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Outline

@ Active set solver for robust optimal control with quadratic (Ho-type) cost
> Riccati recursion
> constraint degeneracy

» computation and properties

@ Active set solver for robust optimal control with piecewise linear cost
» prediction tree structure

» computation and properties



Motivation

@ Robust Model Predictive Control (RMPC)

open loop min-max problem solved repeatedly online [Witsenhausen 1968]

@ Closed loop RMPC
online optimization over feedback policies [Lee & Yu 1997]

— large computational loads [Scokaert & Mayne 1998]

— optimality often sacrificed to gain computational efficiency
[e.g. Goulart, Kerrigan & Alamo 2009; Rakovic, Kouvaritakis, Cannon & Panos 2012]

@ Parametric solution methods
optimal feedback structure computed offline [Bemporad, Borelli & Morari 2003]

— requires solution at all points in state space

— requires online search over polyhedral subsets of state space
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Motivation

@ Active set methods
local solution based on homotopy

— efficient technique for nominal MPC [Cannon 2008; Ferreau 2008]
— DP solution for:
min-max input-constrained RMPC [Buerger, Cannon, Kouvaritakis 2012]
min-max input/state-constrained RMPC [Buerger, Cannon, Kouvaritakis 2013]

— computation per iteration depends linearly on horizon length

. but

— requires (offline) solution of robust controllable k-step sets, k =1,..., N

@ Objective
devise an active set method to compute robust controllable sets locally (online)



Problem statement

@ Model T = Ax 4+ Bu+ Dw

@ System constraints reX, uel, weW,
X,U, W compact, convex, polytopic sets

@ Problem A: min-max optimal control with quadratic cost

(um (@), wp, (2, u)) = arglglei{{l max T (T, u, w)

subject to Ax + Bu € Xpp—1 © DW

where Jp, 1 Hoo-type cost for m-stage problem
I (2, u,w) = 5 (||2llG + [l — 22 [lwl?) + Jn-1 (™)
X, : robustly controllable set to terminal set X7 in m steps

Xp=XN{z:Jueld, Ax+ Bu € Xn_1 © DW}



Problem statement

@ Model T = Ax 4+ Bu+ Dw

@ System constraints reX, uel, weW,
X,U, W compact, convex, polytopic sets

@ Problem B: min-max optimal control with piecewise linear cost

* — Vm
(um (@), wp, (z,u)) = arg glelll} max (z,u,w)

where V5i(z) <1 < z€ X,
Vin (2, u, w) = max{|| Ez|oc, Vin-1(z ")}

with X = {z: Ez <1}

V. = ¢, ¢ increasing
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Problem statement

@ Problem A: terminal conditions
Jo () = =7

Xo = &7

where zo||% = E 2kll5 + l|uell% — ¥2||we]|?) under { Uk = Uoo Tk
llzoll P k:O(H kHQ lurllr — ¥ llwk]l”) we = wl (Tk, ur)

X7 rpiounder ul (z) <=  AX/ + Bul,(z) C X7 o DW

@ Problem B: terminal conditions
Vo (z) = | E )l
where X7 ={z:Efz <1}
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Problem statement

@ Assume
> (A, B) controllable
> Q>0 R>0
> (A,QI/Q) observable

> v sufficiently large to ensure convexity

@ Sequential min-max optimization performed over arbitrary feedback laws:

u={un(xo),...,ur(zn-1)}
W = {’LUN(JZ‘o,Uo), .. .,’LU1(LEN_1,’LLN_1)}
x = {zo,...,xN}

@ Receding horizon control law at time ¢ for N-step horizon:

ur = uiy (zF)

(2 = plant state at t)



Active set solution

Outline of method:

> For a given active set, use Riccati recursions to solve KKT conditions
— sequence of optimal control laws and worst case disturbances

)

> Line search through polyhedral partitions
of x-space

0

> Update the set of active constraints



Problem A: 1st order optimality conditions

@ Derive 1st order optimality (KKT) conditions
by using the Wolfe dual to combine Lagrangian functions for k =N —1,...,1,0

assuming convexity

@ kth stage subproblem (k= N —m)

> Inequality constraints

Primal Dual
ueU <— Fu<1 uw>0
weW <= Guw<l n>0

Ar+Bu € Xm_16DW «— EN"™3<1 v>0

> Equality constraints Multipliers
T = Ar + Bu A
2t =2+ Dw A
Ct=1 ¢
Cr=-1 é
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Problem A: 1st order optimality conditions
N-stage problem KKT conditions
Yuwr+G e — D" A\ =0
m >0, ni(1—Guwg)=0, 1—Guwg>0
C’;ﬂkH =-1
Ruw + F e + B A, =0
e >0, (1= E"&,11)=0, 1—E"i,1>0
pe >0, pf(1—Fug) =0, 1—Fu,>0
Crhir =1
Tr+1 = Az + Bug, Tpy1 = Tit41 + Dwi
M= AT Ney1 + Qi1+ Cln

A=A\ + Ele/k +CFé
fork=0,...,N—1
Initial and terminal conditions:
xo = P

AN-1 = Pzy
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Problem A: 1st order optimality conditions
N-stage problem KKT conditions for a given active set

’y2wk + GTn,lyk — DT)\k =0

Nak >0, 1—Grwr=0 = wi_p(Tr, ur)
C’kmk+1 =-1

Rup + Fl g + B"X\g =0
Var >0, 1— Ex@rir =0
fak >0, 1 —Fugpr =0
Cripsr =1

= uj_p(zx)

Tr+1 = Az + Bug, Tpy1 = Tk41 + Dwy
M= A" Me1 + Qrpyr + CL G =
M= + B var + CFG

fork=0,...,N—1

Initial and terminal conditions:
_ P
o =X

AN-1 = Pzy
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Problem A: Riccati recursion

State/co-state dependence: .

A = Przig1 + g }
Me = Podirrr + Ge + Ef vak

> kth stage maximization:

~2I — DTP,D Gk DTPk o DT g,
Gk nak Rl 1

o] = JM i

giving [Pk (jk] = [Pk qk] + P.D [Mff m}j’]
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Problem A: Riccati recursion

State/co-state dependence: . k=0,...,N—1

A = Przig1 + g }
Me = Podirrr + Ge + Ef vak

> kth stage minimization:

R+ B"P.B BTEl FI'| [ w ] BT B, —BTg,
EwB 0 0| |var|=—1| Ex | Az + 1
Fk 0 0 ,ua,,k_ 0 1
4

Uk Lz_ l;;
Vak | = LZ Tk + lz
Ha,k L;CL_ l;:

giving [Pec1 ar-1] = [Q+ ATPA ATG] + A" [P.B  EY] {L’“ li

Ly 1y

|
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Problem A: Riccati recursion

Ak = PrTry1 + i
State/co-state dependence: . N

o A }k:o,...,N&
Ao = PrZit1 + Gs + Ei Vo k

> Introduce equality (compatibility) constraints into preceding stage whenever
constraints are degenerate

> Set (=0, f = 0 to preserve continuity
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Problem A: active set method

@ Forward simulation: 1 = Az + Buly_i(zx) + Dwi_p(Tr, ui_x(Tk))

I
Tk = Prxo + dr

@ For given active set A,
p(z0, fo, A) = {u(zo, A), w(zo, A), u(z0, Bo, A), v(0, Bo, A), n(z0, Bo, A)) }
is affine in zo (and possibly (o)

@ Define X(A) = {zo : A" (z0) = A, for some [y}, then

— X(A) is convex and polyhedral
= Ueq X (A) covers the set of feasible initial conditions, X'n
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Problem A: geometric properties of solution

(a) If A1, Az are non-degenerate, then
* dim(X(Ai)) =n, i=1,2
* p(zo, A1) = p(xo, A2) Vao € 0X (A1) NOX(A2)

(b) If A%, A5 are non-degenerate and Aj is degenerate at stage k = 0, then
* dim (X (A3)) < na
* X(A5) C OX(A) NOX(AL)
* p(xo,B—, A3) = p(w0,. A1) and p(xo, B+, As) = p(zo, A2)

= P is continuous in xg, o
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Problem A: geometric properties of solution

(c) If A1, Az are non-degenerate and As is degenerate at k > 0, then
* dim(X(Ai)) =n. i=1,2,3
* X(As) C X(A1)NX(A2)

* regions overlap so A*(zo) non-unique for zo € X (As)

X(A2)

BN
X (As)
(c)

but p is still continuous in zg
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Problem A: example of degeneracy

Example: variation of u = {uo, u1, u2,us} with linesearch parameter

0 10 30
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5 23.386 25
0 23.384
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5 23.382
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degenerate constraints at k = 3
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Problem A: active set algorithm
Initialize with CIZ’(()O) and A such that méo) € X(AD).

At iteration ¢ = 0,1,...:

1. backwards recursion

k=0 k=N-1

o O—=—0 ++ O—=—20
Py, gr Py =P
Wk, Nk gyv =0
P, qn
Uk, Wk, VK

computation:  O(N(6n3 + an® + bn?))

a, b: constants depending on QP subproblem factorization
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Problem A: active set algorithm

Initialize with CIZ’(()O) and A such that méo) € X(AD).

At iteration ¢ = 0,1,...:

2. forward simulation

k=0 k=N-1
O O o = O——=0

Dy, Pk

computation: O(Nn2)

16
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Problem A: active set algorithm

Initialize with CIZ’(()O) and A such that méo) € X(AD).

At iteration ¢ = 0,1,...:

3. perform line search & update A

24

=

# inequalities: O(N)
!

Overall complexity is O(N) per iteration,

but bounds on number of iterations could be large
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Problem A: active set algorithm

@ Initialization

> cold start: a:g°> =0, A© — g

> warm start: 2\ =2} at time ¢ — 1, A©® computed from A*(z?_,)

@ Convergence: AW = A*(zP) in finite number of iterations

follows from

> uniqueness of transition A" — AUGFTY at each iteration

> finite number of admissible active sets A

@ Closed loop stability: u: = uj(z¢) ensures

> Xn robustly invariant

> 12-gain bound:

oo

(lzeld + lluellZ) < 2* D Nwell* + 23 (o)

t=0 t=0
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Problem A: example

Computation and performance of:

DP active set algorithm
VS
Disturbance Affine (DA) feedback pO|iCy [Goulart, Kerrigan, Alamo 2009]

(i) double integrator plant model: A = Ll] ﬂ , B= [O} , D= {1 0}

with U={ueR:-1<u<1}
W={wecR?: -03<w; <03 fori=1,2},

(ii) 4th order plant (aircraft pitch dynamics) with input and state constraints
disturbance: uncertainty in wing and elevator lift forces



Problem A: example

Double integrator: Execution time of DP active set algorithm and DA policy
107 g T T T T T T T

—o6— DP based on Active Set Method
—=a&— Disturbance Affine Policy (SDP)

CPU Time (s)

8
Horizon Length (N)

> average data for 50 plant states z¥ € Xy — Xn_1

> DP active set is around 100 times faster despite being optimal
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Problem A: example

Region of attraction of DP and DA policies with N = 16

Predicted cost for 50 plant states on dX{24:
> average suboptimality of DA policy: 4.2%

> maximum suboptimality of DA policy: 22%

2a¢
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Problem A: example

4th order plant (aircraft pitch dynamics) with input and state constraints:

Number of iterations / CPU time per iteration

80 T T 8

Number of Iterations
CPU time per iteration (ms)

Horizon Length N

> average data for 50 plant states z¥ € Xy — Xn_1
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Problem B: solution structure

Maximization problem is NP-hard:

max Vi (2, u, w) = max || Ex(Az + Bu + Dw) + ek«
wew weWw

> IfW= co{w(j), j=1,...,nw}, then
wYR) = arg max |Ex(Az + Bu 4+ Dw) + ek

jr =arg max HEka(j)Hoo
Jj=1,...,nyy

> results in a tree of predictions [Scokaert, Mayne 1998]

eg. fornyw =2, N=3:
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Problem B: continuity and uniqueness of solution

Equivalent maximization problem at stage k:

max Vin(z,u,w) = max {E;(Cj)(Am + Bu) + 6I(cj)}

we Jj=1,...,nwy

= E,(Cj’z)(Ax + Bu) + e,(j’t)

> min-max problem is a parametric LP:
Vi (z) = min a
o,u

subject to aZE,(Cj)(Aa:—i—Bu)—i—el(j), ji=1,...nw
Fu<1

> hence:  w;,(x) is continuous and piecewise affine

V() is continuous, convex and piecewise affine

[Gal 1995; Bemporad, Borrelli, Morari, 2003]
I

active set regions X (.A) are non-overlapping
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Problem B: 1st order optimality conditions

@ KKT system for kth stage subproblem:
. ] 1 —F| || |EA e
Primal: {O F} [uk] = { 0 }m—i— L}
Dual: 1" 01 [var] _[1
uat BTET FT| |pax| ~ |0

> primal and dual problems linked only by active set

> dual variables are piecewise constant functions of xo

@ En_1=Ef en_1= max; Ef Dw® (row-wise max)

E_1,er_1 obtained from ax(x) = backwards recursion along path within tree

@ Forwards simulation computes o (o), ux(xo) at all nodes in a sub-tree



Problem B: active set algorithm

Initialize with xéo) and A such that xéo) € X(AD).

At iteration i =0,1,...:

1. backwards recursion k=N-1

computation: O(Nn3)

25/30



Problem B: active set algorithm

Initialize with x(()o) and A such that xéo) € X(AD).

At iteration i =0,1,...:

2. forward simulation k=N-1

0

©)
computation: O(nd; 'n?2)
or O(Nn2) (parallel)
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Problem B: active set algorithm

Initialize with xéo) and A such that xéo) € X(AD).

At iteration i =0,1,...:

3. perform line search & update A

o)
# inequalities: O(njy, ")

=

Overall complexity is O(Nn2 + n%ﬁlni) per iteration

or O(N(ni + ni)) per iteration using parallel processing
> number of matrix inversions required per iteration is linear in N

> number of constraints grows exponentially with NV



Problem B: growing the prediction tree

@ Optimal terminal feedback law is not available in closed form
hence initialization (cold start) requires tree growth

@ Grow tree from root:

A

> linesearch e =0 — ¢ = 1:

un1(c) = arg min max Ey (21 + Dw)

with &1 = zo + €(A — I)zo + Bu and 2o = constant

> Anew Obtained by inspection for e = 0



Problem B: growing and shrinking the prediction tree

@ During linesearch over zo,
if V(zo) > 1, then: set N:=N+1
grow the tree

and perform linesearch e =0 —» e =1

I

uy () = optimal minimum-time control law
@ Minimum-time optimal shrinking of tree requires computation of Vy_1(x0)

@ Shrink the tree suboptimally during linesearch over xo:
if VA (20) < Umin, then: perform linesearche=1—¢e¢=0
prune the tree
and set N :=N —1

where V3 () < Umin = 2 € Xn_1
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Problem B: example

Double integrator with input and terminal constraints:
k-steps controllable sets to X/, k=1,...,12 (red)
active set regions X (A")) at each iteration of DP algorithm (blue)

15+~
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Problem B: example

4th order plant (aircraft pitch dynamics) with input and state constraints

Execution time of DP algorithm with cold start
10 . ‘

Execution time (s)

10~ L L L L

7
Horizon N
> average times for 30 plant states z¥ € Xy — Xn_1
> forward simulation not implemented using parallel processing
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Conclusions

@ Active set method for DP based on homotopy of optimal trajectories
@ Quadratic Heo cost:

» computational load per iteration depends linearly on horizon N
overall load approx. quadratic in N

> requires knowledge of robust controllable k-step sets, k =1,..., N

@ Piecewise linear cost:

> enables local exploration of robust controllable sets
» number of matrix inversions per iteration depends linearly on N

» number of constraints in line search grows exponentially with N

@ Future work: multiplicative uncertainty & stochastic problems
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