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Stochastic Model Predictive Control

Basil Kouvaritakis · Mark Cannon

Abstract Model Predictive Control (MPC) is a con-
trol strategy that has been used successfully in nu-
merous and diverse application areas. The aim of
the present article is to discuss how the basic ideas
of MPC can be extended to problems involving ran-
dom model uncertainty with known probability dis-
tribution. We discuss cost indices, constraints, closed
loop properties and implementation issues.

1 Introduction

Stochastic Model Predictive Control (SMPC) refers
to a family of numerical optimization strategies for
controlling stochastic systems subject to constraints
on the states and inputs of the controlled system. In
this approach, future performance is quantified us-
ing a cost function evaluated along predicted state
and input trajectories. This leads to a stochastic op-
timal control problem, which is solved numerically
to determine an optimal open-loop control sequence
or alternatively a sequence of feedback control laws.
In MPC, only the first element of this optimal se-
quence is applied to the controlled system, and the
optimal control problem is solved again at the next
sampling instant on the basis of updated informa-
tion on the system state. The numerical nature of
the approach makes it applicable to systems with
nonlinear dynamics and constraints on states and
inputs, while the repeated computation of optimal
predicted trajectories introduces feedback to com-
pensate for the effects of uncertainty in the model.

Robust MPC (RMPC) tackles problems with hard
state and input constraints, which are to be satisfied
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for all realizations of model uncertainty. However
RMPC is too conservative in many applications and
Stochastic MPC (SMPC) provides less conservative
solutions by handling a wider class of constraints
which are to be satisfied in mean or with a specified
probability. This is achieved by taking explicit ac-
count of the probability distribution of the stochas-
tic model uncertainty in the optimization of pre-
dicted performance. Constraints limit performance
and an advantage of MPC is that it allows systems
to operate close to constraint boundaries. Stochastic
MPC is similarly advantageous when model uncer-
tainty is stochastic with known probability distribu-
tion and the constraints are probabilistic in nature.

Applications of SMPC have been reported in di-
verse fields, including finance and portfolio man-
agement, risk management, sustainable development
policy assessment, chemical and process industries,
electricity generation and distribution, building cli-
mate control and telecommunications network traf-
fic control. This article aims to summarise the the-
oretical framework underlying SMPC algorithms.

2 Stochastic MPC

Consider a system with discrete time model

x+ = f(x, u, w) (1)

z = g(x, u, v) (2)

where x ∈ Rnx and u ∈ Rnu are the system state
and control input, and x+ is the successor state (i.e.
if xi is the state at time i, then x+ = xi+1 is the
state at time i+1). Inputsw ∈ Rnw and v ∈ Rnv are
exogenous disturbances with unknown current and
future values but known probability distributions,
and z ∈ Rnz is a vector of output variables that are
subject to constraints.
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The optimal control problem that is solved on-
line at each time step in SMPC is defined in terms of
a performance index JN (x, û, ŵ) evaluated over a
future horizon of N time steps. Typically in SMPC
JN (x, û, ŵ) is a quadratic function of the following
form (in which ‖x‖2Q = xTQx)

JN (x, û, ŵ) =

N−1∑
i=0

(‖x̂i‖2Q+‖ûi‖2R)+Vf (x̂N ) (3)

for positive definite matrices Q and R, and a ter-
minal cost Vf (x) defined as discussed in Section 4.
Here û := {û0, . . . , ûN−1} is a postulated sequence
of control inputs and x̂(x, û, ŵ) := {x̂0, . . . , x̂N}
is the corresponding sequence of states such that
x̂i is the solution of (1) at time i with initial state
x̂0 = x, for a given sequence of disturbance inputs
ŵ := {ŵ0, . . . , ŵN−1}. Since ŵ is a random se-
quence, JN (x, û, ŵ) is a random variable, and the
optimal control problem is therefore formulated as
the minimization of a cost VN (x, û) derived from
JN (x, û, ŵ) under specific assumptions on ŵ. Com-
mon definitions of VN (x, û) are as follows.
(a) Expected value cost:

VN (x, û) := Ex

(
J(x, û, ŵ)

)
where Ex(·) denotes the conditional expecta-
tion of a random variable (·) given the model
state x.

(b) Worst-case cost, assuming ŵi∈W for all iwith
probability 1, for some compact setW ⊂ Rnw :

VN (x, û) := max
ŵ∈WN

J(x, û, ŵ).

(c) Nominal cost, assuming ŵi is equal to some
nominal value, e.g. if ŵi = 0 for all i, then

VN (x, û) := J(x, û,0),

where 0 = {0, . . . , 0}.
The minimization of VN (x, û) is performed sub-

ject to constraints on the sequence of outputs ẑi :=
g(x̂i, ûi, v̂i), i ≥ 0. These constraints may be for-
mulated in various ways, summarised as follows,
where for simplicity we assume nz = 1.
(A) Expected value constraints: for all i,

Ex(ẑi) ≤ 1.

(B) Probabilistic constraints pointwise in time:

Prx(ẑi ≤ 1) ≥ p,

for all i and for a given probability p.
(C) Probabilistic constraints over a future horizon:

Prx(ẑi ≤ 1, i = 0, 1, . . . , N) ≥ p

for a given probability p.

In (B) and (C), Prx(A) represents the conditional
probability of an event A that depends on the se-
quence x̂(x, û, ŵ), given that the initial model state
is x̂0 = x; for example the probability Prx(ẑi ≤ 1)

depends on the distribution of {ŵ0, . . . , ŵi−1, v̂i}.
The important special case of state constraints

can also be handled by (A)-(C) through appropriate
choice of the function g(x, u, v). For example the
constraint Prx

(
h(x) ≤ 1

)
≥ p, for a given function

h : Rn → R, can be expressed in the form (B) with
z = g(x, u, v) := h

(
f(x, u, w)

)
and v := w in (2).

In common with other receding horizon control
strategies, SMPC is implemented via the following
Algorithm. At each discrete time-step:

(i) Minimize the cost index VN (x, û) over û sub-
ject to the constraints on ẑi, i ≥ 0, given the
current system state x.

(ii) Apply the control input u = û∗0(x) to the sys-
tem, where û∗(x) = {û∗0(x), . . . , û∗N−1(x)} is
the minimizing sequence given x.

If the system dynamics (1) are unstable, then per-
forming the optimization in step (i) directly over
future control sequences can result in a small set
of feasible states x. To avoid this difficulty the el-
ements of the control sequence û are usually ex-
pressed in the form ûi = uT (x̂i)+si, where uT (x)
is a locally stabilizing feedback law, and {s0, . . . ,
sN−1} are optimization variables in step (i).

3 Constraints and recursive feasibility

The constraints in (B) and (C) include hard con-
straints (p = 1) as a special case, but in general the
conditions (A)-(C) represent soft constraints that are
not required to hold for all realizations of model
uncertainty. However, these constraints can only be
satisfied if the state belongs to a subset of state space,
and the requirement (common in MPC) that the op-
timization in step (i) of the SMPC algorithm should
remain feasible if it is initially feasible therefore im-
plies additional constraints. For example the condi-
tion Prx(ẑ0 ≤ 1) ≥ p can be satisfied only if x be-
longs to the set for which there exists û0 such that
Prx
(
g(x, û0, v̂0) ≤ 1

)
≥ p. Hence soft constraints

implicitly impose hard constraints on the model state.
SMPC algorithms typically handle the condi-

tions relating to feasibility of constraint sets in one
of two ways. Either the SMPC optimization is al-
lowed to become infeasible (often with penalties on
constraint violations included in the cost index), or
conditions ensuring robust feasibility of the SMPC
optimization at all future times are imposed as extra
constraints in the SMPC optimization.
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The first of these approaches has been used in
the context of constraints (C) imposed over a hori-
zon, for which conditions ensuring future feasibility
are generally harder to characterise in terms of alge-
braic conditions on the model state than (A) or (B).
A disadvantage of this approach is that the closed
loop system may not satisfy the required soft con-
straints, even if these constraints are feasible when
applied to system trajectories predicted at initial time.

The second approach treats conditions for feasi-
bility as hard constraints and hence requires a guar-
antee of recursive feasibility, namely that the SMPC
optimization must remain feasible for the closed loop
system if it is feasible initially. This can be achieved
by requiring, similarly to RMPC, that the condi-
tions for feasibility of the SMPC optimization prob-
lem should be satisfied for all realizations of the se-
quence ŵ. For example, for given x̂0 = x, there
exists û satisfying that the conditions of (B) if

Prx̂i
(g(x̂i, ûi, v̂i) ≤ 1) ≥ p, i = 0, 1, . . . (4a)

x̂i ∈ X ∀{ŵ0, . . . , ŵi−1} ∈ Wi, i = 1, 2, . . . (4b)

where X is the set

X = {x : ∃u such that Prx
(
g(x, u, v) ≤ 1

)
≥ p}.

Furthermore an SMPC optimization that includes
the constraints of (4) must remain feasible at subse-
quent times (since (4) ensures the existence of û+

such that each element of x̂
(
f(x, û0, ŵ0), û

+, ŵ+)

lies in X for all ŵ0 ∈ W and all ŵ+ ∈ WN ).
Satisfaction of (4) at each time-step i on the in-

finite horizon i ≥ N can be ensured through a finite
number of constraints by introducing constraints on
the N step-ahead state x̂N . This approach uses a
fixed feedback law, uT (x), to define a postulated
input sequence after the initial N -step horizon via
ûi = uT (x̂i) for all i ≥ N . The constraints of (4)
are necessarily satisfied for all i ≥ N if a constraint

x̂N ∈ XT

is imposed, where XT is robustly positively invari-
ant with probability 1 under uT (x), i.e.

f(x, uT (x), w) ∈ XT , ∀x ∈ XT , ∀w ∈ W, (5)

and furthermore the constraint Prx(z ≤ 1) ≥ p is
satisfied at each point in XT under uT (x), i.e.

Prx(g(x, uT (x), v) ≤ 1) ≥ p, ∀x ∈ XT .

Although the recursively feasible constraints (4)
account robustly for the future realizations of the
unknown parameter w in (1), the key difference be-
tween SMPC and RMPC is that the conditions in
(4) depend on the probability distribution of the pa-
rameter v in (2). It also follows from the necessity

of hard constraints for feasibility that the distribu-
tion of w must in general have finite support in or-
der that feasibility can be guaranteed recursively.
On the other hand the support of v in the definition
of z may be unbounded (an important exception be-
ing the case of state constraints in which v = w).

4 Stability and convergence

This section outlines the stability properties of SMPC
strategies based on cost indices (a)-(c) of Section 2
and related variants. We use V ∗N (x) = VN (x, û∗(x))

to denote the optimal value of the SMPC cost in-
dex, and XT denotes a subset of state space satis-
fying the robust invariance condition (5). We also
denote the solution at time i of the system (1) with
initial state x0 = x and under a given feedback
control law u = κ(x) and disturbance sequence
w = {w0, w1, . . .} as xi(x, κ,w).

The expected value cost index in (a) results in
mean-square stability of the closed loop system pro-
vided the terminal term Vf (x) in (3) satisfies

ExVf
(
f(x, uT (x), w

)
≤ Vf (x)−‖x‖2Q−‖uT (x)‖2R

for all x in the terminal set XT . The optimal cost is
then a stochastic Lyapunov function satisfying

ExV
∗
N

(
f(x, û∗0(x), w)

)
≤ V ∗N (x)−‖x‖2Q−‖û∗0(x)‖2R.

For positive definite Q this implies the closed loop
system under the SMPC law is mean-square stable,
so that xi(x, û∗0,w) → 0 as i → ∞ with proba-
bility 1 for any feasible initial condition x. For the
case of systems (1) subject to additive disturbances,
the modified cost

VN (x, û) := Ex

[N−1∑
i=0

(‖x̂i‖2Q+‖ûi‖2R−lss)+Vf (x̂N )

]
where lss := limi→∞ Ex(‖xi(x, uT ,w)‖2Q+‖ui‖2R)
under ui = uT (xi), results in the asymptotic bound

lim
n→∞

1

n

n−1∑
i=0

Ex(‖xi(x, û∗0,w)‖2Q + ‖ui‖2R) ≤ lss

along the closed loop trajectories of (1) under the
SMPC law ui = û∗0(xi), for any feasible initial con-
dition x.

For the worst-case cost (b), if Vf (x) is designed
as a control Lyapunov function for (1), with

Vf
(
f(x, uT (x), w

)
≤ Vf (x)− ‖x‖2Q − ‖uT (x)‖2R

for all w ∈ W and all x ∈ XT , then V ∗N (x) is a
Lyapunov function satisfying

V ∗N (f(x, û∗0(x), w) ≤ V ∗N (x)− ‖x‖2Q − ‖û∗0(x)‖2R
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for all w ∈ W , implying x = 0 is an asymptoti-
cally stable equilibrium of (1) under the SMPC law
u = û∗0(x). Clearly the system model (1) cannot
be subject to unknown additive disturbances in this
case. However, for the case in which the system (1)
is subject to additive disturbances, a variant of this
approach uses a modified cost which is equal to zero
inside some set of states, leading to asymptotic sta-
bility of this set rather than an equilibrium point.
Also in the context of additive disturbances, an al-
ternative approach uses anH∞-type cost,

VN (x, û) := max
ŵ∈WN

[N−1∑
i=0

(‖x̂i‖2Q+‖ûi‖2R−γ2‖ŵi‖2)

+ Vf (x̂N )

]
for which the closed loop trajectories of (1) under
the associated SMPC law ui = û∗0(xi) satisfy

∞∑
i=0

(‖xi(x, û∗0,w)‖2Q + ‖ui‖2R) ≤

γ2
∞∑
i=0

‖wi‖2 + V ∗N (x0)

provided Vf
(
f(x, uT (x), w)

)
≤ Vf (x)− (‖x‖2Q +

‖uT (x)‖2R − γ2‖w‖2) for all w ∈ W and x ∈ XT .
Algorithms employing the nominal cost (c) typ-

ically rely on the existence of a feedback law uT (x)

such that the system (1) satisfies, in the absence of
constraints and under ui = uT (xi), an input-to-
state stability (ISS) condition of the form

∞∑
i=0

(‖xi(x, uT ,w)‖2Q+‖ui‖2R)≤γ2
∞∑
i=0

‖wi‖2+β

(6)

for some γ and β > 0. If Vf (x) satisfies

Vf
(
f(x, uT (x), 0)

)
≤ Vf (x)−(‖x‖2Q+‖uT (x)‖2R)

for all x ∈ XT , then the closed loop system un-
der SMPC with the nominal cost (c) satisfies an ISS
condition with the same gain γ as the unconstrained
case (6) but a different constant β.

5 Implementation issues

In general stochastic MPC algorithms require more
computation than their robust counterparts because
of the need to determine the probability distribu-
tions of future states. An important exception is the
case of linear dynamics and purely additive distur-

bances, for which the model (1)-(2) becomes

x+ = Ax+Bu+ w (7)

z = Cx+Du+ v (8)

where A,B,C,D are known matrices. In this case
the expected value constraints (A) and probabilistic
constraints (B), as well as hard constraints that en-
sure future feasibility of the SMPC optimization in
each case can be invoked non-conservatively through
tightened constraints on the expectations of future
states. Furthermore the required degree of tighten-
ing can be computed offline using numerical inte-
gration of probability distributions or using random
sampling techniques, and the online computational
load is similar to MPC with no model uncertainty.

The case in which the matrices A,B,C,D in
the model (7)-(8) depend on unknown stochastic
parameters is more difficult because the predicted
states then involve products of random variables.
An effective approach to this problem uses a se-
quence of sets (known as a tube) to recursively bound
the sequence of predicted states via one step-ahead
set inclusion conditions. By using polytopic bound-
ing sets that are defined as the intersection of a fixed
number of half-spaces, the complexity of these tubes
can be controlled by the designer, albeit at the ex-
pense of conservative inclusion conditions. Further-
more an application of Farkas’ Lemma allows these
sets to be computed online through linear condi-
tions on optimization variables.

Random sampling techniques developed for gen-
eral stochastic programming problems provide ef-
fective means of handling the soft constraints aris-
ing in SMPC. These techniques use finite sets of
discrete samples to represent the probability dis-
tributions of model states and parameters. Further-
more bounds are available on the number of sam-
ples that are needed in order to meet specified confi-
dence levels on the satisfaction of constraints. Prob-
abilistic and expected value constraints can be im-
posed using random sampling, and this approach
has also been applied to the case of probabilistic
constraints over a horizon (C) through a scenario-
based optimization approach.

6 Summary and Future directions

This article describes how the ideas of MPC and
RMPC can be extended to the case of stochastic
model uncertainty. Crucial in this development is
the assumption that the uncertainty has bounded sup-
port, which allows the assertion of recursive feasi-
bility of the SMPC optimization problem. For sim-
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plicity of presentation we have considered the case
of full state feedback. However stochastic MPC can
also be applied to the output feedback case using
a state estimator if the probability distributions of
measurement and estimation noise are known.

An area of future development is optimization
over sequences of feedback policies. Although an
observer at initial time cannot know the future re-
alizations of random uncertainty, information on x̂i
will be available to the controller i-steps ahead, and,
as mentioned in Section 2 in the context of feasible
initial condition sets, ûi must therefore depend on
x̂i. In general the optimal control decision is of the
form ûi = µi(x̂i) where µi(·) is a feedback pol-
icy. This implies optimization over arbitrary feed-
back policies, which is generally considered to be
intractable since the required online computation
grows exponentially with the horizon N . However
approximate approaches to this problem have been
suggested which optimize over restricted classes of
feedback laws, and further developments in this re-
spect are expected in the future.

7 Cross-references

−→ Nominal MPC
−→ Robust MPC
−→ Distributed MPC
−→ Tracking MPC
−→ Economic MPC

8 Recommended Reading

A historical perspective on SMPC is provided by
Åström and Wittenmark (1973), Charnes and Cooper
(1963) and Schwarm and Nikolaou (1999). A treat-
ment of constraints stated in terms of expected val-
ues can be found for example in Primbs and Sung
(2009). Probabilistic constraints and the conditions
for recursive feasibility can be found in Kouvari-
takis et al. (2010) for the additive case whereas the
general case of multiplicative and additive uncer-
tainty is described in Evans et al. (2012), which
uses random sampling techniques. Random sam-
pling techniques were developed for random con-
vex programming (Calafiore and Campi, 2005), and
were used in a scenario based approach to predic-
tive control in Calafiore and Fagiano (2013). An
output feedback SMPC strategy incorporating state
estimation is described in Cannon et al. (2012).

The use of the expectation of a quadratic cost
and associated mean square stability results are dis-
cussed in Lee and Cooley (1998). Robust stability

results for MPC based on worst-case costs are given
by Lee and Yu (1997) and Mayne et al. (2005).
Input-to-state stability of MPC based on a nominal
cost is discussed in Marruedo et al. (2002)

Descriptions of SMPC based on closed loop op-
timization can be found in Lee and Yu (1997) and
Stoorvogel et al. (2007). These algorithms are com-
putationally intensive and approximate solutions can
be found by restricting the class of closed loop pre-
dictions as discussed for example in van Hessem
and Bosgra (2002) and Primbs and Sung (2009).
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