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Abstract : A receding horizon control methodology is proposed for systems
with nonlinear dynamics, additive stochastic uncertainty, and both hard and soft
(probabilistic) input/state constraints. Jacobian linearization about predicted
trajectories is used to derive a sequence of convex optimization problems. Con-
straints are handled through the construction of tubes and an associated Markov
chain model. The parameters defining the tubes are optimized simultaneously
with the predicted future control trajectory via online linear programming.

1 Introduction

Constraints handled by predictive control strategies are typically treated as hard
(inviolable) constraints, or as soft constraints, in which case the degree of vi-
olation is to be minimized in some sense. This paper considers probabilistic
constraints in the form of soft input/state constraints, for which the probability
of violation is subject to hard limits. This form of constraint can account for the
distribution of model or measurement uncertainty, and thus avoid the conserva-
tiveness of a hard-constraint strategy based on the worst-case uncertainty [2],
which may be highly unlikely. The approach also provides statistical guarantees
of closed-loop constraint satisfaction, unlike approximate methods [8, 6] based
on constraints on the means and variances of predicted variables.

The difficulties of predicting the distributions of model states over a horizon
and of ensuring recursive feasibility in closed-loop operation have limited MPC
based on probabilistic constraints to highly computationally intensive Monte
Carlo methods (e.g. [1]) or to limited problem classes (e.g. linear dynamics [7]).
This paper considers nonlinear systems with stochastic disturbances, and pro-
poses a receding horizon control law subject to probabilistic and hard constraints
based on tubes [4, 3]. Analysis of a simplified Markov chain model verifies that
the probability of constraint violation is within the limits specified by the soft
constraints. Linearizations about predicted trajectories allow for an efficient
online optimization which may be terminated after a single iteration. The ap-
proach is illustrated by a numerical example in Section 5.

1.1 Problem statement

The system to be controlled is described by a discrete-time nonlinear model
with state xk ∈ Rnx and input uk ∈ Rnu :

xk+1 = f(xk, uk) + dk, k = 0, 1, . . . (1)
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and with f(0, 0) = 0. Here dk is a random disturbance with a finitely supported,
stationary distribution satisfying

E(dk) = 0, ∀k

(where E(·) denotes expectation). Furthermore dj , dk are assumed to be inde-
pendent for all j 6= k. We assume that xk is available for measurement at time
k. The dynamics of (1) are assumed to be continuous throughout the operating
region for the state (denoted X ) and input (denoted U) in the following sense.

Assumption 1. f(x, u) is Lipschitz continuous for all (x, u) ∈ X × U .

The system is subject to two types of constraint on state and input variables.
Hard constraints of the form

FHxk +GHuk ≤ hH , hH ∈ RnH (2)

must be satisfied at all times k = 0, 1, . . .. Thus, for example, we require the set
of feasible (x, u) for (2) to be a subset of the operating region, i.e.

{(x, u) : FHx+GHu ≤ h} ⊂ X × U .

In addition, we consider soft input/state constraints:

FSxk +GSuk ≤ hS , hS ∈ RnS (3)

which may be violated at any given time k, but which are subject to hard
bounds on the expected number of constraint violations over a given horizon.
To simplify presentation (but with no loss of generality), we consider the case
of a single soft constraint (nS = 1). The bound on the expected number of
constraint violations can therefore be expressed as a hard constraint:

1
Nc

Nc∑
i=1

Pr{FSxk+i +GSuk+i > hS} ≤
Nmax

Nc
(4)

which must hold for all k = 0, 1, . . .. Here Pr{A} denotes the probability of event
A, and Nmax/Nc is the maximum allowable rate of violation of soft constraints
averaged over an interval of Nc samples.

The control objective is the optimal regulation of xk about the origin with
respect to the performance index

J({u0, u1, . . .}, x0) =
∞∑
k=0

E0

(
1T |xk|+ λ1T |uk|

)
(5)

subject to constraints (2) and (4). Here Ek(·) denotes expectation conditional
on information available to the controller at time k, namely the measured state
xk; 1 is a vector, 1 =

[
1 · · · 1

]T , with dimension dependent on the context
and λ > 0 is a control weighting. The 1-norm cost defined in (5) is employed
for computational convenience but the paper’s approach is easily extended to
more general stage costs that are convex in (xk, uk).
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2 Successive linearization MPC

This section describes in outline a method of solving the receding horizon for-
mulation of the control problem defined in Section 1.1. Let {uk|k, uk+1|k, . . .}
denote a predicted input sequence at time k and denote {xk|k, xk+1|k, . . .} as
the corresponding state trajectory, with xk|k = xk. Following the dual mode
prediction paradigm [5], we define the infinite horizon predicted input sequence
in terms of a finite number of free variables, ck = {c0|k, . . . , cN−1|k}, as:

uk+i|k = Kxk+i|k + ci|k (6)

with
ci|k = 0, i = N,N + 1, . . .

The linear feedback law u = Kx is assumed to stabilize the model (1) in a
neighbourhood of x = 0 (the paper’s approach allows this to be replaced by
a stabilizing nonlinear feedback law if available). Note that this formulation
contains a degree of conservativeness since it leads to an optimization over the
variables ck rather than closed-loop policies, however it provides a convenient
balance of computation and conservativeness.

Under the control law of (6), state predictions are governed by the model

xk+i+1|k = φ(xk+i|k, ci|k) + dk+i, xk|k = xk (7)

where φ : Rnx×nu → Rnx is defined by the identity

φ(x, c) = f(x,Kx+ c), ∀x ∈ Rnx , c ∈ Rnu .

In order to account efficiently for the nonlinearity and uncertainty in the
prediction system (7), the proposed receding horizon optimization is based on
linear models obtained from the Jacobian linearization of (7) around nominal
trajectories for the predicted state. Let {x0

k|k, . . . , x
0
k+N |k} denote a trajectory

for the nominal system associated with the expected value of uncertainty in (7)
and c0

k = {c00|k, . . . , c
0
N−1|k}, so that x0

k+i|k evolves according to

x0
k+i+1|k = φ(x0

k+i|k, c
0
k), x0

k|k = xk. (8)

The combined effects of approximation errors and unknown disturbances can
be taken into account through the definition of a sequence of sets centred on a
nominal trajectory at prediction times i = 1, . . . , N and a terminal set centred
at the origin for i > N . For computational convenience we define these sets as
low complexity polytopes of the form {x : |V (x− x̂i|k)| ≤ z̄i|k} for i = 1, . . . , N ,
and {x : |V x| ≤ z̄t} for the terminal set. Here V is a square full-rank matrix
and the parameters z̄i|k, z̄t determine the relative scaling of the sets. Possible
choices for V and K are discussed in Section 3.2.

To simplify presentation, we define a transformed variable z = V x and
denote zδ and cδ as the deviations from the nominal trajectories for z and c:

zδk+i|k = zk+i|k − z0
k+i|k, z0

k+i|k = V x0
k+i|k

cδi|k = ci|k − c0i|k.

The transformed state evolves according to

z0
k+i+1|k + zδk+i+1|k = V φ

(
V −1(z0

k+i|k + zδk+i|k) , c0i|k + cδi|k
)

+ εk+i (9)
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where εk = V dk. The linearization of (7) about {x0
k|k, . . . , x

0
k+N |k} and c0

k can
therefore be expressed

zδk+i+1|k = Φk+i|kz
δ
k+i|k +Bk+i|kc

δ
i|k + εk+i + ek+i|k, zδk|k = 0 (10)

where

Φk+i|k = V
∂φ

∂x

∣∣∣∣
(x0
k+i|k,c

0
i|k)

V −1 Bk+i|k = V
∂φ

∂c

∣∣∣∣
(x0
k+i|k,c

0
i|k)

Similarly, for i ≥ N we have zk+i|k = V xk+i|k where

zk+i+1|k = V φ
(
V −1zk+i|k , 0

)
+ εk+i (11)

and the Jacobian linearization about z = 0 therefore gives

zk+i+1|k = Φzk+i|k + εk+i + ek+i|k , Φ = V
∂φ

∂x

∣∣∣∣
(0,0)

V −1. (12)

Remark 1. From Assumption 1 it follows that the linearization error in (10):

ek+i|k = V φ
(
V −1(z0

k+i|k + zδk+i|k) , c0i|k + cδi|k
)

− V φ
(
V −1z0

k+i|k, c
0
i|k
)
− Φk+i|kz

δ
k+i|k −Bk+i|kc

δ
i|k

necessarily satisfies the Lipschitz condition

|ek+i|k| ≤ Γz|zδk+i|k|+ Γc|cδi|k| (13)

for some positive matrices Γz,Γc, for all (zδk+i|k, c
δ
i|k) such that(

V −1(z0
k+i|k + zδk+i|k) , KV −1(z0

k+i|k + zδk+i|k) + c0i|k + cδi|k
)
∈ X × U .

Similarly, for i ≥ N , the linearization error in (12):

ek+i|k = V φ
(
V −1(zk+i|k) , 0

)
− Φzk+i|k

is Lipschitz continuous, with

|ek+i|k| ≤ Γt|zk+i|k| (14)

for some positive matrix Γt, for all zk+i|k such that(
V −1zk+i|k , KV

−1zk+i|k
)
∈ X × U .

In Section 3 the bounds (13) and (14) are combined with bounds on εk to
construct sets Zi|k, i = 0, . . . , N that depend on cδk = {cδ0|k, . . . , c

δ
N−1|k}, thus

defining tubes centred on a nominal trajectory containing the predictions of (7).
These tubes provide a means of bounding the receding horizon performance
cost and of ensuring satisfaction of constraints. As a result, the process of
successively linearizing about ({x0

k+i|k}, c
0
k), optimizing cδk, and then redefining

({x0
k+i|k}, c

0
k) by setting c0

k ← c0
k+cδk necessarily converges to a (local) optimum

for the original nonlinear dynamics, as discussed in Section 4.
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3 Probabilistic tubes

This section describes a method of constructing a series of tubes around a nom-
inal predicted trajectory so that each tube contains the future predicted state
with a prescribed probability. This process provides a means of bounding the
predicted value of the cost (5) and of ensuring satisfaction of hard constraints (2)
and probabilistic constraints (4) along future predicted trajectories. The prob-
abilities of transition between tubes from one sampling instant to the next and
the probability of constraint violation within each tube are governed by fixed
probabilities that are determined offline. However the parameters determining
the size of each tube are retained as optimization variables, and this allows the
effects of stochastic model uncertainty and linearization errors (which depend
on the predicted input trajectory) to be estimated non-conservatively over the
prediction horizon.

Let {S(1)
t , . . . ,S(r)

t } and {S(1)
i|k , . . . ,S

(r)
i|k } for i = 1, . . . , N denote collections

of sets in Rnx with

S(j)
t ∩ S

(m)
t = ∅, S(j)

i|k ∩ S
(m)
i|k = ∅ ∀j 6= m, (15)

and let S(j)
0|k = 0 for all j. Let pjm ∈ [0, 1] for j,m = 1, . . . , r, with

r∑
j=1

pjm = 1 j = 1, . . . , r, (16)

and assume that the sequences {zδk+i|k, i = 0, . . . , N} and {zk+i|k, i ≥ N}
generated respectively by the prediction models of (10) and (12) satisfy

Pr
(
zδk+i+1|k ∈ S

(j)
i+1|k | z

δ
k+i|k ∈ S

(m)
i|k
)

= pjm i = 0, . . . , N (17a)

Pr
(
zk+i+1|k ∈ S

(j)
t | zk+i|k ∈ S

(m)
t

)
= pjm i = N,N + 1, . . . (17b)

(note that the requirement for these probabilities to hold with equality is relaxed
in Section 3.1). Let the sets S(j)

N |k be linked to the terminal sets S(j)
t through

zδk+N |k ∈ S
(j)
N |k =⇒ zk+N |k = z0

k+N |k + zδk+N |k ∈ S
(j)
t j = 1, . . . , r. (18)

Then the probabilities of zδk+i|k ∈ S
(j)
i|k for i = 1, . . . , N and of zδk+i|k ∈ S

(j)
t for

i > N are governed by a Markov chain model with transition matrix Π:

Π =

p11 · · · p1r

...
. . .

...
pr1 · · · prr


and the distribution of predicted states can be approximated using the property

p
(1)
i

p
(2)
i
...
p

(r)
i

 = Πie1, p
(j)
i =

 Pr
(
zδk+i|k ∈ S

(j)
i|k
)

i = 1, . . . , N

Pr(zk+i|k ∈ S
(j)
t

)
i = N,N + 1, . . .

(19)
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where e1 =
[
1 0 · · · 0

]T .
Define pj as a bound on the one-step-ahead conditional probability of vio-

lating the soft constraint (3):

Pr
(
FSxk+i+1|k +GSuk+i+1|k > hS | zδk+i|k ∈ S

(j)
i|k
)
≤ pj i < N (20a)

Pr
(
FSxk+i+1|k +GSuk+i+1|k > hS | zk+i|k ∈ S

(j)
t

)
≤ pj i ≥ N (20b)

Then, from (15), (16) and (19), we have

Pr(FSxk+i+1|k +GSuk+i+1|k > hS) ≤
[
p1 p2 · · · pr

]
Πie1 ∀i. (21)

Assume also that the hard constraints (2) are satisfied within S(j)
i|k and S(j)

t :

zδk+i|k ∈ S
(j)
i|k =⇒ FHxk+i|k +GHuk+i|k ≤ hH i < N (22a)

zk+i|k ∈ S
(j)
t =⇒ FHxk+i|k +GHuk+i|k ≤ hH i ≥ N (22b)

for j = 1, . . . , r. Then sufficient conditions for satisfaction of both hard and
probabilistic constraints are given by the following lemma.

Lemma 3.1. The constraints of (2) and (4) are necessarily satisfied along pre-
dicted state and input trajectories of (6)-(7) if the conditions on: transition
probabilities (17a,b), terminal sets (18), probabilities of soft constraint violation
(20a,b), and hard constraints (22a,b), are satisfied for Π and pj, j = 1, . . . , r
such that:

1
Nc

Nc−1∑
i=0

[
p1 p2 · · · pr

]
Πie1 ≤

Nmax

Nc
. (23)

Proof. This is a direct consequence of (21) and (22a,b).

Throughout the following development we assume that Π and pj satisfy (23).

3.1 Tube constraints

We next construct constraints that ensure satisfaction of (2) and (4), and which
are suitable for a receding horizon control law. Consider the nested sets:

Z(1)
i|k ⊆ Z

(2)
i|k ⊆ · · · ⊆ Z

(r)
i|k , Z(1)

t ⊆ Z(2)
t ⊆ · · · ⊆ Z(r)

t (24)

The effects of model uncertainty and linearization error cause the uncertainty
in zδk+i|k to be symmetric about the state ẑi|k of the linear model:

ẑi+1|k = Φk+i|kẑi|k +Bk+i|kc
δ
i|k ẑ0|k = 0. (25)

Therefore define {Z(j)
i|k } and {Z(j)

t } as the low-complexity polytopic sets:

Z(j)
i|k = {zδ = ẑi|k + v : |v| ≤ z̄(j)

i|k} Z(j)
t = {z : |z| ≤ z̄(j)

t }

and define S(j)
t and S(j)

i|k in terms of Z(j)
t and Z(j)

i|k via the relations:

S(j)
t =

{
Z(1)
t j = 1
Z(j)
t −Z

(j−1)
t j = 2, . . . , r

S(j)
i|k =

{
Z(1)
i|k j = 1

Z(j)
i|k −Z

(j−1)
i|k j = 2, . . . , r
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for i = 1, . . . , N . The transition probabilities in (17a,b) are assumed to hold
with equality, which places a strong and unrealistic restriction on the distri-
bution of the uncertain disturbance in (7). Here we remove this assumption
by instead imposing constraints on transition probabilities for Z(j)

t and Z(j)
i|k .

These constraints have the additional advantage over constraints invoked di-
rectly on S(j)

t and S(j)
i|k that they are convex (in fact linear in the degrees of

freedom). We show that, when combined with conditions on the violation of
system constraints (2) and (3), this formulation provides sufficient conditions
for the conditions of Lemma 3.1 for disturbances dk with general (continuous,
finitely supported) distributions.

Accordingly, let

p̃jm =
j∑
l=1

plm, j,m = 1, . . . , r

(so that p̃rm = 1, m = 1, . . . , r) and define

Π̃ = TΠ, Π̃ =

p̃11 · · · p̃1r

...
. . .

...
p̃r1 · · · p̃rr

 , T =


1 0 · · · 0
1 1 0
...

...
. . .

1 1 · · · 1

 .
For j = 1, . . . , r − 1 and m = 1, . . . , r, we impose the transition probabilities

Pr
(
zδk+i+1|k ∈ Z

(j)
i+1|k | z

δ
k+i|k ∈ Z

(m)
i|k
)
≥ p̃jm i = 0, . . . , N (26a)

Pr
(
zk+i+1|k ∈ Z

(j)
t | zk+i|k ∈ Z

(m)
t

)
≥ p̃jm i = N,N + 1, . . . (26b)

whereas for m = 1, . . . , r we require

Pr
(
zδk+i+1|k ∈ Z

(r)
i+1|k | z

δ
k+i|k ∈ Z

(m)
i|k
)

= 1 i = 0, . . . , N (27a)

Pr
(
zk+i+1|k ∈ Z

(r)
t | zk+i|k ∈ Z

(m)
t

)
= 1 i = N,N + 1, . . . (27b)

The required probabilities on soft constraints are invoked for j = 1, . . . , r by

Pr
(
FSxk+i+1|k+GSuk+i+1|k > hS | zδk+i|k∈Z

(j)
i|k
)
≤ pj , i = 0, . . . , N − 1 (28a)

Pr
(
FSxk+i+1|k+GSuk+i+1|k > hS | zk+i|k∈Z

(j)
t

)
≤ pj , i = N,N + 1, . . . (28b)

while the hard constraints are invoked via

zδk+i|k ∈ Z
(r)
i|k =⇒ FHxk+i|k +GHuk+i|k ≤ hH i = 0, . . . , N − 1 (29a)

zk+i|k ∈ Z
(r)
t =⇒ FHxk+i|k +GHuk+i|k ≤ hH i = N,N + 1, . . . (29b)

Lemma 3.2. If pj and p̃jm satisfy

pj ≤ pj+1, j = 1, . . . , r − 1 (30a)
p̃jm ≥ p̃j m+1, j = 1, . . . , r − 1. (30b)

then constraints (26), (27), (28) and (29), together with the terminal constraints
that z0

k+N |k + zδk+N |k ∈ Z
(j)
t for all zδk+N |k ∈ Z

(j)
N |k, j = 1, . . . , r, are sufficient

to ensure that (2) and (4) hold along predicted trajectories of (6)-(7).
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Proof. Satisfaction of the hard constraint (2) is trivially ensured by (29a,b) and
(27a,b) due to the nested property (24). On the other hand, satisfaction of (21),
and hence also the probabilistic constraint (4), can be shown using (30a,b). For
i = 0 this is obvious from (28), whereas for i = 1 we have from (28):

Pr(FSxk+2|k +GSuk+2|k > hS)

≤
[
p1 · · · pr

] [
Pr
(
xk+1|k ∈ S

(1)
1|k
)
· · · Pr

(
xk+1|k ∈ S

(r)
1|k
)]T

=
[
p1 − p2 · · · pr

] [
Pr
(
xk+1|k ∈ Z

(1)
1|k
)
· · · Pr

(
xk+1|k ∈ Z

(r)
1|k
)]T

≤
[
p1 − p2 · · · pr

]
Π̃ e1

=
[
p1 · · · pr

]
Π e1

where the last inequality follows from (30a) and (26a). Similarly, for i = 2:

Pr(FSxk+3|k +GSuk+3|k > hS)

≤
[
p1 · · · pr

] [
Pr
(
xk+2|k ∈ S

(1)
2|k
)
· · · Pr

(
xk+2|k ∈ S

(r)
2|k
)]T

=
[
p1 − p2 · · · pr

] [
Pr
(
xk+2|k ∈ Z

(1)
2|k
)
· · · Pr

(
xk+2|k ∈ Z

(r)
2|k
)]T

≤
[
p1 − p2 · · · pr

]
Π̃
[
Pr
(
xk+1|k ∈ S

(1)
1|k
)
· · · Pr

(
xk+1|k ∈ S

(r)
1|k
)]T

=
[
p1 − p2 · · · pr

]
Π̃T−1

[
Pr
(
xk+1|k ∈ Z

(1)
1|k
)
· · · Pr

(
xk+1|k ∈ Z

(r)
1|k
)]T

≤
[
p1 − p2 · · · pr

]
Π̃T−1Π̃ e1

=
[
p1 · · · pr

]
Π2 e1

where the last inequality follows from (30b) (which implies the matrix Π̃T−1

has non-negative elements in the first r−1 rows and [0 0 · · · 1] in the last row)
and (26a). The same arguments show that (21) also holds for all i > 2.

Remark 2. The condition (30a) is equivalent to requiring that the probability
of soft constraint violation should decrease towards the centre of the tube. This
is necessarily true for the linear soft constraints of (3) due to the nested property
(24) and the convexity of Z(j)

t and Z(j)
i|k . Furthermore, because of the linearity

of (10) and (12), the nestedness and convexity of Z(j)
t and Z(j)

i|k imply that
condition (30b) can also be assumed to hold without loss of generality.

To invoke (26)-(29) we use confidence intervals for the elements of ε = V d
in (10) inferred from the distribution for d:

Pr(|ε| ≤ ξj) = p̃j , Pr(|ε| ≤ ξjm) = p̃jm, j,m = 1, . . . , r (31a)
Pr(|ε| ≤ ξ̄) = 1. (31b)

From (10) and (13) and (25) we obtain the bounds

|zδk+i+1|k − ẑi+1|k| ≤ |Φk+i|k(zδk+i|k − ẑi|k)|+ Γz|zδk+i|k|+ Γc|cδi|k|+ |εk+i|

and, since Z(m)
i|k has vertices ẑi|k +Dpz̄

(m)
i|k (where Dp, p = 1, . . . , 2nx are appro-

priate diagonal matrices), (26a) is therefore implied by the condition

z̄
(j)
i+1|k ≥ |Φk+i|kDpz̄

(m)
i|k |+ Γz|ẑi|k +Dpz̄

(m)
i|k |+ Γc|cδi|k|+ ξjm (32)
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for p = 1, . . . , 2nx , while (27a) is implied by

z̄
(r)
i+1|k ≥ |Φk+i|kDpz̄

(m)
i|k |+ Γz|ẑi|k +Dpz̄

(m)
i|k + Γc|cδi|k|+ ξ̄ (33)

for p = 1, . . . , 2nx . Similarly, from (10), (13) and (25) it follows that sufficient
conditions for (28a) are given by

(FS +GSK)V −1(z0
k+i+1|k + ẑi+1|k + Φk+i|kDpz̄

(j)
i|k ) +GS(c0i+1|k + cδi+1|k)

+ |(FS +GSK)V −1|(Γz|ẑi|k +Dpz̄
(j)
i|k |+ Γc|cδi|k|+ ξj) ≤ hS (34)

for p = 1, . . . , 2nx , whereas (29a) is implied by

(FH +GHK)V −1(z0
k+i|k + ẑi|k +Dpz̄

(r)
i|k ) +GH(c0i|k + cδi|k) ≤ hH (35)

for p = 1, . . . , 2nx . Note that the conditions (32)-(35) are linear in z̄(j)
i|k and ci|k,

which are retained as variables in the online optimization described in Section 4.

3.2 Terminal sets and terminal cost

In the interests of optimizing predicted performance, K in (6) should be optimal
for the cost (5) when constraints are inactive. However the constraint (27b)
also requires that Z(r)

t is robustly invariant under (12), and this may conflict
with the requirement for unconstrained optimality. We therefore specify K
as optimal for the linearized model (∂f/∂x|(0,0), ∂f/∂u|(0,0)) with a suitable
quadratic cost, and define V in (12) as the transformation matrix such that
Φ = V ∂φ/∂x|(0,0)V

−1 is in modal form (see [4] for more details of this approach).
To maximize the region of attraction of the resulting receding horizon con-

trol law, it is desirable to maximize the terminal sets Z(j)
t . This suggests the

following offline optimization problem:

(z̄(1)
t , . . ., z̄

(r)
t ) = arg max

(z̄
(1)
t ,...,z̄

(r)
t )

r∏
j=1

vol(Z(j)
t ) (36a)

s.t. z̄
(r)
t ≥ z̄(r−1)

t ≥ · · · ≥ z̄(1)
t > 0 (36b)

z̄
(j)
t ≥ (|Φ|+ Γt)z̄

(m)
t + ξjm, m = 1, . . . , r, j = 1, . . . , r − 1 (36c)

z̄
(r)
t ≥ (|Φ|+ Γt)z̄

(m)
t + ξ̄, m = 1, . . . , r (36d)

|(FS +GSK)V −1|
{

(|Φ|+ Γt)z̄
(j)
t + ξj

}
≤ hS , j = 1, . . . , r (36e)

|(FH +GHK)V −1|z̄(r)
t ≤ hH (36f)

where (36b) ensures (24), (36c) and (36d) are sufficient for (26b) and (27b)
respectively, while (36e) and (36f) are sufficient for (28b) and (29b) respectively.
The objective (36a) is chosen so that the optimization problem is convex, but
could be modified by introducing weights in order to obtain a more favourable
solution for Z(j)

t , j = 1, . . . , r.
To obtain a finite value for the infinite horizon predicted cost despite the

presence of non-decaying disturbances, we subtract a bound on the steady-state
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value of the stage cost under (6), and hence redefine the performance index as

J(ck, xk) =
∞∑
i=0

Ek
(
1T |V −1zk+i|k|+ λ1T |KV −1zk+i|k + ci|k| − lss

)
(37a)

lss = 1T
(
|V −1|+ λ|KV −1|

)(
I − |Φ| − Γt

)−1
ζ (37b)

where ζ = E(|ε|). The following result enables the cost over the prediction
interval i = N,N + 1, . . . to be bounded in terms of a function of zk+N |k.

Lemma 3.3. If q satisfies

qT (|z| − |Φz| − Γt|z| − ζ) ≥ 1T |V −1z|+ λ1T |KV −1z| − lss (38)

for all z ∈ Z(r)
t , then

qT |zk+N |k| ≥
∞∑
i=N

Ek
(
1T |V −1zk+i|k|+ λ1T |KV −1zk+i|k| − lss

)
. (39)

Proof. From (12), (14) and (31b), the inequality (38) implies

qT |zk+i|k| − Ek+i(qT |zk+i+1|k|) ≥ 1T |V −1z|+ λ1T |KV −1z| − lss.

Taking expectations and summing over i = N,N + 1, . . . yields (39).

Using Lemma 3.3 we determine an optimal bound on the cost-to-go for the
case that zk+N |k ∈ S

(j)
t by solving the following LPs for q(j), j = 1, . . . , r:

q(j) = arg min
q

qT z̄
(j)
t

s.t. qT (z̄(r)
t − |ΦDpz̄

(r)
t | − Γtz̄

(r)
t − ζ) ≥

1T |V −1Dpz̄
(r)
t |+ λ1T |KV −1Dpz̄

(r)
t | − lss, p = 1, . . . , 2nx

(40)

Given the distribution of predictions (19), this implies the following bound

r∑
j=1

q(j)T z̄
(j)
k+N |kp

(j)
N ≥

∞∑
i=N

Ek
(
1T |V −1zk+i|k|+ λ1T |KV −1zk+i|k| − lss

)
.

4 Receding horizon control law

Let V be the following bound on the cost J in (37a):

V (cδk, {z̄
(j)
i|k , i = 1, . . . , N, j = 1, . . . , r}, {x0

k+i|k}, c
0
k) =

r∑
j=1

{N−1∑
i=0

max
zδ
i|k∈Z

(j)
i|k

(
1T |V −1zk+i|k|+ λ1T |KV −1zk+i|k + c0i|k + cδi|k| − lss

)
p

(j)
i

+ q(j)T z̄
(j)
k+N |kp

(j)
N

}
(41)

and consider the following receding horizon control strategy.
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Algorithm 1. Offline: Given pj , p̃jm satisfying (23), (30a,b): compute K,V ,
terminal sets Z(j)

t and terminal weights q(j) using the procedures of Section 3.2.
Online: At times k = 0, 1, . . .
1. given c0

k, determine x0
k+i|k, and Φk+i|k, Bk+i|k, i = 0, . . . , N and solve:

cδ∗k = arg min
cδk,{z̄

(j)
i|k}

V (cδk, {z̄
(j)
i|k}, {x

0
k+i|k}, c

0
k) (42a)

s.t. (32),(33),(34),(35) (42b)

Z(j)
k+N |k + z0

k+N |k ⊆ Z
(j)
t , j = 1, . . . , r (42c)

2. set uk = Kxk + c00|k + cδ∗0|k and c0
k+1 = {c01|k + cδ∗1|k, . . . , c

0
N−1|k + cδ∗N−1|k, 0}.

Theorem 4.1. In closed-loop operation, Algorithm 1 has the properties:
(i). the optimization (42) is feasible for all k > 0 if feasible at k = 0
(ii). the optimal value V ∗({x0

k+i|k}, c
0
k) of the objective (42a) satisfies

Ek
[
V ∗({x0

k+i+1|k+1}, c
0
k+1)

]
− V ∗({x0

k+i|k}, c
0
k) ≤ lss − 1T |xk| − λ1T |uk| (43)

(iii). constraints (2) and (4) are satisfied at all times k and

lim
n→∞

1
n

n∑
k=0

E0

(
1T |xk|+ λ1T |uk|

)
≤ lss. (44)

Proof. (i) and (ii) follow from feasibility of cδk = 0 in (42). Constraint satisfac-
tion in (iii) follows from (i), and (44) results from summing (43) over 0 ≤ k ≤ n
and noting that V ∗({x0

i|0}, c
0
0) is finite.

Remark 3. The optimization (42) to be solved online in Algorithm 1 can be
formulated as a linear program. Note that the number of constraints in (42)
depends linearly on the horizon N and the number of tubes r, but grows expo-
nentially with the dimension of the model state nx due to the exponential growth
in the number of vertices of Z(j)

i|k with nx. The required online computation there-
fore grows rapidly with model size. Possible methods of mitigating this growth
in computational load are the use of tubes with ellipsoidal cross-sections and the
use of robust optimization methods [2] to invoke constraints on the probabilities
of transition between tubes and of constraint satisfaction within tubes.

Remark 4. If the constraints on online computation allow for more than one
optimization at each sample, then setting c0

k ← c0
k + cδ∗k and repeating step 1

results in non-increasing optimal cost values V ∗({x0
k+i|k}, c

0
k). This process gen-

erates a sequence of iterates cδ∗k that converges to an optimum point for the
problem of minimizing (41) for the nonlinear dynamics (7) at time k.

5 Example

The levels h1 = x1 + xr1 and h2 = x2 + xr2 of fluid in a pair of coupled tanks are
related to the input flow-rate through the discrete-time system model:[
x1,k+1

x2,k+1

]
=
[

x1,k − Ta1

√
h1,k − h2,k

x2,k + Ta1

√
h1,k − h2,k − Ta2

√
h2,k

]
+

T

C1

[
uk + ur

0

]
+
[
d1,k

d2,k

]
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with a1 = 0.0690, a2 = 0.0518, C1 = 159.3cm2, sampling interval T = 10s, and
where xr1 = 30.14cm and xr2 = 19.29cm are setpoints corresponding to flow-rate
ur = 35cm3/s. The manipulated variable is the flow-rate uk into tank 1, and
d1k, d2k are zero-mean random disturbances with normal distributions trun-
cated at the 95% confidence level. The system has probabilistic constraints:
Pr(|x1k| > 16) ≤ 0.2 and hard constraints: |x1k| < 16, 0 ≤ uk ≤ 70. For the
operating region: |xi| < 30, i = 1, 2, the Lipschitz constants were obtained as
Γz =

[
0.79 0.14
0.04 0.87

]
. Choosing r = 2 and (p11, p12, p21, p22) = (0.8, 0.1, 0.2, 0.9),

terminal sets Z(1)
t ,Z(2)

t and cost weights q(1), q(2) were computed offline. For a
horizon N = 5, the sequence of sets Z(1)

i|k ,Z
(2)
i|k , i = 0, . . . , 5, obtained with one

iteration of Algorithm 1 are shown in Figure 1.

−1 0 1 2 3 4 5 6
−20

−15
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0

5
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15
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−1 0 1 2 3 4 5 6
−15

−10
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0

5

10

15
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z 2

Figure 1: Evolution of bounds on eT1 z (left) and eT2 z (right): Z(j)
i|k (blue), Z(j)

t

(red), for j = 1, 2, and the nominal trajectory z0
k+i|k (blue x).
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