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Simple Homothetic Tube Model Predictive Control

S&a V Rakovi, Basil Kouvaritakis, Rolf Findeisen and Mark Cannon

Abstract— This paper considers the robust model predic- reported in [15]-[22] fall into the class of TMPC synthesis
tive control synthesis proble_m _for constraineq linear discrete_ methods, even though the tube terminology was not invoked.
time systems. The manuscript introduces a simple homothetic These approaches resulted in a reduction of the computa-

tube model predictive control synthesis method. The proposed .. . . .
method employs several novel features including: a more tional complexity and guaranteed desirable system theoretic

general parameterization of the state and control tubes based Properties.

on homothety and invariance; a more flexible form of the . . - .
terminal constraint set; and a relaxation of the dynamics of In this manuscript, we utilize the basic concepts of the

the sets that define the state and control tubes. Under rather general homothetic TMPC (HTMPC), recently developed
mild assumptions it is demonstrated that the proposed method in [23], and offer a simplified HTMPC synthesis for a more

is computationally efficient while it induces strong system structured setting. As in [23], we make use of the homothetic
theoretic properties. state and control tubes and the corresponding parameterized,
separable, control policy. The homothetic state and con-
trol tubes are sequences of sd€t¥;, = zr @ apStreny

Both classical and contemporary research have recognizadd {U, = vi @ apR}reny._, Which are parameterized
the need for a mathematical framework that deals withia fixed, but suitably chosen, basic shape sgtand R
control synthesis under constraints and uncertainty. Trend the sequences of the centers and diamétgrs.cn,, ,
computational complexity normally associated with dynami¢ay }ren, and {vg}reny_,- The associated control policy
programming [1]-[3] is certainly an issue with the con-{m(-, X}, Ux)}reny_, IS @ Sequence of control laws pa-
trol synthesis problem in the presence of constraints amdmeterized via a local control function(-) (which is a
uncertainty. Tube model predictive control (TMPC) [4]-[14]continuous and positively homogeneous function of the first
constitutes a sensible approximate solution methodology. Thiegree) and a sequence of the centers of the homothetic
deployment of tubes in robust model predictive control istate and control tubegey } ken, and {vx}reny_, (SO that
made possible through a parameterization of the contral (y, Xi, Ux) = vr, + v(y — zi) for all y € X;). The tube
policy that allows for the direct handling of uncertainty andbasic shape set§ and R and the local control function
its interaction with the system dynamics, constraints and(-) are designed off-line and are required to satisfy a
performance. In particular, in the case of linear systems witleasonable assumption, while the sequences of the centers
additive bounded uncertainty and convex constraint sets itéd diametersz; breny, {0k treny and {vgtreny_, are
possible to use separable control policies. These, in turdecision variables in the on-line optimization. We employ
allow for the separation of the evolution of the nominalglobally relaxed set—dynamics of the underlying state and
system (uncertainty free system) and the evolution of theontrol tubes which allows for less conservative on-line
local uncertain system. Then, the effect of the uncertaintyonstraint handling, performed only locally with respect to
can be accounted for by considering the exact reachalilee actual state—control tube process. An additional novelty
tubes centered around the trajectories of the nominal systeshour proposal is the construction of a suitable terminal con-
and invoking suitably modified constraints on the nominasdtraint set obtained by analyzing the local homothetic state
variables; at the same time it is possible to consider simpland control tube dynamics. The exact local set-dynamics
and computationally more tractable performance objectivesf the homothetic state and control tubes is simplified by
Early proposals employing this construction include [15]-employing vector-valued dynamics describing the evolution
[17] and were followed with research investigations alon@f the centers and the diameters of the outer-bounding homo-
similar lines [18]-[21] which adopt the same paradigm fothetic state and control tubes. For computational simplicity
the case of the parametric (multiplicative) uncertainty andie employ a linear/affine approximation of the dynamics of
for local robustification of nonlinear MPC. The approacheghe centers and diameters allowing, in turn, for the utilization

of the classical set invariance concepts albeit in a suitably
S. V. Rakove and R. Findeisen are with the Institute for Automa- |ifted space.
tion Engineering, Otto—von—Guericke—Unive#sjt Magdeburg, Germany

svr @asavr akovi c. com & rol f. findei sen@vgu. de From the computational point of view, our proposal carries

B. Kouvaritakis and M. Cannon are with the Depart- . . lexi h .
ment of Engineering Sciences, Oxford University, Oxford,& modest increase in complexity compared to the existing

UK basi | . kouvarit aki s@ng. ox. ac. uk & ‘methods [5], [7], [8], [11] but makes use of relaxed as-

mar k. cannon@ng. ox. ac. uk o sumptions. Our method guarantees, under mild assumptions,
S. V. Rakovt is the corresponding author. S. V. Raknié also an aca-

demic visitor at the Department of Engineering Sciences, Oxford Universit;%trong _SVStem theoretic properties of the controlled uncertain
Oxford, UK. dynamics.

. INTRODUCTION

ISBN 978-963-311-370-7 141



S. V. Rakovic et al. - Simple Homothetic Tube Model Predictive Control

Paper Structure
Sectionll provides preliminaries and the problem formu-

II. PRELIMINARIES & PROBLEM FORMULATION
We consider linear, time—invariant, discrete time systems,

lation. Section Il discusses simple homothetic tubes angiven by:

analyses their local behavior. Section IV introduces th
homothetic tube optimal control (HTOC) problem and com
ments on the corresponding topological properties. Section

discusses the homothetic tube model predictive control arX . . .
P Jaking values in the sé/ C R and matricesl and3 are of

establishes the relevant system theoretic properties. S
tion VI highlights a further simplification of the homothetic
tube optimal and model predictive control. Section VII close
the paper with a few concluding remarks.

Basic Nomenclature and Definitions

The sets of non-negative, positive integers and reals

are denoted byN, N,, and R, respectively, i.eN :
{0,1,2,...}, Ny :={1,2,...} andR; :={z € R : = >
0}. Given non—negative integetsc N andb € N such that

a < b we denoteN(,.;) := {a,a+1,...,b—1,b}; We write
Ny, for Njg,;). Given a matrixA € R™*", p(M) denotes the
largest absolute value of its eigenvalues.

Given two setsX’ ¢ R™ andY C R™ and a vector: € R",
the Minkowski set addition is defined by @Y := {z+y :

x € X, y € Y}, we write z @ X instead of{z} & X.
Given a setX and a real matrix}/ of compatible dimensions
(possibly a scalar) the image of under M is denoted by
MX = {Mz x € X}. Given a setZ C R""™ its
projection ontoR™ is denoted byProjectiong.(Z) = {x €
R™ : 3Jy € R™ such that(z,y) € Z}. A function f (-) :
R™ — R™ is said to be positively homogeneous of the firs
degree if f(ax) = af(x) for all « € Ry. If f(-) is a set—
valued function from, sayX into U, namely, its values are
subsets ot/, then its graph is the setraph(f) := {(x,y) :
xeX, ye f(x)}

A set X C R” is said to be a non-trivial set if it is a
proper, non—empty, subset &" and it is not a singleton
set. A setX C R" is a C—setif it is compact, convex,
and contains the origin. A seX C R" is a proper C—set,
or just a PC-set,if it is a C—set and contains the origin
in its (non—empty) interior. Apolyhedronis the (convex)

e ¥ = Az + Bu+w,

(I1.1)

\Qﬂwerex € R" is the current statey € R™ is the current
ntrol,z™ is the successor state, € is the disturbance
8 trol,z* is th tate, € R" is the disturb

compatible dimensions, i.¢A, B) € R™*™ x R"*™. Thus,
g at any timek € N the state ist, the applied control is
uy, and the disturbance is;, the state at timé + 1 satisfies
Trr1 = Az + Bug + wy. The system variables, v andw

are subject to hard constraints:

ze€X, uelUand weW. (1.2)

We work, throughout this note, under the following standing
assumptions and clarifying interpretation:

Assumption 1:The matrix pair(A4, B) € R™*™ x R*™
is stabilizable.

Assumption 2:The state and control constraint s&tsnd
U are PC—polytopic sets inR™ and R™, respectively, and
the disturbance constraint sétis a non-trivialC—polytopic
set inR™,

Interpretation 1: At any time instancé € N, the statec;
is known when the current control actien, is determined,
while the current disturbance; and future disturbances
wi+i, ¢ € Ny are not known and can take any arbitrary
,E/alueSw,Hi eW, ieN.

Central focus of this note is the efficient computation of
homothetic state and control tubes as well as associated
control policies. For any non-empty sets C R"™ and
R C R™, any functionv () : R™ — R™ and any positive
integer N € N4, the homothetic state tube is a sequence
of setsX y := { Xk }reny Where setsX, are given, for all
k € Ny, by:

Xk =z @ oS with (zg, ) € R” X Ry (1.3)

Likewise, the homothetic control tube is a sequence of sets

intersection of a finite number of open and/or closed halft;_; := {U,}ren,_, Where setd/;, are given, for allk €

spaces and polytopeis the closed and bounded polyhedron
The boundary, closure and interior of a sétare denoted,
respectively, bypoundary (X), closure(X) andinterior(X).
Given a setX C R™, convh(X) denotes its convex hull.
The Euclidean norm of a vectare R” is denoted byz|
while the corresponding unit norm ball is denoted &Y.
The functionsh(B%, -, -) and H(BY, -, -) defined, for any two
non—empty compact subsets®f say X andY’, by:

h(By,X,Y) :=min{a : X CY @aB}, acR;} and
H(By, X,Y) :=max{h(By, X,Y),h(B5,Y, X)},

denote the Hausdorff semi—distance and the Hausdorff d
tance (metric).

Ny_1, by:

Uy := vg @ apR with (vg, ) € R™ x Ry, (1.4)

and the corresponding—parameterized control policy is a
sequence of control lawB y_1 := {7 (-, Xk, Ur) breny_;
where control lawsr (-, X, Uy ) are such thatyk € Ny_q,:

(I1.5)

Clearly, for given setsS and R and a given function
v(-), the homothetic state and control tubeX,y and
Uy _1, and the corresponding-parameterized control pol-
iy IIy_, are fully determined by the sequences of the
centers of the homothetic state and control tubes, €

Yy € Xk, mk(y, Xi, Ug) := v +v(y — 21).

For typographical convenience, we distinguish row vector®" }cn, and {vy € R™}ieny_,,» and the sequence of

from column vectors only when needed and employ ththe diameters of the homothetic state and control tubes
same symbol for a variable and its vectorized form in {a; € R;}ren,. Consequently, we introduce a decision
the algebraic expressions. variabledy := (z0,...,2N,0Q0,...,QN,V0,...,UN—1) €
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RN(tm+l)+n+1 - Given anyz € X, we consider the A. Homothetic Tubes : Constituting Components
foIIo_wing set of constraints on the decision variallg or The first mild but simplifying assumption is concerned
equivalently on the homothetic state and control tuBes, \yith the desirable properties of the local control function
andUy_4, and the corresponding-parameterized control v (), state and control tube cross—section shape Setad

policy Iy R and an additional simplifying component, namely the
T € 20 ® oS, (I.ea) Nnominal successor state set:
Vk € Ny_1, ag >0, (l1.6b) Assumption 3: (i) The control functionv (-) : R"™ —
Vk € Ny_1, 21 @ anS C X, (I1.6¢) R™ is a continuous, positively homogeneous function
Vk € N RCU IL6d of the first degree.
€ By-1, v D aplt & U, (I1.6d) (i) The state tube cross—section shape%et a non—trivial
Vk € Ny_1, Vy € 21 & oS, C—polytopic set inR™ such that:
Ay + B(vg - W C S, (ll.6e
v+ Bl vy —2)) W E 21 @ ara S, (1160) {As+Bu(s) : seS}OWCS. (1)
Vk € Ny_1, Yy € 21, & S,
v(y — z1) € aiR, and, (r.efy (i) Th%conj[rol tltj)be cross—section shape &ets a C—set
in R™ given by:
(zn,an) € Gy, (11.69) 9 y
R :=convh({r(s) : s€ S}). (1n.2)

whereG; C R"*! is an appropriate terminal constraint set.

We introduce the set-valued mayy (-) given, forallz € X, (jy) The nominal successor state s&t is a C—set inR"
by: given by:
Dn(z):={dx : (II.6) holds}. (1.7)

For any givenz € X, the setDy(z) represents the set of ) ]

admissible decision variablasy (yielding, in turn, the set Ve observe that, under Assumption 3, for any givea R

of admissible homothetic state and control tubKs, and a@nd alls € a5 it holds thatu(s) € aR and As + Bu(s) €

Ux_1, and corresponding—parameterized control policies aS* due to homogeneity of (-) and theC—property of the

Ty_; via (I.3)=(I.5)). For anydy € RN +m+1)+n+1 et relevant sets. Clearly + B(v + v(y — 2z)) = Az + Bv +

a cost functionVyy (-) : RN(m+m+Dintl R be given A(yfz)JrBu(y—%) an_d conseq_uently_, under Assumption 3,

by: the set of constraints in (I1.6e) is equivalently expressed, for
all k e Ny_1, as:

ST :=convh({As + Bv(s) : s€S}). (ll.3)

Vv(dy) = > ek, apve) + Vilan,an),  (11.8)

keNm_1 Az, + B, © OJ;CS+ OW C zit1 D agy15, (1n.4)

where/ (-,-,-) : R*™™*1 L R, and Vi(y) R7+! —  while, in addition, the set of constraints in (11.6f) is satisfied
R, are the homothetic state—control tube pair stage arly construction. We point out that the constraints (Ill.4)
terminal cost functions. The finite horizon HTOC problerrspecify the global homothetic state tube set-dynamics and do
Py (z) of our interest is specified, for any € X, by: not necessarily require thak € Ny _1, zp11 = Azp + Bug
0 _ anday41 = ai = 1 as in earlier proposals [7].
Vn(z) := han{VN(dN) : dy € Dy(2)}, and, A further simplification is obtained by considering strictly
d° — inf Vv (d dyv €D 1.9 convex and quadra'Fic stage and terminal cost functions
n(@) = arginf{Viv(dy) © dy € Dn(2)} - (19) 0(-,--) andVy (-,-) given, for all (z,a,v) € R™m+1, py:
The main objectives of this manuscript are to:
(i) discuss the solvability of the finite horizon HTOC
problemPy (z), = € X for fixed, but suitably chosen and, for all(z, a) € R"*,
setsS and R and corresponding control functian(-) o _\2
as well as terminal constraint sét; and stage and Vilz,0) = 2 P.z + pala — @)%, (In-6)
terminal cost functiong (-,-,-) andV; (-,-); and where@. € R™" Q, = Q. >0, Q, € R™™, Q, =
(i) analyze the repetitive on—line applicgtion of the HTOCQ! >0, P, e R™*", P, = P! >0, q, € R; andp, € R;.
problem Py(z), = € X and outline the relevant The scalam € R, is specified below in Section I1I-B.

system theoretic properties of the corresponding simple
HTMPC. B. Homothetic Tubes : Simplified Local Tube Dynamics

U(z,0,0) = 2'Qu2 + qala — @)2 +0'Quv,  (IIL5)

. SIMPLE HOMOTHETIC TUBES Ogr second ;tep is to prpvide a stiabIe choice Qf the
terminal constraint se¥'; and invoke additional assumptions
on stage and terminal cost functiods.,-,-) and V; (-,-)
guaranteeing desirable invariance and stabilizing properties.
Before proceeding, let for anfg, v, @) € R” xR™ xR,

Our first step is to discuss sensible choice of the $ets
and R and corresponding control functian(-) as well as
stage and terminal cost functiodg-,-,-) and V¢ (-,-); the
outlined choice allows for a significant simplification of the
finite horizon HTOC problen®Py (z), x € X. X(z,a):=z@aS andU(v,a) := v ® aR. (1n.7)
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We consider the local control function, (iii) The terminal constraint setG; is a non-trivial C—
w5, X (z,a),U(Kz a)), given, for allz € X(z,a) = polytopic set inR™ xR and is a positively invariant set
z ® oS with (z,a) € R® x Ry, by: for the dynamics (111.10) subject to constraints (111.12),

i.e. it is such thatzy C G and:
mf(x, X (z,0),U(Kz,a)) = Kz+v(x—2), (ll.8)

. Y(z,a) € Gy, (A+ BK)z  a+p) € Gy. (111.14)
where K € R™*". We note that, for any giveriz,a) €

R® x Ry and allz € X(z,a) = z @ oS, it holds that (iv) The stage apd terminal cost functiorty-,-,-) and
mi(z, X (2,0),U(Kz,0)) = Kz + v(z — 2) € UKz a). V¢ (-,-) are given as in (lI.5) and (Ill.6) and:
Our primary aim, in this subsection, is to determine the / _p o< /
terminal setG; such that for all(z,«) € G it holds that: (A+BE)P.(A+BK) = P < =(Q: + K'Q.K),

andp, > (1 — \?)"lq,. (11.15)
X(z,0) =25 CX, (In.92) Now, we comment briefly on the consequences of the in-
UKz,0) = Kz& aR CU, and, (1.9b)  yoked assumptions. As already indicated, under Assump-
(A+BK)z®aSToWC 2zt @ats (1.9c)  tions 2 and 3, the sef in (111.12b) is a C—polytopic set

- ) o in R™ x R;. The conditions(¢) and (i) in Assumption 4
for some(z™, a™) € G. Motivated by simplicity and com- g;uarantee then the existence of the terminal constraint set
putational considerations, we enforce the condition (I11.9¢ + postulated in the conditioftii) in Assumption 4. In fact,

by setting: under above mentioned assumptions, a direct use of results
2 = (A+ BK)z andat = \a + p, (111.10) in [24], [25] impligs that the mgximal positivgly invarian';
set for the dynamics (111.10) subject to constraints (111.12) is
where: finitely determined and is a non-trivial'—polytopic set in
) R™ x R4. The conditiong(s) and (i) in Assumption 4 also
p:=min{n : WCnS, n>0}, and, (I.11a) imply that:
" :
A= Innin{n . ST Cns, n>0} (11.11b) SCX, RCUandS* @ WC 3, where,
S:=as, R:=aR, and,S™ :=as™. (111.16)

Note that, under Assumption 3, it is guaranteed that

[0,1] and A € [0, 1]. In order to ensure the satisfaction ofNote that setsS and R play a role ofthe equilibrium set
the conditions (Il1.9a) and (111.9b) we introduce the set ofpajr for the homothetic state and control tubes in analogy
constraints on théz, o) variable: with the equilibrium pair(0,0) € R™ x R™ relevant for the
deterministic case (i.e. in the absence of the uncertainty).
(2,0) € G where (In-122) The condition (iv) in Assumption 4 implies that there
G:={(z0a) : z0a5CX, KzoaRCUanda >0}.  gist scalarse; € (0,00), ¢ € (0,00), c3 € (0,00) and
(n.12b) ., ¢ (0,00) such that, for all(z,a) € Gy it holds that
It is important to note that, under Assumptions 2 and F1l(z,@) — (0,a)| < €(z,a,K2) < cf(z,0) — (0,a)],
the setG is a C—polytopic set inR™ x R,. We un- ¢l(z,@) = (0,8)] < Vi(z,0) < cif(z,0) — (0,a)| and
derline that the ordinary vector-valued dynamics specifielf (4 + BK)z, Aa + ) — Vi(z,0) < —{(z,a, Kz). In
in (11.10) define completely the local, outer—boundingther words, the terminal cost functidf (-,-) is a local
homothetic set-dynamics (see (I11.9c)) while the condikyapunov function for the dynamics (I11.10) relative to the
tions (I1.9a) and (111.9b) impose constraints on the o) €quilibrium point (0,a) and with the basin of attraction
dynamics via (I1.12). Consequently, the determination oP€ing equal to the positively invariant s6t. Summarizing
an appropriate terminal constraint sét;, ensuring that the discussion above we have:

the relations (|||9) are satisfied, is reduced to the problem Proposition 1: Suppose Assumptions 1-4 hold and con-
of the determination of a positively invariant set for thesider any sequencf(zy, ax)}ren generated, for alk € N,

dynamics (l11.10) subject to constraints (I11.12). by zxs1 = (A + BK)z, and a1 = Aay + p for any
We are now in position to invoke our second mild andarbitrary (29, ag) € G. Then:
simplifying assumption: (i) Forallk €N, (z,an) € Gy,
Assumption 4: (i) The matrix K € R™*" and scalar (i) Forallk €N, |(zx,x)—(0,@)| < a*b|(z0,0)—(0, @)
A in (I11.10) and are such that(4 + BK) < 1 and for some(a, b) € [0,1) x [0, 00), and
A€ 0,1). (iii) The pair(0,a) € R™® xR, is an exponentially stable at-
(i) The scalara € R, is given by: tractor for dynamics (111.10) with the basin of attraction

being equal to the set';.
a=1-X""n, (111.13) , . .
We close this section by summarizing relevant consequences

where A and i are given as in (I1l.10), and is such of our construction and Proposition 1:
that (0, @) € interior(G) where the seG is specified Remark 1:Under the conditions of Proposition 1, the set
in (111.12b). sequence$X (zy, ax) = 2P agS ey and{U (K zy, o) =
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Kz, @ apR}ren inducedfrom the corresponding sequenceus to establish structural properties of the graph of the set—

{(2k, ar) tren (Which is postulated in Proposition 1) are suc
that, for allk € N, it holds that:

X(zg, ) CXandU (K 2z, ar) C U,
and, in addition, for ally € X (zx, ay) it holds that:
Ay+ B(Kzp +v(y — 2)) ®W C X (241, ak+1), and,
Kz +v(y — zi) € U(K zi, a ).

Furthermore, the set sequenceSX(zy,ax)}reny and

{U(Kzk, ar) tren converge exponentially fast, with respect

to the Hausdorff distance, to the séfs= aS and R =

aR respectively. The corresponding Hausdorff distance
between setsX(z;,a)) and S as well as between sets

U(K z, ) and R are smaller or equal ta*b|(zq, o) —
(0,&)| and a*c|(K 29, 0) — (0,a)|, respectively, for some
scalars(a, b, c) € [0,1) x [0,00) x [0, 00).

Remark 2:The set of statest € X for which there
exists at least one pair of the set sequerCe$ézx, ax) }ren

and {U (K zx, ax) }ren €njoying the properties discussed in

Remark 1 and satisfying, in addition, thaf € X (zq, «p) is
implicitly characterized via the conditions € z & oS and
(z,a) € Gy. More precisely, this is the sét, referred to as
the 0—step homothetic tubes controllability set and given b

tx € z2P alS,
(z,0) € Gy}

Under our assumptions, the séfz, z, «) T € 2@
aS, (z,a) € Gy} is a non-trivial C—polytopic set in
R?" x R, and, consequently, the-step homothetic tubes
controllability setXj is itself a non—trivialC—polytopic set
in R™ such thatS C X},. We note that, by construction, for al
xo € Xp there exists at least one pdiry (o), ao(zg)) such
that o € zo(zo) B ao(zo)S and (zo(xo), ao(z0)) € Gy.
In turn, the corresponding sequenfle (xo), ax(xo)) tren
generated, for allk € N, by zpii(xo) (A +
BK)zp(zo) anday11(xo) = Aag(zo) + 1 induces the local
state and control homothetic tub&X (zx(xo), ak (o)) e
and {U (K zk(x0), ax(zo)) tken €njoying the properties dis-
cussed in Remark 1. Furthermore, in this case, the act
state and control sequencgs; }ren and{uy }ren generated
via ry11 = Axg + B(Kzi(xo) + v(zk — 2x(20))) + wy and
up = Kz (xo)+v(zr—21(x0)) for any arbitrary disturbance
sequencgwy, € W}y satisfy:

Xo = Projectiong. {(z, z, @)
(11.17)

xp € X(zk(x0), ax(zo)) anduy € U(Kzi(xo), ar (o))

and, in addition, converge to the sefsand R exponen-

hvalued mapDy (-) and the cost functiorVy (-) specified
in (1.7) and (11.8) respectively and, in turn, to ascertain
relevant topological properties of the value functigf (-)
and its optimizerd}; (-) given in (11.9). For any positive
integer N € N, the set¥y given by:

XN = {,T : 'DN(,T) 75 @}

is referred to as thé&/—step homothetic tubes controllability
set and is, in fact, the effective domain of the value function
VY (-) and its optimizeid?, (-). Let, for any integetV € N,

dy = (0,...,0,a,...,a,0,...,0) € RN@+mtltntl
The condition(iv) in Assumption 4 implies the following

relevant properties of the cost functidfy (-):

(IV.1)

Lemma 1:Suppose Assumption 4wv) holds. Then the
cost function Vy (*) RN(dmAltntl R, given
by (11.8), (111.5) and (ll1.6) is strictly convex and quadratic
function such that for aldy € RN(+m+D+n+l jt holds
that:

C5|dN—aN| SVN(dN> §06|dN—aN‘ (|V2)
for some scalars; € (0,00) andeg € (0, 00).

Let, for any positive integefV € N, the setDy be given

Yoy:

Dy :={(z,dy) :

We recall that, under Assumption 3, the constraints in (11.6f)
are satisfied by construction while the constraints in (ll.6e)
are equivalently expressed via the constraints in (Ill.4).
With this in mind, under Assumptions 2, 3 and 4, a direct
use of basic algebra of support functions [26], [27] yields
the fact that the seDy is a non-trivial C—polytopic set

in RN (ntm+D+n+1 (e in (2,dy)-Space). A concrete
algebraic details are easily obtained by utilizing analysis
provided in [23, Section 5].

(11.6) holds} (IV.3)

Lemma 2:Suppose Assumptions 1-4 hold. Then the set
Dy given by (IV.3) is a non-trivialC—polytopic set in
Rn+N(n+m+1)+n+1_

Silnce, by construction, it holds thatXy
Ligrojectioan Dy it follows that the set¥y is a non—trivial
C—polytopic set inR™ which, under our assumptions, is
such thatS C X, C Xy C X. Furthermore, we also have
that for all z € Xy, Dn(z) = {dn (z,dn) € Dy}

and consequently for any fixed € Xy the setDy(x) is

a polytopic set. Hence, under our assumptions, the finite
horizon HTOC problemPy () given in (11.9) is, for any
fixed z € Xy a strictly convex quadratic programming

tially fast ask — oo in the sense that the sequence$gplem. The basic results in parametric mathematical

{h(BgLa {xk}a g)}kEN and {h(Béna {uk}a R)}kEN converge
exponentially fast td) ask — oo.

IV. HOMOTHETIC TUBE OPTIMAL CONTROL
We utilize the analysis of Section Il and deploy cor

programming [28] allows us to establish relevant topological
properties of the value functiofy () and its optimizer
d% () given in (11.9):

Proposition 2: Suppose Assumptions 1-4 hold. Then:

responding simplifications in order to discuss the relevanii) The N—step homothetic tubes controllability s&f; is a

properties of the finite horizon HTOC problefy (z), x €

X specified in (11.9). Our simplifying assumptions allows

non-trivial C—polytopic set inR™ such thatS C Xy C
Xa
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(i) The value functionVy () : Xx — R, isa convex, % (-) : Xy — U is also a single-valued and continuous
piecewise quadratic and continuous function such thétinction. The simple homothetic tube model predictive con-
Vo € S, Vi(z) =0, and troller k% () : Xy — U induces the controlled, uncertain,
(iiiy The functiond? (-) : Ay — RN(#mibintl s a  dynamics given, for alk € Xy, by:
single—valued, piecewise affine and continuous function N 0
such thatvz € S, d(z) = dy. zT € F(z) :={Az+ Bry(z)+w : we W}, (V.2

The solution of the finite horizon HTOC problemand it ensures, by construction, that for alE Xy :
Py(xz), = € Xy allows for the construction of
the optimal simple homothetic state and control
tubes X% (z) and UY_,(z) as well as the

. . . 0
ﬁlpt'm?l Vh—parametrlzed di contro_l . pgl(;cy Iy - Any state sequencgry, }ren generated by (V.1) withyy €
%me y. Oe cororespon mg opt:)mlzer N(‘g) "~ Xy and the corresponding control actions sequenge r.cn
(20(2), ... 2y (2), a6 (2), ..., Ay (2), 05 (@), .., Uy 4 (2)) ith uj, = k9 () for eachk, for any admissible disturbance
induces the optimal simple homothetic optimal state an\gequence{wk}keN with wy, € W for eachk, however, lie
control tubesX((z) == {Xj\(x) = (x) & aR(@)S}rens iy the simple HTMPC state and control tubEEY () e

0 e 0 — 0 0
and Uy_,(z) := {U; (x)_ = vg(x) @ ak(?:)R}kENN—l and {U{) (x1,) }ren, respectively. Therefore, for alt € N it
as well as the optimal v—parametrized control holds that:

F(z) C X{(z) = 2} (z) ® o) (2)S C An, (V.3)

as evident from (11.6) and Proposition 3.

policy 1%, = {md(, XP(x),U(x))}reny , such
that, for all & € Ny_; and for all y € X} (z), rp € X (1) = 20(7x) @ af(2x)S € Xy C X and
(Y, XP(2), Up(2)) = v)(@) + v(y — z)(x)). The (V.4a)

optimal simple homothetic state and control tubes o 0 _ .0 0

X% (x) and UQ_,(z) and the corresponding optimal Fv(@e) € Up (@e) = vo(an) ® ap(zi)RE T (V.4D)
v—parametrized control polic{, _, satisfy the constraints  The limiting behavior of the simple HTMPC state and
specified in (I1.6). Proposition 1 and Remark 1 implycontrol tubes{X{(zy)}ren and{UQ(x1)}ren, respectively,
directly that the corresponding optimizet} (z) can be s, therefore, completely induced from the limiting be-

employed to construct a feasible decision variablgy) := havior of the sequence$zy(zx)}ren, {ad(zk)}ren and
(2(y), .-, 2 (W), &3(y), - .-, &% (), 08 (y), . . ., X1 (v)) {v8(zk)}ren. We examine the latter by utilizing the value
for anyy € X{(z) by setting for allk € Ny_;: function VY (1) : Xnx — R, as a Lyapunov function

to establish the exponential convergence of the sequences

2k(y) = 2141 (z) and 2y (y) = (A + BK)z (2), (20(x1) Yeers {08(z) been and {vd(z1) bren to the triplet

ar(y) = a4 () andan (y) = Ao () + p, (0,&,0) in a stable manner, i.e. tha§(zx) — 0, af(zx) —
and, for allk € Ny_o, 1 and vg(xk) — 0, ask — oo, exponentially fast and in
brly) = v2+1(a:) andoy_1(y) = K2%(2). (v.4) a stable fashion for any realized state sequeficg}ren

arising due to an admissible disturbance sequéngg rcn.
Indeed, the following result guarantees robust recursieroposition 2 establishes that the value functig(-) :
feasibility of the finite horizon HTOC problem x, — R, is a convex and continuous function, which
Pn(z), © € Xn: is, in addition, such that for al € S it holds that
Vi (z) = 0 or equivalently, that for all: € S it holds that

Proposition 3: Suppose Assumptions 1-4 hold. Then, for

(
all z € Xy and ally € X0(z) := 20(z) ® ad(z)S$, it holds (20 (¥): a5 (), v5(x)) = (0,a,0). Before proceeding, let

that y3(z) == (23(x), aY(x), v)(x)) andy := (0,a,0). (V.5)

A further relevant property of the value functidni? (-) is
stated next:

dn(y) € Dn(y), (IV.5)

Where&N(y) is specified in (1V.4), and, consequently, for all
x € Xy it holds thatX?(x) C Xy.
Proposition 4: Suppose Assumptions 1-4 hold. Then
V. HOMOTHETIC TUBE MPC there exists a scalar pafer,cs) € (0,00) x (0,00) such
We now examine the repetitive on—line application of theéhat for allz € Xy it holds that:

solution of the finite horizon HTOC problefy (z), « € X 0 ~ 0 0 _
in the context of the simple homothetic tube MPC. Namely, ¢7l¥0(z) =¥ < Vy(2) < cslyg(z) —y[ and  (V.6a)
we consider the simple homothetic tube model predictive Vat € F(z), Va(zT) — Vi(z) < —crlyd(z) — ¥,
controllerx%; (-) : Xy — U given by: (v.6b)

ki (2) = 7o (z, X (), Ug (x)) = v (z) + v(z — 20()).  where F (), y2(-) andy are given by (V.2) and (V.5),
(V.1)  respectively.

Under Assumptions 1-4, Proposition 3 establishes that the

optimizerd, (-) is single-valued and continuous implying,

in view of (V.1) and Assumption 3, that the control law

direct, but relevant, consequence of Proposition 4 is the
following fact:
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Corollary 1: SupposeAssumptions 1-4 hold. Then there performed by utilizing the standard convex optimization soft-
exists a scalar paifan,by) € (0,1) x (0,00) such that the ware (since the finite horizon (HTOC) probléPg; (=) given
inequalities in (1.9) is, for any fixedz € X a strictly convex quadratic

0 k0 programming problem). Finally, sincér € S, Vi (z) =0,
vk €N, Vn(zt) < ayV(wo) and (V.7a) d% (z) = dy and, consequentlyyz € S, s (z) = v(x)
Vk €N, |yd(zx) — y] < akbnlyd(zo) —¥|  (V.7b)  we note that on-line optimization can be terminated once

hold true for anyz, € Xy and any corresponding statethe stater, enters the sef.

sequencegzy }ren generated by (V.2). VI. YET SIMPLER HTMPC
We also need the following technical lemma: We outline a further plausible simplification of the simple

Lemma 3:Suppose Assumptions 1—4 hold. Then ther&'TMPC. Namely, the set of constraints in (Il.6e) or its
exists a scalar paifco, c10) € (0,00) x (0,00) such that equivalent reformulation (Ill.4) (under Assumption 3) can
for all 2 € Xy it holds that: be enforced as described in Section lll. Indeed, the set

- of constraints in (Ill.4) can be enforced by setting for all
colyo(z) —y| < H(B3, X((x), 8) < crolyo(x) —y] (V8) k€ Ny_u:

The sequence of our preliminary results now easily yields . . — 4, + Bu, andagi1 = Aoy, + 1, (VI.1)
our main result:
where A and i are given as in (111.10). In this case, we

Theorem 1:Suppose Assumptions 1-4 hold. Then: introduce the set:

(i) The N—step homothetic tubes controllability s&t; is a
robust positively invariant set for the system (V.2) andes = {(z;,v) : 2@ aS CX, v@aR CUanda > 0}.
constraint setX,U,W), i.e. for all z € Xy C X it (V1.2)
holds thatx% (z) € U and F(z) C Xn wheres () We note that, under Assumptions 2 and 3, the(gtis a
and F (-) are given by (V.1) and (V.2), respectively. ~C—polytopic set inR" x Ry x R™.

(i) There exists a scalar paifiy,by) € [0,1) x R, such In order to simplify further the simple HTMPC we
that, for allk € N,: utilize (VI.1) and (VI.2) and invoke the following set of

_ - _ constraints on the decision varialdg,:
H(By, X{(x), S) < akbnH(BY, X{(x0),5), and,

H(Bgn, Ug(xk),R) < &NBN, T € 20D OéoS, (VI3a)
hold ¢ I ({ } q Vk € Ny_q, Zk41 = Az + Bug, (V|.3b)
olds true for all state sequende:;}recny generate _

by (V.2) with arbitraryz, € Xy . Yk € Ny, @ = A + o, (V1.3¢)
(iii) The setS is robustly exponentially stable for the con- Vk € Ny—1, (2, o, vk) € Gs, and, (V1.3d)

trolled uncertain system (V.2) with the basin of attrac- (zn,an) € Gy. (VI1.3e)

tion being theN—step homothetic tubes controllabilit - . . .

sletXN.I g P e e Let, similarly as in Section 1V, the sdbs be given by:

Dgy = {(z,dy) : (VI.3) holds} (V1.4)

Remark 3:Theorem 1 establishes the stable and expQynger Assumptions 1-4, similarly as in Lemma 2, the set
nential convergence of the simple HTMPC state tubeESN is a non—trivial polytopic set ifR™+N(ntm+1)+n+1

{X9(x1)}ren to the setS as well as the exponential con- C I
vergence of the simple HTMPC control tubBsg (zy) e, gghi;}mphﬂed HTOC probleniPsy () is given, for allz €
to the setR. The established property is equivalent to =~
the stability of the setS and the exponential convergence V3y(z) :=inf{Vx(dy) : (z,dn) € Dsn}, and,
of the possible state trajectorigs:; }xen to the setS in 0 dw )
the sense that the sequen@gBy, {1}, S) }ren coOnverges dgy(2) = arghan{VN(dN) : (z,dy) € Dsn}- (VI5)
exponentially fast to0 in a stable manner. In addition,
the corresponding control actions sequedeg }rcn With
ur, = K% () converges exponentially fast to the getin
the sense that the sequerdéd By, {ux }, R) } ren CONvVerges Xsn := Projectiong. Dsn, (V1.6)
exponentially fast ta. B
Remark 4:As far as the implementation of the simplewhich is a non-trivialC—polytopic set inR™ such thatS C
HTMPC is concerned, the main computational burden is th& € Xsy € X.
off-line determination of the setS, R, St and Gf How- Remark 5:Under ASSUmptionS 1-4, all the results estab-
ever, a number of methods exists in the literature that can lghed in Section IV apply directly to the simplified HTOC
utilized to execute the necessary computations [3], [24], [25problemPsy (x) with minor notational changes. In particu-
[29]_[37] Once the off—line Computations are performedtar, Propositions 2 and 3 hold true with obvious notational
the on—line implementation of the simple HTMPC can bé&hanges.

Under Assumptions 1-4, the effective domain of the value
function V& (+) and its optimizerd , (+) is the set:
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Remark 6: The simplified homothetic tube model predic- [14]
tive controllers%, (1) : Xsy — U given as in (V.1) (i.e.
for all z € Xsn, £y (2) = v)(z) + v(z — 25(x))) ensures |4
that the controlled uncertain dynamics given as in (V.2) (i.e.
zt € F(z) = {Az + Br%y(z) +w : w € W}) are well
behaved. Indeed, as in Remark 5, under Assumptions _ILl—ﬁ]
4, Propositions 4, Corollary 1, Lemma 3 and Theorem 1
hold true with obvious notational changes. However, sincd’]
the set of constraints in (VI.1) is more restrictive than
the set of constraints (111.4), the computationally beneficiatis]
simplifications outlined here come at the expense of the
potential degradation of optimality, the speed of convergengey,
and the reduction of the size of the domain of the attraction
compared to the HTMPC method discussed in Section V. 20]

VII. CONCLUDING REMARKS

We considered the robust model predictive control synthéz—ll
sis problem for constrained linear discrete time systems and
proposed two simple homothetic tube model predictive cori22]
trol synthesis methods. Under rather mild assumptions it is
demonstrated that the proposed methods are computationagty
efficient and induce strong system theoretic properties.
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