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Abstract— This paper considers the robust model predic-
tive control synthesis problem for constrained linear discrete
time systems. The manuscript introduces a simple homothetic
tube model predictive control synthesis method. The proposed
method employs several novel features including: a more
general parameterization of the state and control tubes based
on homothety and invariance; a more flexible form of the
terminal constraint set; and a relaxation of the dynamics of
the sets that define the state and control tubes. Under rather
mild assumptions it is demonstrated that the proposed method
is computationally efficient while it induces strong system
theoretic properties.

I. INTRODUCTION

Both classical and contemporary research have recognized
the need for a mathematical framework that deals with
control synthesis under constraints and uncertainty. The
computational complexity normally associated with dynamic
programming [1]–[3] is certainly an issue with the con-
trol synthesis problem in the presence of constraints and
uncertainty. Tube model predictive control (TMPC) [4]–[14]
constitutes a sensible approximate solution methodology. The
deployment of tubes in robust model predictive control is
made possible through a parameterization of the control
policy that allows for the direct handling of uncertainty and
its interaction with the system dynamics, constraints and
performance. In particular, in the case of linear systems with
additive bounded uncertainty and convex constraint sets it is
possible to use separable control policies. These, in turn,
allow for the separation of the evolution of the nominal
system (uncertainty free system) and the evolution of the
local uncertain system. Then, the effect of the uncertainty
can be accounted for by considering the exact reachable
tubes centered around the trajectories of the nominal system
and invoking suitably modified constraints on the nominal
variables; at the same time it is possible to consider simpler
and computationally more tractable performance objectives.
Early proposals employing this construction include [15]–
[17] and were followed with research investigations along
similar lines [18]–[21] which adopt the same paradigm for
the case of the parametric (multiplicative) uncertainty and
for local robustification of nonlinear MPC. The approaches
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reported in [15]–[22] fall into the class of TMPC synthesis
methods, even though the tube terminology was not invoked.
These approaches resulted in a reduction of the computa-
tional complexity and guaranteed desirable system theoretic
properties.

In this manuscript, we utilize the basic concepts of the
general homothetic TMPC (HTMPC), recently developed
in [23], and offer a simplified HTMPC synthesis for a more
structured setting. As in [23], we make use of the homothetic
state and control tubes and the corresponding parameterized,
separable, control policy. The homothetic state and con-
trol tubes are sequences of sets{Xk = zk ⊕ αkS}k∈NN

and {Uk = vk ⊕ αkR}k∈NN−1
which are parameterized

via fixed, but suitably chosen, basic shape setsS and R

and the sequences of the centers and diameters{zk}k∈NN
,

{αk}k∈NN
and {vk}k∈NN−1

. The associated control policy
{πk(·, Xk, Uk)}k∈NN−1

is a sequence of control laws pa-
rameterized via a local control functionν (·) (which is a
continuous and positively homogeneous function of the first
degree) and a sequence of the centers of the homothetic
state and control tubes{zk}k∈NN

and {vk}k∈NN−1
(so that

πk(y,Xk, Uk) = vk + ν(y − zk) for all y ∈ Xk). The tube
basic shape setsS and R and the local control function
ν (·) are designed off–line and are required to satisfy a
reasonable assumption, while the sequences of the centers
and diameters{zk}k∈NN

, {αk}k∈NN
and {vk}k∈NN−1

are
decision variables in the on–line optimization. We employ
globally relaxed set–dynamics of the underlying state and
control tubes which allows for less conservative on–line
constraint handling, performed only locally with respect to
the actual state–control tube process. An additional novelty
of our proposal is the construction of a suitable terminal con-
straint set obtained by analyzing the local homothetic state
and control tube dynamics. The exact local set–dynamics
of the homothetic state and control tubes is simplified by
employing vector–valued dynamics describing the evolution
of the centers and the diameters of the outer–bounding homo-
thetic state and control tubes. For computational simplicity
we employ a linear/affine approximation of the dynamics of
the centers and diameters allowing, in turn, for the utilization
of the classical set invariance concepts albeit in a suitably
lifted space.

From the computational point of view, our proposal carries
a modest increase in complexity compared to the existing
methods [5], [7], [8], [11] but makes use of relaxed as-
sumptions. Our method guarantees, under mild assumptions,
strong system theoretic properties of the controlled uncertain
dynamics.
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Paper Structure

SectionII provides preliminaries and the problem formu-
lation. Section III discusses simple homothetic tubes and
analyses their local behavior. Section IV introduces the
homothetic tube optimal control (HTOC) problem and com-
ments on the corresponding topological properties. Section V
discusses the homothetic tube model predictive control and
establishes the relevant system theoretic properties. Sec-
tion VI highlights a further simplification of the homothetic
tube optimal and model predictive control. Section VII closes
the paper with a few concluding remarks.

Basic Nomenclature and Definitions

The sets of non–negative, positive integers and reals
are denoted byN, N+, and R+, respectively, i.e.N :=
{0, 1, 2, . . .}, N+ := {1, 2, . . .} and R+ := {x ∈ R : x ≥
0}. Given non–negative integersa ∈ N andb ∈ N such that
a < b we denoteN[a:b] := {a, a + 1, . . . , b− 1, b}; We write
Nb for N[0:b]. Given a matrixM ∈ R

n×n, ρ(M) denotes the
largest absolute value of its eigenvalues.

Given two setsX ⊂ R
n andY ⊂ R

n and a vectorx ∈ R
n,

the Minkowski set addition is defined byX⊕Y := {x+y :
x ∈ X, y ∈ Y }, we write x ⊕ X instead of{x} ⊕ X.
Given a setX and a real matrixM of compatible dimensions
(possibly a scalar) the image ofX underM is denoted by
MX := {Mx : x ∈ X}. Given a setZ ⊂ R

n+m its
projection ontoR

n is denoted byProjectionRn(Z) = {x ∈
R

n : ∃y ∈ R
m such that(x, y) ∈ Z}. A function f (·) :

R
n → R

m is said to be positively homogeneous of the first
degree iff(αx) = αf(x) for all α ∈ R+. If f (·) is a set–
valued function from, say,X into U , namely, its values are
subsets ofU , then its graph is the setgraph(f) := {(x, y) :
x ∈ X, y ∈ f(x)}.

A set X ⊂ R
n is said to be a non–trivial set if it is a

proper, non–empty, subset ofR
n and it is not a singleton

set. A setX ⊂ R
n is a C–set if it is compact, convex,

and contains the origin. A setX ⊂ R
n is a proper C–set,

or just a PC–set, if it is a C–set and contains the origin
in its (non–empty) interior. Apolyhedron is the (convex)
intersection of a finite number of open and/or closed half–
spaces and apolytopeis the closed and bounded polyhedron.
The boundary, closure and interior of a setX are denoted,
respectively, byboundary(X), closure(X) andinterior(X).
Given a setX ⊂ R

n, convh(X) denotes its convex hull.
The Euclidean norm of a vectorx ∈ R

n is denoted by|x|
while the corresponding unit norm ball is denoted byBn

2 .
The functionsh(Bn

2 , ·, ·) andH(Bn
2 , ·, ·) defined, for any two

non–empty compact subsets ofR
n sayX andY , by:

h(Bn
2 , X, Y ) := min

α
{α : X ⊆ Y ⊕ αBn

2 , α ∈ R+} and

H(Bn
2 , X, Y ) := max{h(Bn

2 , X, Y ), h(Bn
2 , Y,X)},

denote the Hausdorff semi–distance and the Hausdorff dis-
tance (metric).

For typographical convenience, we distinguish row vectors
from column vectors only when needed and employ the
same symbol for a variablex and its vectorized form in
the algebraic expressions.

II. PRELIMINARIES & PROBLEM FORMULATION

We consider linear, time–invariant, discrete time systems,
given by:

x+ = Ax + Bu + w, (II.1)

wherex ∈ R
n is the current state,u ∈ R

m is the current
control,x+ is the successor state,w ∈ R

n is the disturbance
taking values in the setW ⊂ R

n and matricesA andB are of
compatible dimensions, i.e.(A,B) ∈ R

n×n × R
n×m. Thus,

if at any timek ∈ N the state isxk, the applied control is
uk and the disturbance iswk, the state at timek+1 satisfies
xk+1 = Axk + Buk + wk. The system variablesx, u andw

are subject to hard constraints:

x ∈ X, u ∈ U and w ∈ W. (II.2)

We work, throughout this note, under the following standing
assumptions and clarifying interpretation:

Assumption 1:The matrix pair(A,B) ∈ R
n×n × R

n×m

is stabilizable.
Assumption 2:The state and control constraint setsX and

U are PC–polytopic sets inRn and R
m, respectively, and

the disturbance constraint setW is a non–trivialC–polytopic
set inR

n.
Interpretation 1: At any time instancek ∈ N, the statexk

is known when the current control actionuk is determined,
while the current disturbancewk and future disturbances
wk+i, i ∈ N+ are not known and can take any arbitrary
valueswk+i ∈ W, i ∈ N.

Central focus of this note is the efficient computation of
homothetic state and control tubes as well as associated
control policies. For any non–empty setsS ⊆ R

n and
R ⊆ R

m, any functionν (·) : R
n → R

m and any positive
integer N ∈ N+, the homothetic state tube is a sequence
of setsXN := {Xk}k∈NN

where setsXk are given, for all
k ∈ NN , by:

Xk := zk ⊕ αkS with (zk, αk) ∈ R
n × R+. (II.3)

Likewise, the homothetic control tube is a sequence of sets
UN−1 := {Uk}k∈NN−1

where setsUk are given, for allk ∈
NN−1, by:

Uk := vk ⊕ αkR with (vk, αk) ∈ R
m × R+, (II.4)

and the correspondingν–parameterized control policy is a
sequence of control lawsΠN−1 := {πk(·, Xk, Uk)}k∈NN−1

where control lawsπk(·, Xk, Uk) are such that,∀k ∈ NN−1,:

∀y ∈ Xk, πk(y,Xk, Uk) := vk + ν(y − zk). (II.5)

Clearly, for given setsS and R and a given function
ν (·), the homothetic state and control tubes,XN and
UN−1, and the correspondingν–parameterized control pol-
icy ΠN−1 are fully determined by the sequences of the
centers of the homothetic state and control tubes,{zk ∈
R

n}k∈NN
and {vk ∈ R

m}k∈NN−1
, and the sequence of

the diameters of the homothetic state and control tubes
{αk ∈ R+}k∈NN

. Consequently, we introduce a decision
variable dN := (z0, . . . , zN , α0, . . . , αN , v0, . . . , vN−1) ∈
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R
N(n+m+1)+n+1. Given any x ∈ X, we consider the

following set of constraints on the decision variabledN or
equivalently on the homothetic state and control tubes,XN

andUN−1, and the correspondingν–parameterized control
policy ΠN−1:

x ∈ z0 ⊕ α0S, (II.6a)

∀k ∈ NN−1, αk ≥ 0, (II.6b)

∀k ∈ NN−1, zk ⊕ αkS ⊆ X, (II.6c)

∀k ∈ NN−1, vk ⊕ αkR ⊆ U, (II.6d)

∀k ∈ NN−1, ∀y ∈ zk ⊕ αkS,

Ay + B(vk + ν(y − zk)) ⊕ W ⊆ zk+1 ⊕ αk+1S, (II.6e)

∀k ∈ NN−1, ∀y ∈ zk ⊕ αkS,

ν(y − zk) ∈ αkR, and, (II.6f)

(zN , αN ) ∈ Gf , (II.6g)

whereGf ⊆ R
n+1 is an appropriate terminal constraint set.

We introduce the set–valued mapDN (·) given, for allx ∈ X,
by:

DN (x) := {dN : (II.6) holds}. (II.7)

For any givenx ∈ X, the setDN (x) represents the set of
admissible decision variablesdN (yielding, in turn, the set
of admissible homothetic state and control tubes,XN and
UN−1, and correspondingν–parameterized control policies
ΠN−1 via (II.3)–(II.5)). For anydN ∈ R

N(n+m+1)+n+1, let
a cost functionVN (·) : R

N(n+m+1)+n+1 → R+ be given
by:

VN (dN ) :=
∑

k∈NN−1

ℓ(zk, αk, vk) + Vf (zN , αN ), (II.8)

whereℓ (·, ·, ·) : R
n+m+1 → R+ andVf (·, ·) : R

n+1 →
R+ are the homothetic state–control tube pair stage and
terminal cost functions. The finite horizon HTOC problem
PN (x) of our interest is specified, for anyx ∈ X, by:

V 0
N (x) := inf

dN

{VN (dN ) : dN ∈ DN (x)}, and,

d0
N (x) := arg inf

dN

{VN (dN ) : dN ∈ DN (x)}. (II.9)

The main objectives of this manuscript are to:

(i) discuss the solvability of the finite horizon HTOC
problemPN (x), x ∈ X for fixed, but suitably chosen
setsS and R and corresponding control functionν (·)
as well as terminal constraint setGf and stage and
terminal cost functionsℓ (·, ·, ·) andVf (·, ·); and

(ii) analyze the repetitive on–line application of the HTOC
problem PN (x), x ∈ X and outline the relevant
system theoretic properties of the corresponding simple
HTMPC.

III. SIMPLE HOMOTHETIC TUBES

Our first step is to discuss sensible choice of the setsS

and R and corresponding control functionν (·) as well as
stage and terminal cost functionsℓ (·, ·, ·) and Vf (·, ·); the
outlined choice allows for a significant simplification of the
finite horizon HTOC problemPN (x), x ∈ X.

A. Homothetic Tubes : Constituting Components

The first mild but simplifying assumption is concerned
with the desirable properties of the local control function
ν (·), state and control tube cross–section shape setsS and
R and an additional simplifying component, namely the
nominal successor state setS+:

Assumption 3: (i) The control functionν (·) : R
n →

R
m is a continuous, positively homogeneous function

of the first degree.
(ii) The state tube cross–section shape setS is a non–trivial

C–polytopic set inR
n such that:

{As + Bν(s) : s ∈ S} ⊕ W ⊆ S. (III.1)

(iii) The control tube cross–section shape setR is a C–set
in R

m given by:

R := convh({ν(s) : s ∈ S}). (III.2)

(iv) The nominal successor state setS+ is a C–set inR
n

given by:

S+ := convh({As + Bν(s) : s ∈ S}). (III.3)

We observe that, under Assumption 3, for any givenα ∈ R+

and alls ∈ αS it holds thatν(s) ∈ αR andAs + Bν(s) ∈
αS+ due to homogeneity ofν (·) and theC–property of the
relevant sets. ClearlyAy + B(v + ν(y − z)) = Az + Bv +
A(y−z)+Bν(y−z) and consequently, under Assumption 3,
the set of constraints in (II.6e) is equivalently expressed, for
all k ∈ NN−1, as:

Azk + Bvk ⊕ αkS+ ⊕ W ⊆ zk+1 ⊕ αk+1S, (III.4)

while, in addition, the set of constraints in (II.6f) is satisfied
by construction. We point out that the constraints (III.4)
specify the global homothetic state tube set–dynamics and do
not necessarily require that∀k ∈ NN−1, zk+1 = Azk +Bvk

andαk+1 = αk = 1 as in earlier proposals [7].
A further simplification is obtained by considering strictly

convex and quadratic stage and terminal cost functions
ℓ (·, ·, ·) andVf (·, ·) given, for all (z, α, v) ∈ R

n+m+1, by:

ℓ(z, α, v) = z′Qzz + qα(α − ᾱ)2 + v′Qvv, (III.5)

and, for all(z, α) ∈ R
n+1,

Vf (z, α) = z′Pzz + pα(α − ᾱ)2, (III.6)

whereQz ∈ R
n×n, Qz = Q′

z > 0, Qv ∈ R
m×m, Qv =

Q′

v > 0, Pz ∈ R
n×n, Pz = P ′

z > 0, qα ∈ R+ andpα ∈ R+.
The scalar̄α ∈ R+ is specified below in Section III-B.

B. Homothetic Tubes : Simplified Local Tube Dynamics

Our second step is to provide a suitable choice of the
terminal constraint setGf and invoke additional assumptions
on stage and terminal cost functionsℓ (·, ·, ·) and Vf (·, ·)
guaranteeing desirable invariance and stabilizing properties.

Before proceeding, let for any(z, v, α) ∈ R
n ×R

m ×R+,

X(z, α) := z ⊕ αS andU(v, α) := v ⊕ αR. (III.7)
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We consider the local control function,
πf (·, X(z, α), U(Kz,α)), given, for all x ∈ X(z, α) :=
z ⊕ αS with (z, α) ∈ R

n × R+, by:

πf (x,X(z, α), U(Kz,α)) = Kz + ν(x − z), (III.8)

where K ∈ R
m×n. We note that, for any given(z, α) ∈

R
n × R+ and all x ∈ X(z, α) = z ⊕ αS, it holds that

πf (x,X(z, α), U(Kz,α)) = Kz + ν(x − z) ∈ U(Kz,α).
Our primary aim, in this subsection, is to determine the
terminal setGf such that for all(z, α) ∈ Gf it holds that:

X(z, α) = z ⊕ αS ⊆ X, (III.9a)

U(Kz,α) = Kz ⊕ αR ⊆ U, and, (III.9b)

(A + BK)z ⊕ αS+ ⊕ W ⊆ z+ ⊕ α+S (III.9c)

for some(z+, α+) ∈ Gf . Motivated by simplicity and com-
putational considerations, we enforce the condition (III.9c)
by setting:

z+ = (A + BK)z andα+ = λα + µ, (III.10)

where:

µ := min
η

{η : W ⊆ ηS, η ≥ 0}, and, (III.11a)

λ := min
η

{η : S+ ⊆ ηS, η ≥ 0}. (III.11b)

Note that, under Assumption 3, it is guaranteed thatµ ∈
[0, 1] and λ ∈ [0, 1]. In order to ensure the satisfaction of
the conditions (III.9a) and (III.9b) we introduce the set of
constraints on the(z, α) variable:

(z, α) ∈ G where (III.12a)

G := {(z, α) : z ⊕ αS ⊆ X, Kz ⊕ αR ⊆ U andα ≥ 0}.
(III.12b)

It is important to note that, under Assumptions 2 and 3,
the set G is a C–polytopic set in R

n × R+. We un-
derline that the ordinary vector–valued dynamics specified
in (III.10) define completely the local, outer–bounding,
homothetic set–dynamics (see (III.9c)) while the condi-
tions (III.9a) and (III.9b) impose constraints on the(z, α)
dynamics via (III.12). Consequently, the determination of
an appropriate terminal constraint setGf , ensuring that
the relations (III.9) are satisfied, is reduced to the problem
of the determination of a positively invariant set for the
dynamics (III.10) subject to constraints (III.12).

We are now in position to invoke our second mild and
simplifying assumption:

Assumption 4: (i) The matrix K ∈ R
m×n and scalar

λ in (III.10) and are such thatρ(A + BK) < 1 and
λ ∈ [0, 1).

(ii) The scalarᾱ ∈ R+ is given by:

ᾱ = (1 − λ)−1µ, (III.13)

where λ and µ are given as in (III.10), and is such
that (0, ᾱ) ∈ interior(G) where the setG is specified
in (III.12b).

(iii) The terminal constraint setGf is a non–trivial C–
polytopic set inRn×R+ and is a positively invariant set
for the dynamics (III.10) subject to constraints (III.12),
i.e. it is such thatGf ⊆ G and:

∀(z, α) ∈ Gf , ((A + BK)z, λα + µ) ∈ Gf . (III.14)

(iv) The stage and terminal cost functionsℓ (·, ·, ·) and
Vf (·, ·) are given as in (III.5) and (III.6) and:

(A + BK)′Pz(A + BK) − Pz ≤ −(Qz + K ′QvK),

andpα ≥ (1 − λ2)−1qα. (III.15)

Now, we comment briefly on the consequences of the in-
voked assumptions. As already indicated, under Assump-
tions 2 and 3, the setG in (III.12b) is a C–polytopic set
in R

n × R+. The conditions(i) and (ii) in Assumption 4
guarantee then the existence of the terminal constraint set
Gf postulated in the condition(iii) in Assumption 4. In fact,
under above mentioned assumptions, a direct use of results
in [24], [25] implies that the maximal positively invariant
set for the dynamics (III.10) subject to constraints (III.12) is
finitely determined and is a non–trivialC–polytopic set in
R

n ×R+. The conditions(i) and(ii) in Assumption 4 also
imply that:

S̄ ⊆ X, R̄ ⊆ U and S̄+ ⊕ W ⊆ S̄, where,

S̄ := ᾱS, R̄ := ᾱR, and, S̄+ := ᾱS+. (III.16)

Note that setsS̄ and R̄ play a role of the equilibrium set
pair for the homothetic state and control tubes in analogy
with the equilibrium pair(0, 0) ∈ R

n × R
m relevant for the

deterministic case (i.e. in the absence of the uncertainty).
The condition (iv) in Assumption 4 implies that there
exist scalarsc1 ∈ (0,∞), c2 ∈ (0,∞), c3 ∈ (0,∞) and
c4 ∈ (0,∞) such that, for all(z, α) ∈ Gf it holds that
c1|(z, α) − (0, ᾱ)| ≤ ℓ(z, α,Kz) ≤ c2|(z, α) − (0, ᾱ)|,
c3|(z, α) − (0, ᾱ)| ≤ Vf (z, α) ≤ c4|(z, α) − (0, ᾱ)| and
Vf ((A + BK)z, λα + µ) − Vf (z, α) ≤ −ℓ(z, α,Kz). In
other words, the terminal cost functionVf (·, ·) is a local
Lyapunov function for the dynamics (III.10) relative to the
equilibrium point (0, ᾱ) and with the basin of attraction
being equal to the positively invariant setGf . Summarizing
the discussion above we have:

Proposition 1: Suppose Assumptions 1–4 hold and con-
sider any sequence{(zk, αk)}k∈N generated, for allk ∈ N,
by zk+1 = (A + BK)zk and αk+1 = λαk + µ for any
arbitrary (z0, α0) ∈ Gf . Then:

(i) For all k ∈ N, (zk, αk) ∈ Gf ,
(ii) For all k ∈ N, |(zk, αk)−(0, ᾱ)| ≤ akb|(z0, α0)−(0, ᾱ)|

for some(a, b) ∈ [0, 1) × [0,∞), and
(iii) The pair (0, ᾱ) ∈ R

n×R+ is an exponentially stable at-
tractor for dynamics (III.10) with the basin of attraction
being equal to the setGf .

We close this section by summarizing relevant consequences
of our construction and Proposition 1:

Remark 1:Under the conditions of Proposition 1, the set
sequences{X(zk, αk) = zk⊕αkS}k∈N and{U(Kzk, αk) =
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Kzk ⊕ αkR}k∈N inducedfrom the corresponding sequence
{(zk, αk)}k∈N (which is postulated in Proposition 1) are such
that, for allk ∈ N, it holds that:

X(zk, αk) ⊆ X andU(Kzk, αk) ⊆ U,

and, in addition, for ally ∈ X(zk, αk) it holds that:

Ay + B(Kzk + ν(y − zk)) ⊕ W ⊆ X(zk+1, αk+1), and,

Kzk + ν(y − zk) ∈ U(Kzk, αk).

Furthermore, the set sequences{X(zk, αk)}k∈N and
{U(Kzk, αk)}k∈N converge exponentially fast, with respect
to the Hausdorff distance, to the sets̄S = ᾱS and R̄ =
ᾱR respectively. The corresponding Hausdorff distances
between setsX(zk, αk) and S̄ as well as between sets
U(Kzk, αk) and R̄ are smaller or equal toakb|(z0, α0) −
(0, ᾱ)| and akc|(Kz0, α0) − (0, ᾱ)|, respectively, for some
scalars(a, b, c) ∈ [0, 1) × [0,∞) × [0,∞).

Remark 2:The set of statesx ∈ X for which there
exists at least one pair of the set sequences{X(zk, αk)}k∈N

and{U(Kzk, αk)}k∈N enjoying the properties discussed in
Remark 1 and satisfying, in addition, thatx0 ∈ X(z0, α0) is
implicitly characterized via the conditionsx ∈ z ⊕ αS and
(z, α) ∈ Gf . More precisely, this is the setX0 referred to as
the0–step homothetic tubes controllability set and given by:

X0 = ProjectionRn{(x, z, α) : x ∈ z ⊕ αS,

(z, α) ∈ Gf}. (III.17)

Under our assumptions, the set{(x, z, α) : x ∈ z ⊕
αS, (z, α) ∈ Gf} is a non–trivial C–polytopic set in
R

2n × R+ and, consequently, the0–step homothetic tubes
controllability setX0 is itself a non–trivialC–polytopic set
in R

n such thatS̄ ⊆ X0. We note that, by construction, for all
x0 ∈ X0 there exists at least one pair(z0(x0), α0(x0)) such
that x0 ∈ z0(x0) ⊕ α0(x0)S and (z0(x0), α0(x0)) ∈ Gf .
In turn, the corresponding sequence{(zk(x0), αk(x0))}k∈N

generated, for allk ∈ N, by zk+1(x0) = (A +
BK)zk(x0) andαk+1(x0) = λαk(x0)+µ induces the local
state and control homothetic tubes{X(zk(x0), αk(x0))}k∈N

and{U(Kzk(x0), αk(x0))}k∈N enjoying the properties dis-
cussed in Remark 1. Furthermore, in this case, the actual
state and control sequences{xk}k∈N and{uk}k∈N generated
via xk+1 = Axk +B(Kzk(x0)+ ν(xk − zk(x0)))+wk and
uk = Kzk(x0)+ν(xk−zk(x0)) for any arbitrary disturbance
sequence{wk ∈ W}k∈N satisfy:

xk ∈ X(zk(x0), αk(x0)) anduk ∈ U(Kzk(x0), αk(x0))

and, in addition, converge to the sets̄S and R̄ exponen-
tially fast as k → ∞ in the sense that the sequences
{h(Bm

2 , {xk}, S̄)}k∈N and {h(Bm
2 , {uk}, R̄)}k∈N converge

exponentially fast to0 ask → ∞.

IV. HOMOTHETIC TUBE OPTIMAL CONTROL

We utilize the analysis of Section III and deploy cor-
responding simplifications in order to discuss the relevant
properties of the finite horizon HTOC problemPN (x), x ∈
X specified in (II.9). Our simplifying assumptions allows

us to establish structural properties of the graph of the set–
valued mapDN (·) and the cost functionVN (·) specified
in (II.7) and (II.8) respectively and, in turn, to ascertain
relevant topological properties of the value functionV 0

N (·)
and its optimizerd0

N (·) given in (II.9). For any positive
integerN ∈ N, the setXN given by:

XN := {x : DN (x) 6= ∅} (IV.1)

is referred to as theN–step homothetic tubes controllability
set and is, in fact, the effective domain of the value function
V 0

N (·) and its optimizerd0
N (·). Let, for any integerN ∈ N,

d̄N := (0, . . . , 0, ᾱ, . . . , ᾱ, 0, . . . , 0) ∈ R
N(n+m+1)+n+1.

The condition(iv) in Assumption 4 implies the following
relevant properties of the cost functionVN (·):

Lemma 1:Suppose Assumption 4(iv) holds. Then the
cost functionVN (·) : R

N(n+m+1)+n+1 → R+ given
by (II.8), (III.5) and (III.6) is strictly convex and quadratic
function such that for alldN ∈ R

N(n+m+1)+n+1 it holds
that:

c5|dN − d̄N | ≤ VN (dN ) ≤ c6|dN − d̄N | (IV.2)

for some scalarsc5 ∈ (0,∞) andc6 ∈ (0,∞).

Let, for any positive integerN ∈ N, the setDN be given
by:

DN := {(x,dN ) : (II.6) holds} (IV.3)

We recall that, under Assumption 3, the constraints in (II.6f)
are satisfied by construction while the constraints in (II.6e)
are equivalently expressed via the constraints in (III.4).
With this in mind, under Assumptions 2, 3 and 4, a direct
use of basic algebra of support functions [26], [27] yields
the fact that the setDN is a non–trivialC–polytopic set
in R

n+N(n+m+1)+n+1 (i.e. in (x,dN )–space). A concrete
algebraic details are easily obtained by utilizing analysis
provided in [23, Section 5].

Lemma 2:Suppose Assumptions 1–4 hold. Then the set
DN given by (IV.3) is a non–trivialC–polytopic set in
R

n+N(n+m+1)+n+1.

Since, by construction, it holds thatXN :=
ProjectionRn DN it follows that the setXN is a non–trivial
C–polytopic set inR

n which, under our assumptions, is
such thatS̄ ⊆ X0 ⊆ XN ⊆ X. Furthermore, we also have
that for all x ∈ XN , DN (x) = {dN : (x,dN ) ∈ DN}
and consequently for any fixedx ∈ XN the setDN (x) is
a polytopic set. Hence, under our assumptions, the finite
horizon HTOC problemPN (x) given in (II.9) is, for any
fixed x ∈ XN a strictly convex quadratic programming
problem. The basic results in parametric mathematical
programming [28] allows us to establish relevant topological
properties of the value functionV 0

N (·) and its optimizer
d0

N (·) given in (II.9):

Proposition 2: Suppose Assumptions 1–4 hold. Then:
(i) TheN–step homothetic tubes controllability setXN is a

non–trivialC–polytopic set inRn such thatS̄ ⊆ XN ⊆
X,
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(ii) The value functionV 0
N (·) : XN → R+ is a convex,

piecewise quadratic and continuous function such that
∀x ∈ S̄, V 0

N (x) = 0, and
(iii) The function d0

N (·) : XN → R
N(n+m+1)+n+1 is a

single–valued, piecewise affine and continuous function
such that∀x ∈ S̄, d0

N (x) = d̄N .

The solution of the finite horizon HTOC problem
PN (x), x ∈ XN allows for the construction of
the optimal simple homothetic state and control
tubes X0

N (x) and U0
N−1(x) as well as the

optimal ν–parametrized control policy Π0
N−1.

Namely, the corresponding optimizerd0
N (x) :=

(z0
0(x), . . . , z0

N (x), α0
0(x), . . . , α0

N (x), v0
0(x), . . . , v0

N−1(x))
induces the optimal simple homothetic optimal state and
control tubesX0

N (x) := {X0
k(x) = z0

k(x) ⊕ α0
k(x)S}k∈NN

and U0
N−1(x) := {U0

k (x) = v0
k(x) ⊕ α0

k(x)R}k∈NN−1

as well as the optimal ν–parametrized control
policy Π0

N−1 := {π0
k(·, X0

k(x), U0
k (x))}k∈NN−1

such
that, for all k ∈ NN−1 and for all y ∈ X0

k(x),
π0

k(y,X0
k(x), U0

k (x)) = v0
k(x) + ν(y − z0

k(x)). The
optimal simple homothetic state and control tubes
X0

N (x) and U0
N−1(x) and the corresponding optimal

ν–parametrized control policyΠ0
N−1 satisfy the constraints

specified in (II.6). Proposition 1 and Remark 1 imply
directly that the corresponding optimizerd0

N (x) can be
employed to construct a feasible decision variabled̂N (y) :=
(ẑ0

0(y), . . . , ẑ0
N (y), α̂0

0(y), . . . , α̂0
N (y), v̂0

0(y), . . . , v̂0
N−1(y))

for any y ∈ X0
1 (x) by setting for allk ∈ NN−1:

ẑk(y) = z0
k+1(x) and ẑN (y) = (A + BK)z0

N (x),

α̂k(y) = α0
k+1(x) and α̂N (y) = λα0

N (x) + µ,

and, for allk ∈ NN−2,

v̂k(y) = v0
k+1(x) and v̂N−1(y) = Kz0

N (x). (IV.4)

Indeed, the following result guarantees robust recursive
feasibility of the finite horizon HTOC problem
PN (x), x ∈ XN :

Proposition 3: Suppose Assumptions 1–4 hold. Then, for
all x ∈ XN and ally ∈ X0

1 (x) := z0
1(x) ⊕ α0

1(x)S, it holds
that

d̂N (y) ∈ DN (y), (IV.5)

whered̂N (y) is specified in (IV.4), and, consequently, for all
x ∈ XN it holds thatX0

1 (x) ⊆ XN .

V. HOMOTHETIC TUBE MPC

We now examine the repetitive on–line application of the
solution of the finite horizon HTOC problemPN (x), x ∈ X

in the context of the simple homothetic tube MPC. Namely,
we consider the simple homothetic tube model predictive
controllerκ0

N (·) : XN → U given by:

κ0
N (x) = π0

0(x,X0
0 (x), U0

0 (x)) = v0
0(x) + ν(x − z0

0(x)).
(V.1)

Under Assumptions 1–4, Proposition 3 establishes that the
optimizerd0

N (·) is single–valued and continuous implying,
in view of (V.1) and Assumption 3, that the control law

κ0
N (·) : XN → U is also a single–valued and continuous

function. The simple homothetic tube model predictive con-
troller κ0

N (·) : XN → U induces the controlled, uncertain,
dynamics given, for allx ∈ XN , by:

x+ ∈ F (x) := {Ax + Bκ0
N (x) + w : w ∈ W}, (V.2)

and it ensures, by construction, that for allx ∈ XN :

F (x) ⊆ X0
1 (x) = z0

1(x) ⊕ α0
1(x)S ⊆ XN , (V.3)

as evident from (II.6) and Proposition 3.
Any state sequence{xk}k∈N generated by (V.1) withx0 ∈

XN and the corresponding control actions sequence{uk}k∈N

with uk = κ0
N (xk) for eachk, for any admissible disturbance

sequence{wk}k∈N with wk ∈ W for eachk, however, lie
in the simple HTMPC state and control tubes{X0

0 (xk)}k∈N

and {U0
0 (xk)}k∈N, respectively. Therefore, for allk ∈ N it

holds that:

xk ∈ X0
0 (xk) = z0

0(xk) ⊕ α0
0(xk)S ⊆ XN ⊆ X and

(V.4a)

κ0
N (xk) ∈ U0

0 (xk) = v0
0(xk) ⊕ α0

0(xk)R ⊆ U. (V.4b)

The limiting behavior of the simple HTMPC state and
control tubes{X0

0 (xk)}k∈N and{U0
0 (xk)}k∈N, respectively,

is, therefore, completely induced from the limiting be-
havior of the sequences{z0

0(xk)}k∈N, {α0
0(xk)}k∈N and

{v0
0(xk)}k∈N. We examine the latter by utilizing the value

function V 0
N (·) : XN → R+ as a Lyapunov function

to establish the exponential convergence of the sequences
{z0

0(xk)}k∈N, {α0
0(xk)}k∈N and {v0

0(xk)}k∈N to the triplet
(0, ᾱ, 0) in a stable manner, i.e. thatz0

0(xk) → 0, α0
0(xk) →

1 and v0
0(xk) → 0, as k → ∞, exponentially fast and in

a stable fashion for any realized state sequence{xk}k∈N

arising due to an admissible disturbance sequence{wk}k∈N.
Proposition 2 establishes that the value functionV 0

N (·) :
XN → R+ is a convex and continuous function, which
is, in addition, such that for allx ∈ S̄ it holds that
V 0

N (x) = 0 or equivalently, that for allx ∈ S̄ it holds that
(z0

0(x), α0
0(x), v0

0(x)) = (0, ᾱ, 0). Before proceeding, let:

y0
0(x) := (z0

0(x), α0
0(x), v0

0(x)) and ȳ := (0, ᾱ, 0). (V.5)

A further relevant property of the value functionV 0
N (·) is

stated next:

Proposition 4: Suppose Assumptions 1–4 hold. Then
there exists a scalar pair(c7, c8) ∈ (0,∞) × (0,∞) such
that for all x ∈ XN it holds that:

c7|y
0
0(x) − ȳ| ≤ V 0

N (x) ≤ c8|y
0
0(x) − ȳ| and (V.6a)

∀x+ ∈ F (x), V 0
N (x+) − V 0

N (x) ≤ −c7|y
0
0(x) − ȳ|,

(V.6b)

where F (·), y0
0 (·) and ȳ are given by (V.2) and (V.5),

respectively.

A direct, but relevant, consequence of Proposition 4 is the
following fact:
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Corollary 1: SupposeAssumptions 1–4 hold. Then there
exists a scalar pair(aN , bN ) ∈ (0, 1)× (0,∞) such that the
inequalities

∀k ∈ N, V 0
N (xk) ≤ ak

NV 0
N (x0) and (V.7a)

∀k ∈ N, |y0
0(xk) − ȳ| ≤ ak

NbN |y0
0(x0) − ȳ| (V.7b)

hold true for anyx0 ∈ XN and any corresponding state
sequence{xk}k∈N generated by (V.2).

We also need the following technical lemma:

Lemma 3:Suppose Assumptions 1–4 hold. Then there
exists a scalar pair(c9, c10) ∈ (0,∞) × (0,∞) such that
for all x ∈ XN it holds that:

c9|y
0
0(x)− ȳ| ≤ H(Bn

2 , X0
0 (x), S̄) ≤ c10|y

0
0(x)− ȳ| (V.8)

The sequence of our preliminary results now easily yields
our main result:

Theorem 1:Suppose Assumptions 1–4 hold. Then:

(i) TheN–step homothetic tubes controllability setXN is a
robust positively invariant set for the system (V.2) and
constraint set(X, U, W), i.e. for all x ∈ XN ⊆ X it
holds thatκ0

N (x) ∈ U and F (x) ⊆ XN whereκ0
N (·)

andF (·) are given by (V.1) and (V.2), respectively.
(ii) There exists a scalar pair(ãN , b̃N ) ∈ [0, 1) × R+ such

that, for allk ∈ N,:

H(Bn
2 , X0

0 (xk), S̄) ≤ ãk
N b̃NH(Bn

2 , X0
0 (x0), S̄), and,

H(Bm
2 , U0

0 (xk), R̄) ≤ ãk
N b̃N ,

holds true for all state sequence{xk}k∈N generated
by (V.2) with arbitraryx0 ∈ XN .

(iii) The set S̄ is robustly exponentially stable for the con-
trolled uncertain system (V.2) with the basin of attrac-
tion being theN–step homothetic tubes controllability
setXN .

Remark 3:Theorem 1 establishes the stable and expo-
nential convergence of the simple HTMPC state tubes
{X0

0 (xk)}k∈N to the setS̄ as well as the exponential con-
vergence of the simple HTMPC control tubes{U0

0 (xk)}k∈N

to the set R̄. The established property is equivalent to
the stability of the set̄S and the exponential convergence
of the possible state trajectories{xk}k∈N to the setS̄ in
the sense that the sequence{h(Bn

2 , {xk}, S̄)}k∈N converges
exponentially fast to0 in a stable manner. In addition,
the corresponding control actions sequence{uk}k∈N with
uk = κ0

N (xk) converges exponentially fast to the setR̄ in
the sense that the sequence{h(Bm

2 , {uk}, R̄)}k∈N converges
exponentially fast to0.

Remark 4:As far as the implementation of the simple
HTMPC is concerned, the main computational burden is the
off–line determination of the setsS, R, S+ and Gf . How-
ever, a number of methods exists in the literature that can be
utilized to execute the necessary computations [3], [24], [25],
[29]–[37]. Once the off–line computations are performed,
the on–line implementation of the simple HTMPC can be

performed by utilizing the standard convex optimization soft-
ware (since the finite horizon (HTOC) problemPN (x) given
in (II.9) is, for any fixedx ∈ XN a strictly convex quadratic
programming problem). Finally, since∀x ∈ S̄, V 0

N (x) = 0,
d0

N (x) = d̄N and, consequently,∀x ∈ S̄, κ0
N (x) = ν(x)

we note that on–line optimization can be terminated once
the statexk enters the set̄S.

VI. YET SIMPLER HTMPC

We outline a further plausible simplification of the simple
HTMPC. Namely, the set of constraints in (II.6e) or its
equivalent reformulation (III.4) (under Assumption 3) can
be enforced as described in Section III. Indeed, the set
of constraints in (III.4) can be enforced by setting for all
k ∈ NN−1:

zk+1 = Azk + Bvk andαk+1 = λαk + µ, (VI.1)

where λ and µ are given as in (III.10). In this case, we
introduce the set:

GS = {(z, α, v) : z ⊕ αS ⊆ X, v ⊕ αR ⊆ U andα ≥ 0}.
(VI.2)

We note that, under Assumptions 2 and 3, the setGS is a
C–polytopic set inR

n × R+ × R
m.

In order to simplify further the simple HTMPC we
utilize (VI.1) and (VI.2) and invoke the following set of
constraints on the decision variabledN :

x ∈ z0 ⊕ α0S, (VI.3a)

∀k ∈ NN−1, zk+1 = Azk + Bvk, (VI.3b)

∀k ∈ NN−1, αk+1 = λαk + µ, (VI.3c)

∀k ∈ NN−1, (zk, αk, vk) ∈ GS , and, (VI.3d)

(zN , αN ) ∈ Gf . (VI.3e)

Let, similarly as in Section IV, the setDSN be given by:

DSN := {(x,dN ) : (VI.3) holds} (VI.4)

Under Assumptions 1–4, similarly as in Lemma 2, the set
DSN is a non–trivial polytopic set inRn+N(n+m+1)+n+1.
The simplified HTOC problemPSN (x) is given, for allx ∈
X, by:

V 0
SN (x) := inf

dN

{VN (dN ) : (x,dN ) ∈ DSN}, and,

d0
SN (x) := arg inf

dN

{VN (dN ) : (x,dN ) ∈ DSN}. (VI.5)

Under Assumptions 1–4, the effective domain of the value
function V 0

SN (·) and its optimizerd0
SN (·) is the set:

XSN := ProjectionRn DSN , (VI.6)

which is a non–trivialC–polytopic set inRn such thatS̄ ⊆
X0 ⊆ XSN ⊆ X.

Remark 5:Under Assumptions 1–4, all the results estab-
lished in Section IV apply directly to the simplified HTOC
problemPSN (x) with minor notational changes. In particu-
lar, Propositions 2 and 3 hold true with obvious notational
changes.
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Remark 6:The simplified homothetic tube model predic-
tive controllerκ0

SN (·) : XSN → U given as in (V.1) (i.e.
for all x ∈ XSN , κ0

SN (x) = v0
0(x) + ν(x − z0

0(x))) ensures
that the controlled uncertain dynamics given as in (V.2) (i.e.
x+ ∈ F (x) := {Ax + Bκ0

SN (x) + w : w ∈ W},) are well
behaved. Indeed, as in Remark 5, under Assumptions 1–
4, Propositions 4, Corollary 1, Lemma 3 and Theorem 1
hold true with obvious notational changes. However, since
the set of constraints in (VI.1) is more restrictive than
the set of constraints (III.4), the computationally beneficial
simplifications outlined here come at the expense of the
potential degradation of optimality, the speed of convergence
and the reduction of the size of the domain of the attraction
compared to the HTMPC method discussed in Section V.

VII. CONCLUDING REMARKS

We considered the robust model predictive control synthe-
sis problem for constrained linear discrete time systems and
proposed two simple homothetic tube model predictive con-
trol synthesis methods. Under rather mild assumptions it is
demonstrated that the proposed methods are computationally
efficient and induce strong system theoretic properties.
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1983.

[29] D. P. Bertsekas. Infinite–time reachability of state-space regions by
using feedback control. IEEE Transaction on Automatic Control,
17(5):604–613, 1972.

[30] F. Blanchini. Ultimate boundedness control for uncertain discrete-time
systems via set-induced Lyapunov functions.IEEE Transactions on
Automatic Control, 39(2):428–433, 1994.

[31] I. V. Kolmanovsky and E. G. Gilbert. Theory and computation of
disturbance invariant sets for discrete time linear systems.Mathe-
matical Problems in Engineering: Theory, Methods and Applications,
4:317–367, 1998.

[32] S. V. Rakovíc, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne.
Invariant approximations of the minimal robustly positively invariant
set. IEEE Transactions on Automatic Control, 50(3):406–410, 2005.

[33] S. V. Rakovíc. Robust Control of Constrained Discrete Time Systems:
Characterization and Implementation. PhD thesis, Imperial College
London, London, United Kingdom, 2005.

[34] S. V. Rakovíc, E. C. Kerrigan, D. Q. Mayne, and K. I. Kouramas. Op-
timized Robust Control Invariance for Linear Discrete-Time Systems:
Theoretical Foundations.Automatica, 43:831–841, 2007.

[35] Z. Artstein and S. V. Raković. Feedback and Invariance under
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