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Outline

1 Active set solver for robust optimal control with quadratic (H∞-type) cost

I Riccati recursion

I constraint degeneracy

I computation and properties

2 Active set solver for robust optimal control with piecewise linear cost

I prediction tree structure

I computation and properties
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Motivation

Robust Model Predictive Control (RMPC)

open loop min-max problem solved repeatedly online [Witsenhausen 1968]

Closed loop RMPC

online optimization over feedback policies [Lee & Yu 1997]

– large computational loads [Scokaert & Mayne 1998]

– optimality often sacrificed to gain computational efficiency
[e.g. Goulart, Kerrigan & Alamo 2009; Rakovic, Kouvaritakis, Cannon & Panos 2012]

Parametric solution methods

optimal feedback structure computed offline [Bemporad, Borelli & Morari 2003]

– requires solution at all points in state space

– requires online search over polyhedral subsets of state space
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Motivation

Active set methods

local solution based on homotopy

– efficient technique for nominal MPC [Cannon 2008; Ferreau 2008]

– DP solution for:

min-max input-constrained RMPC

min-max input/state-constrained RMPC

[Buerger, Cannon, Kouvaritakis 2012]

[Buerger, Cannon, Kouvaritakis 2013]

– computation per iteration depends linearly on horizon length

. . . but

– requires (offline) solution of robust controllable k-step sets, k = 1, . . . , N

Objective

devise an active set method to compute robust controllable sets locally (online)
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Problem statement

Model x+ = Ax+Bu+Dw

System constraints x ∈ X , u ∈ U , w ∈ W,

X ,U ,W compact, convex, polytopic sets

Problem A: min-max optimal control with quadratic cost(
u∗m(x), w∗m(x, u)

)
= arg min

u∈U
max
w∈W

Jm(x, u, w)

subject to Ax+Bu ∈ Xm−1 	DW

where Jm : H∞-type cost for m-stage problem

Jm(x, u, w) = 1
2

(
‖x‖2Q + ‖u‖2R − γ2‖w‖2

)
+ J∗m−1(x+)

Xm : robustly controllable set to terminal set X f in m steps

Xm = X ∩ {x : ∃u ∈ U , Ax+Bu ∈ Xm−1 	DW}
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Problem statement

Model x+ = Ax+Bu+Dw

System constraints x ∈ X , u ∈ U , w ∈ W,

X ,U ,W compact, convex, polytopic sets

Problem B: min-max optimal control with piecewise linear cost(
u∗m(x), w∗m(x, u)

)
= arg min

u∈U
max
w∈W

Vm(x, u, w)

where V ∗m(x) ≤ 1 ⇐⇒ x ∈ Xm
Vm(x, u, w) = max{‖Ex‖∞, Vm−1(x+)}

with X = {x : Ex ≤ 1}

Xm
@@R

V ∗m = c, c increasing
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Problem statement

Problem A: terminal conditions

J∗0 (x) = 1
2
‖x‖2P

X0 = X f

where ‖x0‖2P =

∞∑
k=0

(‖xk‖2Q + ‖uk‖2R − γ2‖wk‖2) under
{ uk = uf∞(xk)

wk = wf∞(xk, uk)

X f : r.p.i. under uf∞(x) ⇐⇒ AX f +Buf∞(x) ⊆ X f 	DW

Problem B: terminal conditions

V ∗0 (x) = ‖Efx‖∞
where X f = {x : Efx ≤ 1}
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Problem statement

Assume

B (A,B) controllable

B Q � 0, R � 0

B (A,Q1/2) observable

B γ sufficiently large to ensure convexity

Sequential min-max optimization performed over arbitrary feedback laws:

u = {uN (x0), . . . , u1(xN−1)}
w = {wN (x0, u0), . . . , w1(xN−1, uN−1)}
x = {x0, . . . , xN}

Receding horizon control law at time t for N -step horizon:

ut = u∗N (xpt )

(xpt = plant state at t)

7 / 30



Active set solution

Outline of method:

B For a given active set, use Riccati recursions to solve KKT conditions

=⇒ sequence of optimal control laws and worst case disturbances

B Line search through polyhedral partitions
of x-space

x1

x 2
x(0)

x(1)

xpt

B Update the set of active constraints
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Problem A: 1st order optimality conditions

Derive 1st order optimality (KKT) conditions
by using the Wolfe dual to combine Lagrangian functions for k = N − 1, . . . , 1, 0

assuming convexity

kth stage subproblem (k = N −m)

B Inequality constraints
Primal Dual

u ∈ U ⇐⇒ Fu ≤ 1 µ ≥ 0

w ∈ W ⇐⇒ Gw ≤ 1 η ≥ 0

Ax+Bu ∈ Xm−1 	DW ⇐⇒ EN−mx̂ ≤ 1 ν ≥ 0

B Equality constraints Multipliers

x̂ = Ax+Bu λ̂

x+ = x̂+Dw λ

Cx̂ = 1 ζ

Ĉx = −1 ζ̂
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Problem A: 1st order optimality conditions
N -stage problem KKT conditions

γ2wk +GT ηk −DTλk = 0

ηk ≥ 0, ηTk (1−Gwk) = 0, 1−Gwk ≥ 0

Ĉkxk+1 = −1

Ruk + FTµk +BT λ̂k = 0

νk ≥ 0, νTk (1− Ekx̂k+1) = 0, 1− Ekx̂k+1 ≥ 0

µk ≥ 0, µTk (1− Fuk) = 0, 1− Fuk ≥ 0

Ckx̂k+1 = 1

x̂k+1 = Axk +Buk, xk+1 = x̂k+1 +Dwk

λk = AT λ̂k+1 +Qxk+1 + ĈTk ζk

λ̂k = λk + Ek
T
νk + CTk ζ̂k

for k = 0, . . . , N − 1

Initial and terminal conditions:
x0 = xp

λN−1 = PxN
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Problem A: 1st order optimality conditions
N -stage problem KKT conditions for a given active set

γ2wk +GT ηa,k −DTλk = 0

ηa,k ≥ 0, 1−Gkwk = 0

Ĉkxk+1 = −1

 =⇒ w∗N−k(xk, uk)

Ruk + FTµa,k +BT λ̂k = 0

νa,k ≥ 0, 1− Ekx̂k+1 = 0

µa,k ≥ 0, 1− Fua,k = 0

Ckx̂k+1 = 1

 =⇒ u∗N−k(xk)

x̂k+1 = Axk +Buk, xk+1 = x̂k+1 +Dwk

λk = AT λ̂k+1 +Qxk+1 + ĈTk ζk

λ̂k = λk + Ek
T νa,k + CTk ζ̂k

 =⇒
λk(xk+1),

λ̂k(x̂k+1)

for k = 0, . . . , N − 1

Initial and terminal conditions:
x0 = xp

λN−1 = PxN
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Problem A: Riccati recursion

State/co-state dependence:
λk = Pkxk+1 + qk

λ̂k = P̂kx̂k+1 + q̂k + ETk νa,k

}
k = 0, . . . , N − 1

B kth stage maximization:[
γ2I −DTPkD GTk

Gk 0

][
wk
ηa,k

]
=

[
DTPk

0

]
x̂k+1 +

[
DT qk
1

]
⇓[

wk
ηa,k

]
=

[
Mw
k

Mη
k

]
x̂k+1 +

[
mw
k

mη
k

]
giving

[
P̂k q̂k

]
=
[
Pk qk

]
+ PkD

[
Mw
k mw

k

]
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Problem A: Riccati recursion

State/co-state dependence:
λk = Pkxk+1 + qk

λ̂k = P̂kx̂k+1 + q̂k + ETk νa,k

}
k = 0, . . . , N − 1

B kth stage minimization:R+BT P̂kB BTETk FTk
EkB 0 0
Fk 0 0

 uk
νa,k
µa,k

 = −

BT P̂kEk
0

Axk +

−BT q̂k1
1


⇓ uk

νa,k
µa,k

 =

LukLνk
Lµk

xk +

luklνk
lµk


giving

[
Pk−1 qk−1

]
=
[
Q+AT P̂kA AT q̂k

]
+AT

[
P̂kB ETk

] [Luk luk
Lνk lνk

]
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Problem A: Riccati recursion

State/co-state dependence:
λk = Pkxk+1 + qk

λ̂k = P̂kx̂k+1 + q̂k + ETk νa,k

}
k = 0, . . . , N − 1

B Introduce equality (compatibility) constraints into preceding stage whenever
constraints are degenerate

B Set ζ = 0, ζ̂ = 0 to preserve continuity
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Problem A: active set method

Forward simulation: x+ = Axk +Bu∗N−k(xk) +Dw∗N−k(xk, u
∗
N−k(xk))

⇓
xk = Φkx0 + φk

For given active set A,

p(x0, β0,A) =
{
u(x0,A),w(x0,A),µ(x0, β0,A),ν(x0, β0,A),η(x0, β0,A))

}
is affine in x0 (and possibly β0)

Define X (A) = {x0 : A∗(x0) = A, for some β0}, then

– X (A) is convex and polyhedral

–
⋃
A∈Ω X (A) covers the set of feasible initial conditions, XN
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Problem A: geometric properties of solution

(a) If A1,A2 are non-degenerate, then

? dim
(
X (Ai)

)
= nx i = 1, 2

? p(x0,A1) = p(x0,A2) ∀x0 ∈ ∂X (A1) ∩ ∂X (A2)

(b) If A′1,A′2 are non-degenerate and A′3 is degenerate at stage k = 0, then

? dim
(
X (A′3)

)
< nx

? X (A′3) ⊂ ∂X (A′1) ∩ ∂X (A′2)

? p(x0, β−,A3) = p(x0,A1) and p(x0, β+,A3) = p(x0,A2)

X (A2)X (A1) X (A′2)X (A′1)

X (A′3)
@@I

(a) (b)

=⇒ p is continuous in x0, β0
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Problem A: geometric properties of solution

(c) If A1,A2 are non-degenerate and A3 is degenerate at k > 0, then

? dim
(
X (Ai)

)
= nx i = 1, 2, 3

? X (A3) ⊂ X (A1) ∩ X (A2)

? regions overlap so A∗(x0) non-unique for x0 ∈ X (A3)

X (A2)X (A1)

X (A3)
@

@I

(c)

but p is still continuous in x0
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Problem A: example of degeneracy

Example: variation of u = {u0, u1, u2, u3} with linesearch parameter
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Problem A: active set algorithm

Initialize with x
(0)
0 and A(0) such that x

(0)
0 ∈ X (A(0)).

At iteration i = 0, 1, . . .:

1. backwards recursion

k = 0 k = N − 1

P̂k, q̂k

wk, ηk

Pk, qk

uk, µk, νk

PN = P

qN = 0

computation: O(N(6n3
x + an3

w + bn3
u))

a, b: constants depending on QP subproblem factorization
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Problem A: active set algorithm

Initialize with x
(0)
0 and A(0) such that x

(0)
0 ∈ X (A(0)).

At iteration i = 0, 1, . . .:

2. forward simulation

k = 0 k = N − 1

Φk, φk

computation: O(Nn2
x)
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Problem A: active set algorithm

Initialize with x
(0)
0 and A(0) such that x

(0)
0 ∈ X (A(0)).

At iteration i = 0, 1, . . .:

3. perform line search & update A(i)

x
(i)
0

x
(i+1)
0

X (A(i))

X (A(i+1))

# inequalities: O(N)

⇓

Overall complexity is O(N) per iteration,

but bounds on number of iterations could be large
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Problem A: active set algorithm

Initialization

B cold start: x
(0)
0 = 0, A(0) = ∅

B warm start: x
(0)
0 = x∗1 at time t− 1, A(0) computed from A∗(xpt−1)

Convergence: A(i) = A∗(xp) in finite number of iterations

follows from

B uniqueness of transition A(i) → A(i+1) at each iteration

B finite number of admissible active sets A

Closed loop stability: ut = u∗N (xt) ensures

B XN robustly invariant

B l2-gain bound:
∞∑
t=0

(‖xt‖2Q + ‖ut‖2R) ≤ γ2
∞∑
t=0

‖wt‖2 + 2J∗N (x0)
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Problem A: example

Computation and performance of:

DP active set algorithm
vs

Disturbance Affine (DA) feedback policy [Goulart, Kerrigan, Alamo 2009]

(i) double integrator plant model: A =

[
1 1
0 1

]
, B =

[
0
1

]
, D =

[
1 0
0 1

]
with U = {u ∈ R : −1 ≤ u ≤ 1}

W = {w ∈ R2 : −0.3 ≤ wi ≤ 0.3 for i = 1, 2},

(ii) 4th order plant (aircraft pitch dynamics) with input and state constraints

disturbance: uncertainty in wing and elevator lift forces
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Problem A: example

Double integrator: Execution time of DP active set algorithm and DA policy
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DP based on Active Set Method

Disturbance Affine Policy (SDP)

B average data for 50 plant states xp ∈ XN −XN−1

B DP active set is around 100 times faster despite being optimal
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Problem A: example

Region of attraction of DP and DA policies with N = 16

Predicted cost for 50 plant states on ∂XDA16 :

B average suboptimality of DA policy: 4.2%

B maximum suboptimality of DA policy: 22%
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Problem A: example

4th order plant (aircraft pitch dynamics) with input and state constraints:

Number of iterations / CPU time per iteration
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B average data for 50 plant states xp ∈ XN −XN−1
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Problem B: solution structure

Maximization problem is NP-hard:

max
w∈W

Vm(x, u, w) = max
w∈W

‖Ek(Ax+Bu+Dw) + ek‖∞

B If W = co{w(j), j = 1, . . . , nW}, then

w(j∗k) = arg max
w∈W

‖Ek(Ax+Bu+Dw) + ek‖∞

j∗k = arg max
j=1,...,nW

‖EkDw(j)‖∞

B results in a tree of predictions [Scokaert, Mayne 1998]

e.g. for nW = 2, N = 3:

k = 0

k = 1

k = 2

w(1)

w(2)

w(1)

w(2)

w(1)

w(2)B . . . leading to unavoidable limits on complexity
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Problem B: continuity and uniqueness of solution

Equivalent maximization problem at stage k:

max
w∈W

Vm(x, u, w) = max
j=1,...,nW

{
E

(j)
k (Ax+Bu) + e

(j)
k

}
= E

(j∗k)

k (Ax+Bu) + e
(j∗k)

k

B min-max problem is a parametric LP:

V ∗m(x) = min
α,u

α

subject to α ≥ E(j)
k (Ax+Bu) + e

(j)
k , j = 1, . . . nW

Fu ≤ 1

B hence: u∗m(x) is continuous and piecewise affine

V ∗m(x) is continuous, convex and piecewise affine

[Gal 1995; Bemporad, Borrelli, Morari, 2003]

⇓
active set regions X (A) are non-overlapping
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Problem B: 1st order optimality conditions

KKT system for kth stage subproblem:

Primal:

[
1 −E
0 F

] [
αk
uk

]
=

[
EA
0

]
x+

[
e
1

]
Dual:

[
1T 0

BTET FT

] [
νa,k
µa,k

]
=

[
1
0

]

B primal and dual problems linked only by active set

B dual variables are piecewise constant functions of x0

EN−1 = Ef , eN−1 = maxj E
fDw(j) (row-wise max)

Ek−1, ek−1 obtained from αk(x) =⇒ backwards recursion along path within tree

Forwards simulation computes αk(x0), uk(x0) at all nodes in a sub-tree
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Problem B: active set algorithm

Initialize with x
(0)
0 and A(0) such that x

(0)
0 ∈ X (A(0)).

At iteration i = 0, 1, . . .:

1. backwards recursion

k = 0

k = N − 1

computation: O(Nn3
u)
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Problem B: active set algorithm

Initialize with x
(0)
0 and A(0) such that x

(0)
0 ∈ X (A(0)).

At iteration i = 0, 1, . . .:

2. forward simulation

k = 0

k = N − 1

computation: O(nN−1
W n2

x)

or O(Nn2
x) (parallel)
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Problem B: active set algorithm

Initialize with x
(0)
0 and A(0) such that x

(0)
0 ∈ X (A(0)).

At iteration i = 0, 1, . . .:

3. perform line search & update A(i)

x
(i)
0

x
(i+1)
0

X (A(i))

X (A(i+1))

# inequalities: O(nN−1
W )

Overall complexity is O(Nn3
u + nN−1

W n2
x) per iteration

or O
(
N(n3

u + n2
x)
)

per iteration using parallel processing

B number of matrix inversions required per iteration is linear in N

B number of constraints grows exponentially with N
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Problem B: growing the prediction tree

Optimal terminal feedback law is not available in closed form

hence initialization (cold start) requires tree growth

Grow tree from root:

A1

A2

A3

−→
Anew

A1

A2

A3

A1 A2

A3
B linesearch ε = 0→ ε = 1:

u∗N+1(ε) = arg min
u∈εU

max
w∈εW

E1(x̂1 +Dw)

with x̂1 = x0 + ε(A− I)x0 +Bu and x0 = constant

B Anew obtained by inspection for ε = 0
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Problem B: growing and shrinking the prediction tree

During linesearch over x0,

if V ∗N (x0) ≥ 1, then: set N := N + 1

grow the tree

and perform linesearch ε = 0→ ε = 1

⇓
u∗N (x) = optimal minimum-time control law

Minimum-time optimal shrinking of tree requires computation of VN−1(x0)

Shrink the tree suboptimally during linesearch over x0:

if V ∗N (x0) < vmin, then: perform linesearch ε = 1→ ε = 0

prune the tree

and set N := N − 1

where V ∗N (x) < vmin =⇒ x ∈ XN−1
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Problem B: example

Double integrator with input and terminal constraints:
k-steps controllable sets to X f , k = 1, . . . , 12 (red)
active set regions X (A(i)) at each iteration of DP algorithm (blue)
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Problem B: example

4th order plant (aircraft pitch dynamics) with input and state constraints

Execution time of DP algorithm with cold start
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B average times for 30 plant states xp ∈ XN −XN−1

B forward simulation not implemented using parallel processing
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Conclusions

Active set method for DP based on homotopy of optimal trajectories

Quadratic H∞ cost:

I computational load per iteration depends linearly on horizon N

overall load approx. quadratic in N

I requires knowledge of robust controllable k-step sets, k = 1, . . . , N

Piecewise linear cost:

I enables local exploration of robust controllable sets

I number of matrix inversions per iteration depends linearly on N

I number of constraints in line search grows exponentially with N

Future work: multiplicative uncertainty & stochastic problems
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