. Ex is i.w.p. p under (1.14) for any fk such that ζk|k ∈ E if there

exists a scalar λ ∈ [0, 1] satisfying




P̂−1

x ΓTΞ(qi)P̂−1 ΓTγ(qi)

P̂−1Ξ(qi)TΓ λP̂−1 0

γ(qi)TΓ 0 1− λ



 ≥ 0 (2.8)

for i = 1, . . . , ν, where Ξ(qk) = Ξ̄ +
∑m

j=1 Ξ(j)q(j)
k and γ(qk) =

∑m
j=1 γ(j)q(j)

k .

Proof. From (2.7) it follows that Pr(xT
k+1P̂xxk+1 ≤ 1) ≥ p if

xT
k+1P̂xxk+1 ≤ 1 ∀ζk|k ∈ E , ∀qk ∈ Q (2.9)

where, under (1.14), xk+1 is given by xk+1 = ΓTΞ(qk)ζk|k + ΓTγ(qk). By the

S-procedure (Boyd et al., 1994), (2.9) is equivalent to the existence of λ ≥ 0

satisfying

1−
(
Ξ(q)ζ + γ(q)

)T
ΓP̂xΓ

T
(
Ξ(q)ζ + γ(q)

)
≥ λ(1− ζT P̂ ζ)

for all ζ and all q ∈ Q, or equivalently
[
λP̂ 0

0 1− λ

]
−

[
Ξ(q)T

γ(q)T

]
ΓP̂xΓ

T
[
Ξ(q) γ(q)

]
≥ 0, ∀q ∈ Q.

Using Schur complements this can be expressed as a LMI in q, which, when

invoked for all q ∈ Q is equivalent to (2.8) for some λ ∈ [0, 1].

Additional constraints on P̂ are needed in order to constrain the conditional

probability that ψk lies outside the desired interval Iψ given that ζk|k lies in E .

Re-writing (2.1) in the form:

ψk = Ĉ(qk)ζk|k + η(qk)

Ĉ(qk) = C̄ΓT + D̄K̂ +
m∑

j=1

(C(j)ΓT + D̃(j)K̂)q(j)
k

with K̂ = [K E], the following result is based on the confidence region

Q.
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Lemma 2.2. Pr(ψk #∈ Iψ | ζk|k ∈ E) ≤ 1− p if

ψL ≤ η(qi) ≤ ψU (2.10)

for i = 1, . . . , ν and
[
Ĉ(qi)P̂−1Ĉ(qi)T

]
jj
≤

[
ψU − η(qi)

]2
j

(2.11a)
[
Ĉ(qi)P̂−1Ĉ(qi)T

]
jj
≤

[
η(qi)− ψL

]2
j

(2.11b)

for i = 1, . . . , ν and j = 1, . . . , nψ, where [ ]ij denotes element ij.

Proof. For given q, maxζ∈E [Ĉ(q)ζ]j = [Ĉ(q)P̂−1Ĉ(q)T ]1/2
jj , and it follows

from (2.7) that Pr(ψk ∈ Iψ) ≥ p whenever ζk|k ∈ E if
[
Ĉ(q)P̂−1Ĉ(q)T

]1/2
jj
≤

[
ψU − η(q)

]
j

(2.12a)
[
Ĉ(q)P̂−1Ĉ(q)T

]1/2
jj
≤

[
η(q)− ψL

]
j

(2.12b)

for all q ∈ Q and j = 1, . . . , nψ. Since (2.12a,b) are convex in q, the equivalent

constraints (2.10),(2.11a,b) are obtained by invoking (2.12a,b) at each vertex

of the polytope Q.

With E1 defined as Ex in the treatment outlined in section 2.2, the values of

p1 and p11 can specified using the constraints of Lemmas 2.1 and 2.2. To

maximize the safe region of state space, it is clearly desirable to maximize Ex,

which can be formulated as

maximize
P̂−1, λ∈[0,1]

det(P̂−1
x ) subject to (2.8), (2.10) and (2.11a,b) (2.13)

If λ is a constant, then the constraints in (2.13) are LMIs in P̂−1. Therefore Ex

can be optimized by successively maximizing det(P̂−1
x ) over the variable P̂−1

subject to (2.8), (2.10) and (2.11a,b), with the scalar λ fixed at a sequence of

values in the interval [0, 1].

In the case of input constraints: uL ≤ uk ≤ uU , the constraints of lemma 2.2

reduce to uL ≤ 0 ≤ uU and
[
K̂T P̂−1K̂

]
jj
≤

[
uU

]2
j
,

[
K̂T P̂−1K̂

]
jj
≤

[
uL

]2
j

(2.14)

for j = 1, . . . , nu. In the example of section 2.2 with E1 = Ex, this implies

p1 = 0.
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Corollary 2.3. If the probabilities p11, p12 are such that, for the conditional

constraint violation probability p1, the expected rates R1, R2 of accumulation

of constraint violations are within allowable limits, then the bound (2.2) will

be satisfied in closed loop operation under algorithm 2.

Proof. This follows directly from the assumptions on R1, R2 and the arguments

of section 2.2.

The algorithm must be initialized by computing P̂ . A possible procedure for

this is as follows: specify initial values p0
11, p

0
12 for p11, p12. Then, from the

bound Nmax/Nc on the allowed rate of accumulation of constraint violations,

the analysis of section 2.2 can be used to compute the minimum permissible

value for p1. Given p11, p12 and p1, the uncertainty set Q can be constructed

and the constraints (2.8),(2.10),(2.11a,b) formulated, allowing P̂ to be opti-

mized by solving (2.13). Once P̂ has been determined, the actual value of

p12 can be computed (e.g. by Monte Carlo simulation); this must be greater

than or equal to p0
12 to ensure satisfaction of (2.2). If this is not the case,

then P̂ must be re-computed using reduced values for p0
11, p

0
12. Note that the

computation of P̂ is performed offline.

If several desired intervals are specified for ψ, each with a bound on the ex-

pected number of violations, then the appropriate value for p1 can be computed

based on a weighted average rate of constraint violation. This situation is com-

mon when constraints on fatigue damage due to stress cycles of varying am-

plitudes are considered. For example, high-cycle fatigue damage constraints,

which are considered in the example of Section 3.1, can be formulated using

Miner’s rule (Miner, 1945) and empirical models to combine the effects of

stress cycles of differing amplitudes.

3 Example: Wind Turbine Blade Pitch Control

Consider the problem of maximizing the power capture of a variable pitch wind

turbine while respecting limits on turbine blade fatigue damage caused by wind
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fluctuations. It is common practice to assume that the statistical properties

of the wind remain constant over a period of order 10 minutes (Burton et al.,

2001). Below rated average wind speed (but above cut-off wind speed), the

control objective becomes that of maximizing efficiency, which can be achieved

by regulating blade pitch angle about a given setpoint (determined by maxi-

mizing an appropriate function of wind speed, pitch angle, and blade angular

velocity). This however is to be performed subject to constraints on the stress

cycles experienced by the blades in order to achieve a specified fatigue life.

3.1 System model and constraints

A simplified model of blade pitch rotation is given by

J
d2β

dt2
+ c

dβ

dt
= Tm − Tp (3.1)

where β is the blade pitch angle, Tm is a torque applied by an actuator used

to adjust β, and Tp is the pitching torque due to fluctuations in wind speed,

which is a known function of wind speed and the blade’s angle of attack, α. It

should be noted that α is related (in a known manner) to wind speed and β.

Therefore the model (3.1) is subject to additive stochastic uncertainty (due to

the dependence of Tp on wind speed) and multiplicative uncertainty (due to

the dependence of Tp on β), and furthermore these two sources of uncertainty

are statistically dependent.

Blade fatigue damage depends on the resultant applied torque, so fatigue

constraints are invoked on ψ defined by

ψ = Tm − Tp.

By considering variations about a given setpoint for β, a linear discrete model

approximation was identified in the form of an ARMA model:

yk+1 = ak,1yk + ak,0yk−1 + bk,1uk + bk,0uk−1 + wk (3.2)

using data applied to a continuous-time model of the NACA 632-215(V)

blade (Burton et al., 2001). Least squares estimates of θ = [a1 a0 b1 b0 w]T
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were obtained from 1000 simulation runs, each with a given fixed wind speed.

On the basis of these simulations, the mean θ̄ and covariance Σθ of the pa-

rameter vector θ were determined.

The model (3.2) can be written in the form (1.2), with

Ak =

[
0 ak,2

1 ak,1

]
, Bk =

[
bk,2

bk,1

]
, dk =

[
0

wk

]
.

The identified parameters (θ̄, Σθ) indicate that B has negligible uncertainty.

For a sampling interval of 1 second the corresponding uncertainty class is given

by

[
Ak dk

]
=

[
Ā 0

]
+

3∑

j=1

[
A(j) g(j)

]
qk,j (3.3)

Ā =

[
0 −0.97

1 1.56

]
, B̄ =

[
−0.20

−0.21

]
,

[
A(1) d(1)

]
=

[
0 −0.09 0

0 0.13 0.02

]

[
A(2) d(2)

]
=

[
0 0.21 0

0 −0.009 −0.06

]
,

[
A(3) d(3)

]
=

[
0 −0.06 0

0 0.02 0.05

]

The Gaussian assumption on qk was validated by the Jarque-Bera test at the

5% level. A discrete-time linearized description of the output ψk was estimated

using a similar approach. The uncertainty in D was found to be negligible,

and the uncertainty class for [C η] was formulated as

[
Ck ηk

]
=

[
C̄ 0

]
+

2∑

j=1

[
C(j) η(j)

]
qk,j (3.4)

C̄ =
[
0 729

]
, D̄ = 959

[
C(1) η(1)

]
=

[
0 300 50

]
,

[
C(2) η(2)

]
=

[
0 50 100

]

The number of degrees of freedom in predictions (1.14) was chosen as N = 4,

and Nc = 4 was also used as the horizon over which to invoke the upper

bound Nmax on the permissible number of constraint violations. Miner’s rule

was used to determine Nmax/Nc, assuming (for simplicity) a single threshold

on the torque Tm − Tp. Accordingly, for p0
11 = 0.9, p0

12 = 0.8, Nmax/Nc =
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0.3, the permissible value for p1 was found to be 0.2. For these values, the

optimization (2.13) resulted in

P̂x =

[
0.03 0.04

0.04 0.069

]

The corresponding maximal area i.w.p. sets are shown in Figure 9.

Figure 9: The sets S1 = Ex, and S2 = Ex2 − Ex1

3.2 Simulation results

Closed loop simulations of algorithm 2, performed for an initial condition x0 =

[−7.88 7.31]T (which is close to the boundary of Ex), gave an average number

of constraint violations of 3 over a horizon of 40 steps, while the maximum

number of constraint violations on any one simulation run was 4. From these

simulations, the actual value of p12 was found to be 0.85, which exceeds p0
12,

indicating that algorithm 2 satisfies the fatigue constraints.

3.2 Simulation results 39

Figure 10: Expected number of constraint violations as p11 is varied

The design values of p11 and p12 can be optimized so as to minimize the

value of i∗ computed using the procedure of Section 2.2. This process is

illustrated in Figures 10 and 11. Clearly the use of more sets Si will allow

further improvements in the value of i∗, since the accuracy of the Markov chain

model in predicting constraint violations improves as a finer discretization of

the state space is employed. The case of three sets S1, S2, S3 is shown in

Figure 12, and the corresponding rate of constraint violation is compared with

the best achievable with two sets in Figure 13.

To establish the efficacy of algorithm 2, closed loop simulations were performed

for 1000 sequences of uncertainty realizations, and compared in terms of cost

and constraint satisfaction with the mean square stabilizing linear feedback law

uk = Kxk. Algorithm 2 gave an average closed loop cost of 257, whereas the

average cost for uk = Kxk was 325. Algorithm 2 achieves this improvement

in performance by driving (during transients) the predictions hard against the
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Figure 11: The variation of i∗ with p11

limits of the soft constraints. Both algorithm 2 and uk = Kxk on average

resulted a total number of constraint violations within the specified limit over

a 40-step horizon. This is to be expected since both control laws achieve

acceptable rates of constraint violation in steady state. However the average

numbers of constraint violations over n steps, for 0 < n ≤ 16, indicate that

uk = Kxk exceeded the allowable limits during transients, whereas algorithm 2

gave average constraint violation rates less than Nmax/Nc = 0.3 for all n ≥ i∗,

where i∗ = 4.
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