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Abstract: An output feedback Model Predictive Control (MPC) strategy for linear systems
with additive stochastic disturbances and probabilistic constraints is proposed. Given the
probability distributions of the disturbance input, the measurement noise and the initial state
estimation error, the distributions of future realizations of the constrained variables are predicted
using the dynamics of the plant and a linear state estimator. From these distributions, a set of
deterministic constraints are computed for the predictions of a nominal model. The constraints
are incorporated in a receding horizon optimization of an expected quadratic cost, which is
formulated as a quadratic program. The constraints are constructed so as to provide a guarantee
of recursive feasibility, and the closed loop system is stable in a mean-square sense.

Keywords: Output feedback; probabilistic constraints; stochastic systems

1. INTRODUCTION

Model predictive control (MPC) strategies have proved
highly successful as a result of their ability to achieve
approximately optimal performance in the presence of
constraints. The vast majority of contributions in this area
have considered hard constraints, and a number of robust
MPC techniques have been proposed for handling hard
constraints in the case of systems that are subject to un-
certainty. However model and measurement uncertainties
are often stochastic, and in such cases the robust MPC
approach can be conservative because it ignores informa-
tion on the probabilistic distribution of the uncertainty.
In addition, not all constraints are hard, and it may be
possible, as well as desirable in order to improve perfor-
mance, to tolerate violations of some constraints provided
that the frequency of violations remains within allowable
limits.

Recent work (Cannon et al., 2010; Kouvaritakis et al.,
2010) proposed Stochastic MPC (SMPC) algorithms that
made explicit use of probabilistic information on additive
disturbances in order to minimize (in a receding horizon
fashion) the expected value of a predicted cost subject to a
combination of hard and soft constraints. A key ingredient
of the algorithms is the definition of stochastic tubes that
enable a recursive guarantee of feasibility and therefore
enable the assertion of closed loop stability and constraint
satisfaction. Probabilistic constraints were invoked via lin-
ear constraints on nominal predictions using the concept of
tubes (Langson et al., 2004; Mayne et al., 2005, 2006), and
thus the online algorithms are computationally efficient.
Moreover Kouvaritakis et al. (2010) proposed conditions
that are necessary as well as sufficient for the probabilistic
constraints and their recursive feasibility guarantee, imply-
ing minimal conservativism in the handling of probabilistic
constraints. The approach was based on state feedback,
which carries with it the assumption that the states are
measurable. In practice this is typically not the case, and

it is often necessary therefore to estimate the state via an
observer.

The mechanism for incorporating state estimation in ro-
bust MPC is well understood (see e.g. Lee and Kouvari-
takis, 2001; Wan and Kothare, 2002; Løvaas et al., 2008;
Mayne et al., 2009) and uses lifting in order to get a
description of the combined dynamics of the system and
observer. However it is now necessary to integrate into
the approach the probabilistic information that is usually
available on the measurement noise and the distribution of
the unknown initial plant state variables. This paper con-
siders the propagation of this information, together with
information on the distribution of an additive disturbance,
through the prediction dynamics. Whereas previous work
on this problem (e.g. Yan and Bitmead, 2005) did not
consider feasibility and stability, the approach proposed
here guarantees recursive feasibility with respect to both
hard and probabilistic constraints and ensures stability
and convergence of the plant state in a mean-square sense.
We provide a numerical example verifying that the rate
of constraint violation can be as tight as the specified
probability.

2. PROBLEM FORMULATION

Consider a linear system with state xk ∈ Rn, measured
output yk ∈ Rny and control input uk ∈ Rnu :

xk+1 = Axk +Buk +Dwk (1a)
yk = Cxk + Fvk (1b)

where the disturbance wk ∈ Rnw and measurement noise
vk ∈ Rnv sequences are independent, identically dis-
tributed, with known, finitely supported distributions such
that the elements of wk and vk are zero-mean and inde-
pendent. Consider also the linear observer dynamics:

x̂k+1 = Ax̂k +Buk + L(yk − ŷk) (2a)
ŷk = Cx̂k (2b)
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where x̂k is the state estimate and L ∈ Rn×ny is chosen
such that A−LC is strictly stable. Subtracting (2a) from
(1a), the error dynamics are given by

εk+1 = (A− LC)εk +Dwk + Fvk (3)

where εk := xk − x̂k is the state estimation error. The
initial value ε0 is assumed to be a random variable with
a known and compactly supported distribution, so that
ε0 ∈ Π0 for some compact set Π0.

We denote the state estimate and estimation error se-
quences predicted at time k as {x̂k+i|k, εk+i|k, i = 0, 1, . . .}.
Using the closed loop paradigm (Kouvaritakis et al., 2000),
the augmented system state ξk+i = (x̂k+i, εk+i) ∈ R2n

evolves according to

ξk+i+1|k = Ψξk+i|k + B̃ck+i|k + D̃δk+i|k (4a)
uk+i|k = Kx̂k+i|k + ck+i|k (4b)

where δk+i|k = (wk+i|k, νk+i|k) ∈ Rnw+nv is the stochastic
disturbance, Ψ is assumed to be strictly stable, and

Ψ =
[
A+BK LC

0 A− LC

]
, B̃ =

[
B
0

]
, D̃ =

[
0 LF
D −LF

]
.

In this formulation ck+i|k, i = 0, . . . , N − 1 are decision
variables, with ck+i|k = 0 for i ≥ N , for some finite
prediction horizon N . Given the assumptions on wk and
vk, the distribution of δk is compactly supported, with
δk ∈ ∆ for all k, where ∆ is a compact set.

The system is subject to probabilistic constraints on linear
functions of the state and input of the form

Pr{ηTx xk + ηTu uk ≤ h} ≥ p, k = 0, 1, . . . (5)

for fixed scalar h, vectors ηx, ηu, and probability p ∈ (0, 1].
Applied to the predictions of (4), these are equivalent to

Pr
{
gT ξk+i|k + fT ck+i|k ≤ h

}
≥ p, i = 0, 1, . . . (6)

where g = (ηx+ηuK, ηx) and f = ηu. Note that (6) applies
for i = 1, 2, . . . if ηu = 0. The case of hard constraints is
treated simply by setting p = 1 in (5) and (6).

We split the prediction ξk+i|k into nominal (zk+i|k) and
uncertain (ek+i|k) elements:

ξk+i|k = zk+i|k + ek+i|k (7a)

zk+i+1|k = Ψzk+i|k + B̃ck+i|k (7b)

ek+i+1|k = Ψek+i|k + D̃δk+i|k (7c)

where zk|k = (x̂k, 0), ek|k = (0, εk), ek|k ∼ Dk, and the
distribution Dk can be calculated according to (3) given
the distribution of the initial estimation error ε0. This
decomposition allows the propagation of the disturbance,
ek+i|k, to be considered separately from the nominal state
prediction, zk+i|k, and thus simplifies the handling of
constraints.

The problem is then to devise a receding horizon MPC
strategy that minimizes the cost

Jk =
∞∑
i=0

E
(
xTk+i|kQxk+i|k + uTk+i|kRuk+i|k

)
(8)

(where E(·) denotes expectation) subject to satisfaction
of the constraint (5) for all k ≥ 0, while ensuring that
the closed loop system stable and that xk converges to a
neighbourhood of the origin.

3. PREDICTIONS AND RECURSIVELY FEASIBLE
PROBABILISTIC TUBES

To handle the constraints of (5), we first consider the
conditions that guarantee that (6) is satisfied by pre-
dicted state and input sequences. In the sequel, the vec-
tor of decision variables at each time k is denoted as
ck = (ck|k, ck+1|k, . . . , ck+N−1|k) ∈ RNnu . Necessary and
sufficient conditions are given as follows.
Theorem 1. At time k, the constraints (6) are satisfied by
predictions of (4) if and only if ck satisfies
(gTHi + fTEi)ck + gTΨizk ≤ h− γ̂i|k, i = 0, 1, . . . (9)

where Hi = [Ψi−1B̃ · · · B̃ 0 · · · 0], Eick = ck+i|k, and
γ̂i|k is defined for each k and i = 0, 1, . . . as the minimum
value such that
Pr
{
gT ek|k ≤ γ̂0|k

}
= p (10a)

Pr
{
gT(Ψiek|k+Ψi−1D̃δk|k+· · ·+D̃δk+i−1|k)≤ γ̂i|k

}
= p,

for i = 1, 2, . . .
(10b)

Proof: The predictions of (7) give
zk+i|k = Ψizk|k +Hick (11a)

ek+i|k = Ψiek|k + Ψi−1D̃δk|k + · · ·+ D̃δk+i−1|k (11b)
and since γ̂i|k is the minimum value that satisfies (10), it
follows that (9) is equivalent to the constraint of (6).

Many problems of practical interest have more than one
constrained variable. For the case of r constrained scalar
variables, we assume that each constraint can be expressed
as a condition of the form of (5), and hence (6), i.e.

Pr
{
gTj ξ + fTj c ≤ hj

}
≥ pj ,

for j = 1, . . . , r. The treatment of Theorem 1 can then be
applied to each of the r individual constraints to derive a
set of constraints of the form (9).

Condition (9) is linear in ck, and can therefore be con-
veniently incorporated into an online optimization of ck.
However the computation of γ̂i|k necessitates calculating
the distribution of gT (Ψiek|k + Ψi−1D̃δk + · · ·+ D̃δk+i−1),
which involves a multivariate convolution integral, and
hence can be computationally intensive, particularly for
high-dimensional systems and long prediction horizons.
However, by discretizing the distributions of δk and ε0 and
performing discrete scalar convolutions, the values of γ̂i|k
can be approximated (to a specified degree of accuracy) at
reasonable computational cost. For example, computing
the discrete density function of a sum of two scalar vari-
ables requires O(m2) multiplications if each variable can
take m discrete values. Most importantly, the calculation
of γ̂i|k does not require knowledge of xk and can therefore
be performed offline.

Although the conditions of Theorem 1 ensure that (6)
is satisfied over the entire prediction horizon at time k,
the existence of ck satisfying these conditions does not
ensure the existence of a set of decision variables ck+1 that
generate predictions at time k + 1 satisfying (6). Hence
(9) does not guarantee the future feasibility of an online
optimization problem incorporating (9) as a constraint.
This is because γ̂i|k in (10) is a probabilistic bound
on the stochastic components of the predicted value of
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gT ξk+i|k at time k, whereas the same probabilistic bound
on gT ξk+i|k+1 could, on the basis of information available
at time k, take its maximum value over all possible
realizations of the estimation error ek and disturbance δk
at time k.

Define Tck = (ck+1|k, . . . , ck+N−1|k, 0) ∈ RNnu , then the
preceding argument implies that ck+1 = Tck satisfies (9)
at time k + 1 if and only if γ̂i|k is replaced in (9) by
the bounds that are obtained by assuming the worst-case
values for ek|k and δk|k in (10). The following theorem
generalizes this approach by deriving the conditions for
feasibility of ck+i = T ick in (9) at time k + i for i ≥ 1.
These conditions therefore ensure that the probabilistic
constraints (6) are satisfied at time k and are also recur-
sively feasible in the sense that they remain feasible at all
times k + 1, k + 2, . . . if feasible at time k.

In the sequel, γi is defined as the minimum value such that
Pr
{
gT (Ψi−1D̃δk + · · ·+ D̃δk+i−1) ≤ γi

}
= p. (12)

We also define αi|k and di for i = 0, 1, . . . by

di = max
δ∈∆

gTΨi−1D̃δ (13a)

αi|k = max
ek|k∼Dk

gTΨiek|k (13b)

where maxe∼D{·} denotes the maximum over all realiza-
tions of e in the distribution defined by D.

Theorem 2. At time k, the constraints (6) are satisfied by
the predictions of (4) if ck satisfies
(gTHi+fTEi)ck+gTΨizk|k ≤ h−βi|k, i = 0, 1, . . . (14)

where βi|k is the maximum element of the (i+1)th column
of the matrix Bk defined by
γ̂0|k γ̂1|k γ̂2|k γ̂3|k · · ·

0 α1|k + d1 α2|k + d2 + γ1 α3|k + d3 + γ2 · · ·
0 0 α2|k + d2 + d1 α3|k + d3 + d2 + γ1 · · ·
0 0 0 α3|k + d3 + d2 + d1 · · ·
...

...
...

...


(15)

Furthermore, if (14) is feasible at time k, then (14) will
remain feasible at all times k + 1, k + 2, . . ..

Proof: If βi|k is defined by the (i+ 1)th element of the first
row of Bk, then (14) is equivalent to (9). The (i+ 1)th
element of the second row of Bk is obtained by replacing
ek|k and δk|k in (10b) by their worst-case values, so
that (14) also ensures that Tck is feasible for (9) at time
k + 1. Similarly the jth row corresponds to the worst-
case values of ek|k and δk|k, . . . , δk+j−2|k in (10b), thus
ensuring that T jck is feasible for (9) at time k + j. The
proof is completed by noting that the conditions of (14)
are themselves recursively feasible due to their definition
in terms of the worst-case future uncertainty.

Remark 3. If ηu = 0 in (5), so that the system constraints
apply only to the plant state, then the constraint (6) and
condition (14) should be invoked for i = 1, 2, . . ., so that
the first prediction time-step (i = 0) is excluded. In this
case Bk is given by the matrix of (15) with the elements
on the main diagonal set to zero.

Lemma 4. For all i ≥ 1 we have βi|k = αi|k +
∑i
j=1 dj .

Proof: From the definitions of di and αi|k in (13) we have
gTΨi−1D̃δk ≤ di and gTΨiek|k ≤ αi|k for all realizations of
ek|k and δk. Hence γ̂1|k ≤ α1|k+d1, and from the definition
of γi−1 it also follows that

Pr

{
gT (Ψiek|k + Ψi−1D̃δk + · · ·+ D̃δk+i−1)

≤ αi|k + di + γi−1

}
≥ p

so that γ̂i|k ≤ αi|k + di + γi−1 for i = 2, 3, . . .. Similar
arguments give γ1 ≤ d1 and γi ≤ di + γi−1 for i = 2, 3, . . .,
and it follows that the maximum element in each column
of Bk lies on the diagonal.

Since ek|k and the sequence {δk, δk+1, . . .} are (by assump-
tion) bounded, and since Ψ is strictly stable, it is clear that
the predicted sequence {ek|k, ek+1|k, . . .} generated by (7c)
is bounded, and hence the sequence {βi|k, βi+1|k . . .} is
bounded for any k. We next show how to compute bounds
on βi|k that hold for all i, k exceeding given values. These
are used in section 4 to derive a recursively feasible SMPC
algorithm that involves only a finite number of constraints.
As we show below, these bounds also enable the constraints
in the online SMPC optimization at all times k = 0, 1, . . .
to be computed offline, at k = 0.

Define the symmetric positive definite matrix S ∈ R2n×2n

and scalar ρ ∈ (0, 1) as the solution of the semidefinite
program:
(ρ, S) = arg min

ρ>0

S=ST�0

ρ

subject to ΨSΨT � ρ2S (16a)

‖D̃δ‖S−1 ≤ 1 for all δ ∈ ∆ (16b)

(where ‖v‖S =
√
vTSv). Define E as the ellipsoidal set

E = {e : eTS−1e ≤ 1}, and let Eε denote its projection
onto the subspace {e ∈ R2n : [In 0]e = 0}, so that

Eε = {ε : εTS−1
22 ε ≤ 1},

where S22 is the relevant block of S =
[
S11 S12

S21 S22

]
.

Also define positive scalars τ and σ by

τ = max
e0∼D0

‖e0‖S−1 = max
ε0∈Π0

∥∥∥[ 0
ε0

]∥∥∥
S−1

(17a)

σ = max
ε∈Eε

∥∥∥[0ε
]∥∥∥

S−1
= λmax

(
S

1/2
22 [0 I]S−1

[
0
I

]
S

1/2
22

)
.

(17b)
(where λmax(A) denotes the maximum eigenvalue of A).

Lemma 5. For any integer ν > 1, βi|k satisfies:

βi|k =
i∑

j=1

dj +
k∑
j=1

bij + aik,

i = 1, 2, . . . , ν − 1, k < ν

(18a)

βi|k ≤ β̄i|ν =
i∑

j=1

dj+
ν−i∑
j=1

bij + ᾱ,

i = 1, 2, . . . , ν − 1, k ≥ ν

(18b)

βi|k ≤ β̄ =
ν∑
j=1

dj + ᾱ, i ≥ ν (18c)

where
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bij = max
δ∈∆

gTΨi

[
0 0
0 I

]
Ψj−1D̃δ

aik = max
e0∼D0

gTΨi

[
0 0
0 I

]
Ψke0

ᾱ = ρνσ
( 1

1− ρ
+ τ
)
‖g‖S .

Proof: The definitions of αi|k in (13b) and ek|k in Theo-
rem 1 give

αi|k =
k∑
j=1

bij + aik,

which implies that the expression for βi|k in (18a) holds
for all i ≥ 1 and k ≥ 0. To demonstrate the bounds in
(18b,c), note that (16b) implies D̃∆ ⊆ E (i.e. D̃δ ∈ E for
all δ ∈ ∆), and (16a) therefore implies ΨjD̃∆ ⊆ ρjE . Since
maxe∈E gT e = ‖g‖S , it follows that

dj ≤ ρj−1‖g‖S .
Furthermore, (17b) implies[

0 0
0 I

]
E ⊆ σE ,

so by the same argument we have
bij ≤ ρi+j−1σ‖g‖S ,

and similarly, from (17a),

aik ≤ ρi+kστ‖g‖S .
The bounds in (18b) and (18c) can be obtained by sub-
stituting these bounds into (18a) and making use of the
properties that ρ < 1 (since Ψ in (16a) is strictly stable),
and σ > 1 (due to the definition of σ in (17b)).

Remark 6. The bounds in (18b,c) can be made arbitrarily
tight by using a sufficiently large value for ν.

Remark 7. The values of β0|k = γ̂0|k for k ≥ ν may (since
Ψ is strictly stable) be approximated for sufficiently large
ν using the asymptotic distribution D∞ of limk→∞ ek|k,
i.e.

β0|k ≈ γ̂0|∞ = γ∞ ∀k ≥ ν.
Combining this approximation with the bounds on βi|k for
i ≥ 1 in Lemma 5 enables recursively feasible constraints
to be computed offline for all k ≥ 0 on the basis of a finite
number of bounds, namely

{γ̂0|k, k = 0, . . . , ν − 1}, γ∞, {dj , j = 1, . . . , ν},
{bij , i, j = 1, . . . ν − 1}, {aij , i, j = 1, . . . ν − 1}, ᾱ.

(19)
This approach implicitly assumes that the transient re-
sponse of the coupled plant and observer that is due to
the initial estimation error becomes negligible after ν time
steps. For ν less than the duration of these transients, the
degree of conservativeness of bounds of Lemma 5 could be
non-negligible.

4. SMPC ALGORITHM

This section describes a receding horizon strategy em-
ploying the predictions of (4), and establishes its stability
and convergences properties in closed loop operation. The
strategy is based on an online optimization which min-
imizes the expected cost (8) over the decision variables

ck = (ck|k, . . . , ck+N−1|k) subject to the constraints (6),
which are invoked via the recursively feasible constraints
of (14). The predictions of (4b), with ck+i|k = 0 for i ≥ N ,
imply a dual mode prediction strategy (Mayne et al.,
2000), with mode 1 comprising the first N prediction time
steps during which the control inputs are determined by
the elements of ck, and mode 2 the subsequent infinite
prediction horizon over which the control inputs are given
by the fixed feedback law uk+i|k = Kxk+i|k.

Constraints are handled explicitly in mode 1 and implicitly
in mode 2 through the constraint that the predicted state
at the end of the mode 1 horizon should lie in a terminal
set. To derive this terminal set we re-write the constraints
(14) in mode 2 at time k as

gTΨjzk+N |k ≤ h− βN+j|k , j = 0, 1, . . . (20)
The maximal admissible set at time k, denoted S∞|k, is the
subset of Rn containing all zk+N |k such that (20) holds.
The following result uses the bounds (18) to establish
conditions under which S∞|k is well-defined.

Lemma 8. If h ≥ β̄ and

h ≥

 max
i=N,...,ν−1

βi|k if k < ν

max
i=N,...ν−1

β̄i|ν otherwise
(21)

then S∞|k is non-empty.

Proof: Using (18b,c) to bound βN+j|k in the inequali-
ties (20) defining S∞|k, it is easy to show that the con-
ditions on h given in the lemma ensure that S∞|k contains
the origin, and so is non-empty.

The approach of Gilbert and Tan (1991) provides a method
of computing an inner approximation of S∞|k. Consider
first the case of k < ν, and define a terminal set Sν|k as
follows:
Sν|k = {z : gTΨi−Nz ≤ h− βi|k, i = N, . . . , ν − 1

gTΨi−Nz ≤ h− β̄, i = ν, ν + 1, . . .}
(22)

From (18c) it follows that Sν|k ⊆ S∞|k, and furthermore,
it can be shown (Gilbert and Tan, 1991) that there exists
N∗k such that Sν|k is determined by the finite set of
inequalities:
Sν|k = {z : gTΨi−Nz ≤ h− βi|k, i = N, . . . , ν − 1

gTΨi−Nz ≤ h− β̄, i = ν, . . . , ν +N∗k}.
(23)

whenever S∞|k is bounded. For k ≥ ν, the bounds of
(18b) enable a time-invariant terminal set to be defined
as Sν|k = Sν , where

Sν = {z : gTΨi−Nz ≤ h− β̄i|ν , i = N, . . . , ν − 1

gTΨi−Nz ≤ h− β̄, i = ν, . . . , ν +N∗ν }
(24)

for some finite N∗ν . Thus a finite collection of terminal sets:
Sν|k, for k = 0, . . . , ν − 1 and Sν for all k ≥ ν can be used
to invoke the mode 2 constraints at any time k. Moreover,
for each k = 0, . . . , ν, the parameter N∗k can be determined
by solving a finite number of linear programming problems
(see Gilbert and Tan, 1991, for details).

Note that if S∞|k is unbounded, then Sν|k and Sν can
be defined as bounded inner approximations of S∞|k by
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incorporating suitable additional constraints in (22). The
approach outlined above can then be used to express Sν|k
and Sν in terms of a finite number of inequalities as in
(23) and (24).

The cost defined by (8) is the summation of the expected
value of each stage cost, which is necessarily infinite over
the infinite prediction horizon since the asymptotic value:

lss = lim
i→∞

E
(
xTk+i|kQxk+i|k + uTk+i|kRuk+i|k

)
is non-zero for the case of persistent additive uncertainty.
Therefore we redefine the cost function in terms of the
deviation of expected stage cost from this asymptotic
limit:

J̃k =
∞∑
i=0

[
E
(
xTk+i|kQxk+i|k + uTk+i|kRuk+i|k

)
− lss

]
. (25)

This modification provides a finite cost that can be min-
imized online. Note however that the optimal value of ck
is unchanged.

Remark 9. Given the distribution of δ, the cost (25) can be
expressed as a quadratic function of the degrees of freedom
ck in the predictions (see e.g. Cannon et al., 2009):

J̃k(ck) = cTk Pccck + 2x̂Tk P
T
xcck + pk(x̂k)

where Pcc ∈ RNnu×Nnu , Pxc ∈ Rn×Nnu are constants that
can be computed offline, and pk(x̂k) is independent of ck.
Furthermore, if K is the optimal feedback gain for the case
of no constraints, then Pxc = 0 by construction.

Algorithm 1. (SMPC).
Offline Use the distributions of e0 and δk to compute the
parameters (19) that define the recursively feasible proba-
bilistic constraints (6). Determine the constraint checking
horizons N∗k , k = 0, . . . , ν in the terminal constraint sets
defined in (23) and (24).
Online At each time k = 0, 1, . . .:
1. Compute the state estimate x̂k and set zk|k = (x̂k, 0).
2. Solve the quadratic program (QP):

c∗k = arg min
ck

J̃k(ck)

subject to (gTHi + fTEi)ck + gTΨizk|k ≤ h− βi,
i = 0, 1, . . . , N − 1

zk+N |k ∈ Sk
where βi = βi|k and Sk = Sν|k if k < ν

βi = β̄i|ν and Sk = Sν if k ≥ ν.

3. Set uk = Kx̂k+i|k + c∗k|k.

Theorem 10. Given feasibility at k = 0, SMPC remains
feasible for all k > 0. The closed loop system under SMPC
satisfies the probabilistic constraint (5) and the quadratic
stability condition:

lim
r→∞

1
r

r∑
k=0

E
(
xTkQxk + uTkRuk

)
≤ lss. (26)

Proof: The recurrence of feasibility is due to the definition
of the constraints in the online optimization of SMPC,
and this ensures that the probabilistic constraints (5) are
satisfied in closed loop operation. In addition, Theorem 2
ensures that Tc∗k is feasible for the online optimization at
k + 1, so that

J̃k(c∗k) = Ek
[
J̃k+1(Tc∗k)

]
+ xTkQxk + uTkRuk − lss

which therefore implies that the optimal cost value satisfies
the stochastic Lyapunov-like condition
J̃k(c∗k) ≥ Ek

[
J̃k+1(c∗k+1)

]
+ xTkQxk + uTkRuk − lss (27)

Summing (27) over k = 0, 1, . . . , r gives
r∑

k=0

[
E
(
xTkQxk + uTkRuk

)
− lss

]
≤ J̃0(c∗0)− E

[
J̃r+1(c∗r+1)

]
which implies (26) since J̃(c∗0) is by assumption finite and
(27) ensures that E

[
J̃r(c∗r)

]
is finite for all r.

Corollary 11. If K is the optimal feedback gain for the
case of no constraints, then xk ∈ T in the limit as k →∞
under SMPC, where T denotes the the minimal robust
invariant set for the state of (1a,b) under uk = Kx̂k.

Proof: The quadratic form of J̃(ck) discussed in Remark 9
and the feasibility of ck+1 = Tck together imply that

cTk Pccck ≥ c∗k+1Pccc
∗
k+1 − c∗k|k

T (R+BTPxB)c∗k|k
(where Px is the steady state solution of the Riccati
equation associated with the model (1) and cost (8)). From
the sum of both sides of this inequality over all k ≥ 0 and
the fact that R + BTPxB is positive definite, it follows
that c∗k|k → 0 as k →∞, which implies that xk converges
to T .

5. SIMULATION EXAMPLE

In this example, the model parameters in (1) are given by

A =
[

1.6 1.1
−0.7 1.2

]
, B =

[
1
1

]
C = [0.9 0.2] , D = I, F = 1

and the probabilistic constraint (5) defines a state con-
straint, with

ηTx = [1 0.3] , ηu = 0, h = 4.5, p = 0.8.
The quadratic cost weights are Q = CTC and R = 1.

The distributions of the stochastic model parameters are
derived from truncated (and appropriately re-scaled) nor-
mal distributions. For example, the measurement noise vk
is derived from a normally distributed random variable,
v′k ∼ N (0, 1/242), which is truncated so that |vk| ≤ 0.12.
Therefore the distribution function for vk (defined by
Fv(V ) = Pr(vk ≤ V )) is obtained from that of v′k by an
affine transformation

Fv(V ) = aFv′(V ) + b for all V ∈ [−0.12, 0.12],
where a, b are such that Fv(−0.12) = 0 and Fv(0.12) = 1.
The distributions of the disturbance wk and the initial
estimation error ε0 are defined analogously in terms of
truncated normal distributions and bounds:

w′k ∼ N (0, I/242), ‖wk‖∞ ≤ 0.12
ε′0 ∼ N (0, 1/242), ‖ε0‖ ≤ 0.12.

In accordance with the assumptions of section 1, the
sequences {wk, k = 0, 1, . . .} and {vk, k = 0, 1, . . .} are i.i.d.

The feedback gain in (4b) was chosen asK = [−0.847 1.00],
which is the unconstrained LQ-optimal gain for the given
plant model and cost. The observer gain was chosen to
be the steady state Kalman Filter gain, L = [2.11 0.21]T ,
which gives the spectral radius of A− LC as 0.51.

The mode 1 prediction horizon N and the horizon ν over
which constraints are handled explicitly were chosen (by
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Fig. 1. Closed loop responses under SMPC and optimal
unconstrained control laws, and the state constraint
(dashed line).

considering the transient response when constraints are
absent) as N = 6 and ν = 13. The sequence {γ̂0|k, k =
0, 1, . . . , ν−1} was computed by discrete convolution based
on an equi-spaced grid with spacing fixed at 10−4. The
values of βi|k were bounded using (18). This gives the
condition of (21) as h ≥ β̄ = 3.94, which is clearly satisfied
by the given constraints. For the chosen N and ν, the
terminal sets Sν|k and Sν are given by (23) and (24) with
N∗k = 7 for all k.

For 104 realizations of the disturbance and noise sequences,
the response of the SMPC algorithm of section 4 was
simulated and compared with that of the optimal uncon-
strained feedback law. In each simulation, the initial state
was defined as x0 = x̂0 + ε0, with the initial state estimate
fixed: x̂0 = (6, 30), and with the initial estimation error ε0
obtained by sampling the distribution D0.

The evolution of the state sequences {xk, k = 0, 1, . . .} for
200 realizations of the disturbance and noise sequences
is shown in Figure 1, which also shows the state con-
straint. For SMPC the observed probability of violating
the constraint was 19.8% (at k = 1), which is close to the
specified value of 20%, whereas violation rate was 100% at
k = 1 under the unconstrained optimal feedback law. The
cumulative costs:

12∑
k=0

(
xTkQxk +Ru2

k

)
for closed loop operation averaged over 104 simulations
were 1603.0 and 1580.9 under SMPC and unconstrained
optimal control respectively. The small difference between
these costs (1.38%) implies that the constraints can be
satisfied with a specified probability at a very small cost.

6. CONCLUSION

This paper discusses and proposes a solution for a stochas-
tic MPC problem for systems with random additive dis-
turbances and soft constraints, and for which the states
are not available for direct measurement. The proposed

algorithm carries a guarantee of recursive feasibility and
ensures a form of the quadratic stability and convergence
of the state to a neighbourhood of the origin. Simulation
results show that it achieves near-optimal performance
while satisfying the soft constraints non-conservatively,
in the sense that the observed probability of constraint
satisfaction in closed loop operation is the same as the
specified value.
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