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Abstract : A receding horizon control methodology is proposed for systems
with nonlinear dynamics, additive stochastic uncertainty, and both hard and
soft (probabilistic) input/state constraints. Jacobian linearization about pre-
dicted trajectories is used to derive a sequence of convex optimization problems.
Constraints are handled through the construction of a sequence of tubes and
an associated Markov chain model. The parameters defining the tubes are op-
timized simultaneously with the predicted future control trajectory via online
linear programming.

1 Introduction

Constraints handled by predictive control strategies are typically treated as hard
(unbreakable) constraints, or as soft constraints, in which case the degree of vi-
olation is to be minimized in some sense. This paper considers probabilistic
constraints in the form of soft input/state constraints, for which the probability
of violation is subject to hard limits. This form of constraint can account for
the distribution of model or measurement uncertainty, and thus avoid the con-
servativeness of a hard-constraint strategy based on the worst-case uncertainty,
which may be highly unlikely. The approach also avoids the suboptimality of
soft constraint strategies based on adding penalty functions to the MPC cost.

The difficulties of predicting the distributions of model states over a horizon
and of ensuring recursive feasibility in closed-loop operation have limited MPC
based on probabilistic constraints to highly computationally intensive Monte
Carlo methods (e.g. [1]) or to limited problem classes (e.g. linear dynamics [6]).
This paper considers nonlinear systems with stochastic disturbances, and pro-
poses a receding horizon control law subject to probabilistic and hard constraints
based on tubes [4, 3]. Analysis of a simplified Markov chain model verifies that
the probability of constraint violation is within the limits specified by the soft
constraints. Linearizations about predicted trajectories allow for an efficient
online optimization which may be terminated after a single iteration. The ap-
proach is illustrated by a numerical example.

1.1 Problem statement

The system to be controlled is described by a discrete-time nonlinear model
with state zp € R™ and input u € R™«:

Tht1 Zf(ib‘k,uk)+dk7 k=0,1,... (1)
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and with f(0,0) = 0. Here dj, is a random disturbance with a finitely supported,
stationary distribution satisfying

E(dy) =0, Vk

(where E(-) denotes expectation). Furthermore d;,dj are assumed to be inde-
pendent for all j # k. We assume that zj is available for measurement at time
k. The dynamics of (1) are assumed to be continuous throughout the operating
region for the state (denoted X') and input (denoted U) in the following sense.

Assumption 1. f(x,u) is Lipschitz continuous for all (z,u) € X x U.

The system is subject to two types of constraint on state and input variables.
Hard constraints of the form

Fyxp + Guug < hyg, hyg € R™ (2)

must be satisfied at all times kK = 0, 1,.... Thus, for example, we require the set
of feasible (z,u) for (2) to be a subset of the operating region, i.e.

{(z,u) : Fgr + Ggu < h} C X x U.
In addition, we consider soft input/state constraints:
Fsxy + Gsup, < hg, hg € R"S (3)

which may be violated at any given time k, but which are subject to hard
bounds on the expected number of constraint violations over a given horizon.
To simplify presentation (but with no loss of generality), we consider the case
of a single soft constraint (ng = 1). The bound on the expected number of
constraint violations can therefore be expressed as a hard constraint:

Nmax
Ne

N.
;e
N E Pr{Fsxj+; + Gsup4; > hs} <

¢ =1

(4)

which must hold for all k = 0,1,.... Here Pr{A} denotes the probability of event
A, and Nyax /N, is the maximum allowable rate of violation of soft constraints
averaged over an interval of N, samples.

The control objective is the optimal regulation of x; about the origin with
respect to the performance index

T({uo, ur, -}y m0) = > Eo (17 || + A1 u) (5)
k=0

subject to constraints (2) and (4). Here Ex(-) denotes expectation conditional
on information available to the controller at time k, namely the measured state
zp; 1is a vector, 1= [1 .- 1]T, with dimension dependent on the context
and A > 0 is a control weighting. The 1-norm cost defined in (5) is employed
for computational convenience but the paper’s approach is easily extended to
more general stage costs that are convex in (z, uy).
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2 Successive linearization MPC

This section describes in outline a method of solving the receding horizon for-
mulation of the control problem defined in Section 1.1. Let {ugk, Upt1jk,---}
denote a predicted input sequence at time k and denote {xk‘k, Tht1|ks - - .} as the
corresponding state trajectory, with ), = zx. Following the dual mode pre-
diction paradigm [5], we define the infinite horizon predicted input sequence in
terms of a finite number of free variables, ¢, = {coj, .., cn—1]x}, as a perturbed
feedback law

Uktilk = KTppik + Cijx (6)

with
cilk =0, i=N,N+1,...

and where the linear feedback law u = Kz is assumed to stabilize the model (1)
in a neighbourhood of = 0. Under the control law of (6), state predictions are
governed by the model

Thpipilk = O(Thtilk, Cifk) + diti, Thjk = Tg (7)
where ¢ : R™"=*™« — R"= is defined by the identity
d(x,c) = fla, Kz +¢), VeeR"™, ceR™.

In order to account efficiently for the nonlinearity and uncertainty in the
prediction system (7), the proposed receding horizon optimization is based on
linear models obtained from the Jacobian linearization of (7) around nominal

trajectories for the predicted state. Let {x%lk, ey 12+N|k} denote a trajectory
for the nominal system associated with the expected value of dj in (7) and
c) = {cglk7 .. 709\771\1@}7 so that m2+i|k evolves according to
0 0 0 0
Lhtivilk = ¢($k+i\ka Ci)s Lkl = Tk- (8)

The combined effects of approximation errors and unknown disturbances can
be taken into account through the definition of a sequence of sets centred on
the nominal trajectory of (8) at prediction times ¢ = 1,..., N and a terminal
set centred at the origin for ¢ > N. For computational convenience we define
these sets as low complexity polytopes of the form {z : |V (x — $2+i|k)| < Zik}
fori=1,...,N, and {x : |Vz| < z} for the terminal set. Here V is a square
full-rank matrix and the parameters z;, 2; determine the relative scaling of the
sets. Possible choices for V' and K are discussed in Section 3.2.

To simplify presentation, we define a transformed variable z = Vz, and
express the condition that xj_;; should belong to the relevant set as

Zli—&-ilk € Zijk, Zijp = {202 < Zilk}

where
0 s _ 0 _ 1.0
Ziyilk T Zhik = V&ptiks Phtilk = Vi ik

.0 s .0 5 ;
Then for ¢;;, = Cijk T Cilier Zhtilk = Zhpie + Zhafk evolves according to

0 5 _ ~1/.0 5 0 5
Zhtitilk T Zhtit1k = Vo(V (Zktipk + Zhgape) » Cipe + Ci\k) +exri (9)
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where ¢, = Vdj. The linearization of (7) about {:rglk, ce ;ng\”k} and ¢ can
therefore be expressed

Zovivalk = Phtilk ik T BrilkCk + Ekri + Erriln 2 =0 (10)
where
J¢ _ 0¢
‘I)k+i|k = Va— V! Bk+i\k = Vaf
v (x2+i|k’c(i)\k) ¢ (ngri\k’c?\k)
Similarly, for ¢ > N we have 2 ;x = Vrp ) where
Zhritie = VOV  2psipe s 0) + eppi (11)
and the Jacobian linearization about z = 0 therefore gives
ik = Pzpps ; ; o-v2 y- 12
Zhtit1)k = PRetilk T Ek4i + Ehpilk » =V3 . (12)
1.0

Remark 1. From Assumption 1 it follows that the linearization error in (10):
—-1,,0 0 0 )
ehpile = VOV (i + Zhran) » Gl + i)
quS(V*le e )fCIJ k2 — Braiie

k+ilk> “ilk k+ilk k+ilk k+ilk ik
necessarily satisfies the Lipschitz condition

§ b

lexrikl < Tzlziqiel + el (13)

for some positive matrices T',, T, for all (zg+i|k7 cf‘k) such that

(V7 e + Zg+i|k) s KV Tz + Zli-i-i\k) + ) + C?|k) ex xU.
Similarly, for i > N, the linearization error in (12):

ertilk = VOV (Zhtipr) » 0) — Pz

is Lipschitz continuous, with
lexripkl < Telzpixl (14)
for some positive matriz Ty, for all zy1 4, such that
(V™ i, KV ' 2pqak) € X x UL

In Section 3 the bounds (13) and (14) are combined with bounds on € to
construct sets Z;,7 = 0,..., N that depend on el = {cglk, ... 70(15\/71\1@}7 thus
defining tubes centred on the nominal trajectory containing the predictions of
(7). These tubes provide a means of bounding the receding horizon performance
cost and of ensuring satisfaction of constraints. As a result, the process of
successively linearizing about ({xg il obs cg)7 optimizing ci, and then redefining
({xgﬂ,‘k}, c?) by setting ¢ « c9+c? necessarily converges to a (local) optimum
for the original nonlinear dynamics, as discussed in Section 4.
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3 Probabilistic tubes

This section describes a method of constructing a series of tubes around a nom-
inal predicted trajectory so that each tube contains the future predicted state
with a prescribed probability. This process provides a means of bounding the
predicted value of the cost (5) and of ensuring satisfaction of hard constraints (2)
and probabilistic constraints (4) along future predicted trajectories. The prob-
abilities of transition between tubes from one sampling instant to the next and
the probability of constraint violation within each tube are governed by fixed
probabilities that are determined offline. However the parameters determining
the size of each tube are retained as optimization variables, and this allows the
effects of stochastic model uncertainty and linearization errors (which depend
on the predicted input trajectory) to be estimated non-conservatively over the
prediction horizon

Let {8™,..., 8} and {S(‘k e Sflrk} for i = 1,..., N denote collections
of sets in R"= w1th
S nsi™ =0, SIS =0 vi#m, (15)
and let Séf,i =0,j =1,...,r. Denote pj, for jm = 1,...,r as transition
probabilities, with
pim=1 j=1,...,m (16)
j=1
and assume that the sequences {zg+i|k, i =0,...,N} and {24, @ > N}
generated respectively by the prediction models of (10) and (12) satisfy
Pr(zgﬂ-ﬂ‘k € Si(er)llk | z,‘iﬂ-‘k € SZ.(‘TZ)) =pjm 1=0,...,N (17a)
Pr(zkpisape € SO | zhpiik € ™) = pjm i=N,N+1,... (17b)

(note that the requirement for these probabilities to hold with equality is relaxed
in Sectlon 3.1). Assume moreover that the sets S I\?l)k are linked to the terminal
sets S; ) through the conditions:

) j § i .
Ze+N|k € 31(\??;9 = Zp+N|k = 32+N\;€ + 2 Nk € St(” j=1,...,r. (18)

Then the (probablhtleb of zkﬂ‘k lying in S(J) for i = 0,...,N and of zp

lying in S;”’ for i = N,N +1,... are governed by a Markov chain model with
transition matrix II:
Puir - Pir
M= : :
Pr1 e DPrr

and the distribution of state predictions can be approximated for all i = 0,1, ...
using the property that

b;
(2) Pr (7) -
D, ) . z esS i=1,...,N
o (19)
. PI(Zk_H‘kGSt ) Z:N,N+1,
Pt
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T
where ey =[1 0 --- 0] .
Define p; as a bound on the one-step-ahead conditional probability of vio-

lating the soft constraint (3):

Pr(stk+i+l‘k + GSU}C+Z‘+1‘]€ > hS | Zl(z-‘,-i“f S Sl(|jk‘)) S pj 1= 0, .. .,N -1
(20a)

Pr(Fs@ppitik + GsUtivije > hs | Zitipn € St(j)) <pj i=N,N+1,...
(20b)

Then it follows from (15), (16) and (19) that the probability of violating (3) is
bounded by

Pr(Fsapiiv1s + Gstgsitie > hs) < [p1 p2 -+ po]IMer i=0,1,...
(21)
Assume, in addition, that the hard constraints (2) are satisfied at all points in
Sl(‘]k) and St(J ).

Zngi‘kESi(‘Jg - FH$k+i\k+GHuk+i|k§hH 1=0,...,N—1 (22a)
Zk_i_i‘kGSéj) — FH:E;C_,_i‘kJrGHUk_;,_“kShH t=N,N+1,... (22b)

for j = 1,...,r. Then sufficient conditions for satisfaction of both hard and
probabilistic constraints are given by the following lemma.

Lemma 3.1. The constraints of (2) and (4) are necessarily satisfied along pre-
dicted state and input trajectories of (6)-(7) if the conditions on: transition
probabilities (17a,b), terminal sets (18), probabilities of soft constraint violation
(20a,b), and hard constraints (22a,b), are satisfied for II and p;, j = 1,...,r
such that:

RS N
¥ oo lmop e p] e < T 23)
c i=0 (&
Proof. This is a direct consequence of (21) and (22a,b). O

Throughout the following development we assume that IT and p; satisfy (23).

3.1 Tube constraints

We next construct constraints that ensure that the conditions of Lemma 3.1 are
satisfied, and which are suitable for incorporation in an online receding horizon
optimization. Consider the sequences of nested sets:

zhcz®Pc...czl z{)czc. .. czf (24)

\ \ ik

defined for ¢ = 1,..., N as low-complexity polytopes:

Zt(]) ={z:|2| < Et(J)} Zv:(|]k) ={z:|z| < Zz(\]k)} (25)
Define St(j ) and Sl(|jk:) in terms of Zt(j ) and Zz(fk) via the relations:
1 ; (1) -
S = 2" A 59 = 1%k 4=t
ZW _zZPTY =2 L B A T S AR
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for i = 1,...,N. The transition probabilities in (17a,b) are assumed to hold
with equality, which places a strong and unrealistic restriction on the distri-
bution of the uncertain disturbance in (7). Here we remove this assumption
by instead imposing constraints on transition probabilities for Z; @) and Zz(fk)
These constramts have the additional advantage over constraints invoked di-
rectly on S, @) and S, ] that they are convex (in fact linear in the degrees of
freedom). We show that when combined with conditions on the violation of
system constraints (2) and (3), this formulation provides sufficient conditions
for the conditions of Lemma 3.1 for disturbances dj with general (continuous,
finitely supported) distributions.
Accordingly, let

J
ﬁjm,:zplwu j,mil,...ﬂ"
=1

(so that P, =1, m=1,...,r) and define

_ _ 1 0 0
3 } P10 Pir 1 1 0
=71, oo=\{: - |, T=
Bri o B o
For j=1,...,r—1and m=1,...,r, we impose the transition probabilities
Pr(20 1, € Zfi)uk | 2 € Z400) = Bjm i=0,...,N (26a)
Pr(zipipafe € 270 | zipipn € Z8™) > Pjm i =N, N+1,... (26b)
whereas for m = 1,...,r we require
Pr(z i1, € z(ﬂ‘k | 2h e € Z0)) =1 i=0,...,N (27a)
Pr(zipisie € 20 | 2o € Z27M) =1 i= N, N+1,... (27b)
The required probabilities on soft constraints are invoked for j = 1,...,r by

Pr(Fsapyip1je+Gstinyisie > hs | z;zﬂ.‘keszg) <p;, i=0,...,N—1 (28a)
Pr(Fsap i1 +Gstpritip > hs | zerin€20)) <pj, i=N,N+1,... (28b)
while the hard constraints are invoked via
2 € Zfl’;j —  Fyapyin+ Grupyr <hg i=0,...,N—1 (29)
Zepik € 2 = Futpyin + Guugpaqe <hg i=N,N+1,... (29b)

Lemma 3.2. If p; and pjm satisfy

b <pin =lore1 (300)

Pim > Pimsts j=1,....r—L (30b)
then constraints (26), (27) (28) and (29) together with the terminal constraints
that z,H_N‘k + Zk+N\k € Z for all zk+N|k € ZNW j=1,...,7r, are sufficient

to ensure that (2) and (4) hold along predicted trajectories of (6)—(7).
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Proof. Satisfaction of the hard constraint (2) is trivially ensured by (29a,b) and
(27a,b) due to the nested property (24). On the other hand, satisfaction of (21),
and hence also the probabilistic constraint (4), can be shown using (30a,b). For
i = 0 this is obvious from (28), whereas for ¢ = 1 we have from (28):

Pr(Fspiok + Gstptor > hs)

(1) ONE
S[}h Pr] {Pr(l’kﬂ\kesuk) Pr(mk+1\k€‘5‘1|k)}
T
e ) [Pl 2) o e € 2]
<[pi-p2 - p]le
=[p - p]le

where the last inequality follows from (30a) and (26a). Similarly, for i = 2:

Pr(Fsxpqak + Gsugysip > hs)

T
<l - Pl [Pr(ka\k €85 o Pr(wniap 65;;3)}
T
= [pl —pg - } |:P1‘(:L’k+2|k S ZQ\k) ce Pr(xk+2|k € ZQ\k)j|
T
<p-p2 -+ p )l [Pr(mk+1|k € Suk) o Pr(zega € Sl\k):|
- T
= [pl —pg - pT} nr—1 |:PT($k+1‘k € Zl(|k:) ce Pr($k+1‘k S Zl(|k):):|
<pr-p2 - p|OT e
=[p - p]Pe
where the last inequality follows from (30b) (which implies the matrix 17~
has non-negative elements in the first r —1 rows and [0 0 --- 1] in the last row)
and (26a). The same arguments show that (21) also holds for all ¢ > 2. O

Remark 2. The condition (30a) is equivalent to requiring that the probability
of soft constraint violation should decrease towards the centre 0 the tube. Fur-
thermore, due to the nested property (24), the convezity of Z; @) and lek), and
the linearity of (10) and (12), condition (30b) can be assumed to hold without

loss of generality.

To invoke (26)-(29) we use confidence intervals for the elements of € = Vd
n (10) inferred from the distribution for d:

Pr(\&\ ng):ﬁj7 PI'(‘E| ngm):ﬁ]mu jumzlu"w{r (3]‘&)
Pr(le| < &) = 1. (31b)

From (10) and (13) we obtain the bounds

5 5 5 5 5
|Zhrit 1ol S 1 Prrikiqie + BripCpnl + Uzl2iqael + Lelciel + lerl

and, since Z(ljk) has vertices Dpéi(lr;:) (where D, p =1,...,2" are appropriate

diagonal matrices), (26a) is therefore implied by the condition

1(+1|k > |Ppepifn Dy Zz|k "+ Brpapcdyl + T Zl|k DTl + &m  (32)
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forp=1,...,2" while (27a) is implied by
A0 2 @i D2+ el + T2 + el +€ (33)
i+l = [Fkti|lkZpegg k+i|kCi|k 2%k clCijk

for p=1,...,2"%. Similarly, from (10) and (13) it follows that sufficient condi-
tions for (28a) are given by

(Fs + GsK)V ' (2 + ‘I’k+z\kDpZZ\k) + Bk+1|kcz|k) +Gs(efy + qu)
+|(Fs + GsK)V (T2 + Telelyl + &) < hs (34)

for p=1,...,2" whereas (29a) is implied by
(Fr + GuR)V M2 + Do) + Gu (el + ) < B, (35)

for p=1,...,2". Note that the conditions (32)-(35) are linear in z(fk) and ¢,

which are retained as variables in the online optimization described in Section 4.

3.2 Terminal sets and terminal cost

In the interests of optimizing predicted performance, K in (6) should be optimal
for the cost (5) when constraints are inactive. However the constraint (27b)
also requires that Zt(r) is robustly invariant under (12), and this may conflict
with the requirement for unconstrained optimality. We therefore specify K
as optimal for the linearized model (9f/0z|(0,0),0.f/0ul(0,0)) With a suitable
quadratic cost, and define V in (12) as the transformation matrix such that
® = Vop/0z|(9,0)V " is in modal form (see [4] for more details of this approach).

To maximize the region of attraction of the resulting recedmg horizon con-
trol law, it is desirable to maximize the terminal sets Z; @) This suggests the
following offline optimization problem:

.
(Zt(l), e zt(”) = arg (2(1??27‘)) jl_Ilvol(Zt(j)) (36a)
st 20>z > >0 5 (36h)
—(J > (1@ +T)2™ + &m, m=1,...,r, j=1,...,r—1 (36c)

> (1B +T)2™ +& m=1,...,r (36d)
|(F5+G5K (@] +T)z? + &) <hs, j=1,....r (36c)

(Fir + GuK)V 72" < hy (36f)

where (36b) ensures (24), (36¢) and (36d) are sufficient for (26b) and (27b)
respectively, while (36e) and (36f) are sufficient for (28b) and (29b) respectively.
The objective (36a) is chosen so that the optimization problem is convex, but
could be modified by introducing weights in order to obtain a more favourable
solution for Zt(j), j=1,...,r.

To obtain a finite value for the infinite horizon predicted cost despite the
presence of non-decaying disturbances, we subtract a bound on the steady-state
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value of the stage cost under (6), and hence redefine the performance index as

J(Ck71'k) = ZEk(1T|V_1Zk+i|k| + AlT‘KV_IZ;H_”k + ci|k| — lss) (37&)
=0

lee = 1TV + MKV ) (I — || —T,) '€ (37b)

The following result enables the cost over the prediction intervali = N, N+1, ...
to be bounded in terms of a function of 24 -

Lemma 3.3. If q satisfies
qT(|z| — @2 = Ty|z| = &) > 17|V 2| + MT|KV 12| — L, (38)

for all z € Z , then

q" |zkeniel = Z Ee (1T IV " 2] + AT KV 2] — Las).- (39)

i=N

Proof. From (12), (14) and (31b), the inequality (38) implies

0" zrritel = Erri(@” [2ngiprn]) = 17V 2+ AT KV 2] — L.
Taking expectations and summing over i = N, N + 1,... yields (39). O

Using Lemma 3.3 we determine an optimal bound on the cost-to-go for the
case that 2, yx € St(J) by solving the following LPs for ¢¥), j =1,...,r

q(J) _ argmln qT =(9)

s.t. g ( —|®D, ztr)|—Ft2(T) € > (40)
17| VD, 2"+ MT|KV D, 2" | — Iy, p=1,...,2"

Given the distribution of predictions (19), this implies the following bound

Zq TZI(CQNUCPS\]/) 2 Z Ex (17 1V ™ 2] + ALKV 2] — L)
i=N

4 Receding horizon control law

Let V be a bound on the cost J in (37a)
V(ck,{z |k,i =1,...,N,j = 1,...,r}7{m2+i‘k},c2) =

T N-1
Z{ max (17 |[V " 2] + AT KV g + c?‘k + C?‘k‘ - lss)pgj)
=0

()
=1 z\kezz\]k
(])T 5(7) (7)
Zk+N|kpN
(41)
and consider the following receding horizon control strategy.
10 Int. Workshop on Assessment and Future Directions of NMPC
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Algorithm 1. At times k =0,1,.. .

1. Given cg, determine ngrilk’ and @y, Bitijr, ¢ = 0,..., N and solve:
cf =arg min V(e (7))} {xdap) ) (422)
otz t
s.t. (32),(33),(34),(35) (42b)
ZIEQN|k+Zg+N\ngt(])’ j=1,...r (42c)
2. Set up = Kxy, + cg‘k + cgl*k and c%H = {c(l)lk + c‘ﬁ‘k, cee C?V—llk + c?{,k_lWO}.

Theorem 4.1. In closed-loop operation, Algorithm 1 has the properties:
(i). the optimization (42) is feasible for all k > 0 if feasible at k =0
(ii). the optimal value V*({x2+i|k},c2) of the objective (42a) satisfies
Eg [V*({x2+i+1\k+1}’ C2+1)] - V*({372+i|k}a C%) <lss — 1T|$k\ - )\1T|Uk| (43)

(#ii). constraints (2) and (4) are satisfied at all times k and

1 n
li - T T < .
k=0
Proof. (i) and (ii) follow from feasibility of ¢ = 0, Zz(‘jk) = Zgi)l‘kA in (42). Con-
straint satisfaction in (iii) follows from (i), and (44) results from summing (43)

over 0 < k < n and noting that V*({zf,}, ¢g) is finite. O

Remark 3. The optimization (42) can be formulated as a LP.

Remark 4. If the constraints on online computation allow for more than one
optimization at each sample, then setting cg — 02 + ci* and repeating step 1
results in non-increasing optimal cost values V*({xgﬂ.‘k}, ). This process gen-
erates a sequence of iterates ci* that converges to an optimum point for the

problem of minimizing (41) for the nonlinear dynamics (7) at time k.

5 Example

The levels hy = x1 + 2] and he = 9 + 24 of fluid in a pair of coupled tanks are
governed by the discrete-time system:

T1ht1| _ ik — Tai/hig — hog T fup +u” n dy g
T2 k+1 To g+ Tai\/hi g — ho —Taz\/ho 0 da k

Cy

with a; = 0.0690, as = 0.0518, C; = 159.3cm?, sampling interval T = 10s,
and where 2] = 30.14cm and zj = 19.29cm are setpoints corresponding to
the steady state input flow-rate u, = 35cm?/s. The manipulated variable is
the flow-rate uy into tank 1, and di, dog are zero-mean random disturbances
with normal distributions truncated at the 95% confidence level. The sys-
tem has probabilistic constraints: Pr(]zix| > 16) < 0.2 and hard constraints:
|z1k] < 16, 0 < ug < 70. For the operating region: |z;| < 30, i = 1,2, the
Lipschitz constants were obtained as I'; = [§773:4%]. Choosing r = 2 and
(p11, P12, P21, P22) = (0.8,0.1,0.2,0.9), terminal sets Zt(l),ZtQ) were computed
offline (Fig. 1). The sequence of sets ZZ.(‘lk), ZZ.(fk), 1=0,...,5, obtained with one
iteration of Algorithm 1 are shown in Figure 2.
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Figure 2: Evolution of bounds on e z (left) and eIz (right): A (blue), Zt(j)
(red), for j = 1,2, and the nominal trajectory 22+i|k (blue x)
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