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A model for generating synthetic
blood pressure waveform

Adam Mahdi, Gari D. Clifford, and Stephen J. Payne

Abstract—Objective: A new model capable of simulating many
important aspects of human arterial blood pressure (ABP) is
proposed. Methods: Both data-driven approach and physiological
principles have been applied to describe the time series of
diastolic, systolic, dicrotic notch and dicrotic peak pressure
points. Results: Major static and dynamic features of the model
can be prescribed by the user, including heart rate, mean sys-
tolic and diastolic pressure, and the corresponding physiological
control quantities, such as baroreflex sensitivity coefficient and
Windkessel time constant. Conclusion: A realistic ABP generator
can be used to compile a virtual database of signals reflecting in-
dividuals with different clinical conditions and signals containing
common artefacts. Significance: The ABP model permits to create
a platform to assess a wide range of biomedical signal processing
approaches and be used in conjunction with, e.g., Kalman filters
to improve the quality of ABP signals.

Index Terms—Synthetic ABP, systolic pressure, diastolic pres-
sure, baroreflex, heart rate variability

I. INTRODUCTION

ARTERIAL blood pressure (ABP) is one of the most
routinely used physiological signals in the assessment

of cardiovascular diseases. It is the result of an interaction
between the heart and arterial system. Thus the shape of the
ABP waveform (see Fig. 1) is a consequence of the changes in
aortic input impedance and modifications in cardiac function
[15].

Currently, many biomedical approaches use either a com-
plete ABP signal or some of its features, most commonly
diastolic and systolic pressure points. The latter can be ex-
tracted by robust signal processing techniques and used along
other signals to provide estimates for a variety of physiolog-
ical benchmarks, e.g. baroreflex sensitivity [23] and cerebral
autoregulation index [17], [18]. A realistic synthetic ABP gen-
erator could provide an intermediate framework for examining
those computational methods. In a controlled environment it
would be possible to test, even to quantify the influence of
different noise levels and sampling frequencies present in the
data [9].

In this paper a new physiology-based, data-driven ABP
model capable of generating many known characteristics of
human blood pressure waveforms is proposed. A number of
static and dynamic features of the model can be defined by
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the user a priori, including heart rate, mean systolic and
diastolic pressure, and the corresponding control quantities
such as baroreflex senstivity coefficient [4] and Windkessel
time constant [24]. The paper illustrates how the model can be
used to create an artificial database of ABP signals reflecting
individuals with different ABP characteristics, including wave-
forms containing both common artefacts and regular features
such as ectopic heartbeats.

The anonymized ABP data, used in this work, were mea-
sured noninvasively during a sit-to-stand manoeuvere using
a photoplethysmographic Finapres monitor (Ohmeda Moni-
toring Systems, Englewood, CO). The subject’s nondominant
hand was supported by a sling at the level of the right atrium
to eliminate hydrostatic pressure effects. The preparation and
recording methods have been described in detail in [10].

The paper is organized as follows. Section II provides
background information on short-term ABP regulation and
describes the main features of ABP. Section III introduces the
ABP model and includes the derivation of its components. The
results and simulations are presented in Section IV. Finally
the discussion of the model together with some possible
extensions of it are included in Section V.
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Fig. 1. An example of aortic blood pressure morphology during one cardiac
cycle with indicated diastolic Pd, systolic Ps and dicrotic notch Pn and
dicrotic peak Pv. Moreover, ∆tds ∆tdn and ∆tdv denote the time intervals
between the onset of ABP and the diastolic, dicrotic notch and dicrotic peak,
respectively. Finally ∆tdd is the period of the cardiac cycle defined as the
time between two consecutive diastolic pressure points.

II. ABP REGULATION

The primary role of the blood pressure is to provide the
driving force for blood flow to circulate in the vast network of
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blood vessels to supply adequate oxygenation, nutrient deliv-
ery, waste removal and perform other physiological functions.

It is believed that the main short term contributor to the
blood pressure control system is the baroreflex (or barorecep-
tor reflex), a negative feedback system which uses specialized
neurons called baroreceptors for signaling [6]. The barorecep-
tor neurons are stretch receptors, located in the aortic arch and
carotid sinuses, which terminate in the central nervous system.
Thus information is transmitted from the baroreceptors to the
central nervous system, where it is integrated, and sent further
via the slow sympathetic and fast parasympathetic pathways.
This leads to the release or inhibition of neurotransmitters
which modulate, among other things, the heart rate (or equiv-
alently the length of the cardiac cycle).

Beat-to-beat changes in blood pressure and heart rate in
resting humans are mainly due to respiration. Respiratory sinus
arrhythmia (RSA) is a phenomenon consisting of heart rate
variability in synchrony with respiration, manifesting itself
by the period of the cardiac cycle being shortened during
inspiration and prolonged during expiration [25]. The RSA
oscillation can be seen in a high frequency band of the
power spectrum as a peak in the frequency range around
0.15 − 0.35 Hz. There is also a second peak in the power
spectrum corresponding to a much lower frequency of about
0.1 Hz [10]. Although the exact origin of those 10 sec slow
rhythms, called Mayer waves, is still under debate, it is thought
to be due to the delay in the sympathetic feedback loop of the
baroreflex [5].

Changes in ABP are mainly due to the pumping action of
the heart and its various stages are closely linked with the
ABP morphology. The four main features of ABP, namely
diastolic, systolic, dicrotic notch and dicrotic peak points, will
be modelled and discussed both here and in the following
sections.

Diastolic pressure (tjd,P
j
d): At the end of the isovolumic

contraction phase, i.e. just before the opening of the aortic
valve, ABP is at its low value, called the diastolic pressure and
denoted here by P j

d , for jth cardiac cycle. Let ∆tjdd = tj+1
d −tjd

be the time interval between the occurrence of two consecutive
diastolic values P j

d and P j+1
d , respectively. The time series of

the diastolic time points can be written as:

tj+1
d = tjd + ∆tjdd, (1)

where j = 1, . . . , N , and N ∈ N is the number of cardiac
cycles. It is assumed that the jth cardiac cycle begins at the
time occurrence of P j+1

d ; and in the full N cardiac cycles,
there are N + 1 diastolic points.

Systolic pressure (tjs,P
j
s): The beginning of systole is marked

by the closure of the atrioventricular valve and the begin-
ning of the ventricular contraction. Following isovolumic
contraction the aortic valve opens and the arterial pressure
rises, reaching its peak P j

s , called the systolic pressure. Let
∆tjds = tjd − tjs be the time interval between the occurrence
of diastolic P j

d and systolic pressure P j
s within the jth cycle.

The time series of systolic time points can be written as:

tjs = tjd + ∆tjds. (2)

Dicrotic notch (tjn,P
j
n): During the ejection phase initiated

by the opening of the aortic valve the arterial ABP increases
reaching its peak at the systolic pressure, and then decreases
until the beginning of the isovolumic relaxation indicated
by the closure of the aortic valve. This marks the onset of
the secondary peak, called the dicrotic notch P j

n, which is
characterized by a brief increase of ABP. Let ∆tjdn = tjd − tjn
be the time interval between the occurrence of diastolic P j

d

and dicrotic notch P j
n pressure. The time series of dicrotic

notch time points can be expressed as:

tjn = tjd + ∆tjdn. (3)

Dicrotic peak (tjv,P
j
v): The increase of the ABP following the

onset of the dicrotic notch lasts until reaching some value Pj
v,

called the dicrotic peak, followed by a gradual decline until
reaching the next diastolic pressure Pj

d. Let ∆tjdv = tjd− tjv be
the time interval between the occurrence of diastolic pressure
and dicrotic peak. The time series of the dicrotic peaks time
points can be written as:

tjv = tjd + ∆tjdv. (4)

III. ABP MODEL

The ABP model is developed in three stages: first, a general
modelling framework is proposed; then the time series (1)-
(4) are generated via a data-driven approach; and finally the
corresponding time series of pressure values are described
using physiological principles. Related modelling approaches
for ECG were proposed in [14], [20], [21], [16].

Model framework. Consider a function BPj(t), which is an
approximation of the jth cardiac cycle waveform. In general,
it can be modelled as

BPj(t) =


f jds(t) t ∈ [tjd, t

j
s]

f jsn(t) t ∈ [tjs, t
j
n]

f jnv(t) t ∈ [tjn, t
j
v]

f jvd(t) t ∈ [tjv, t
j+1
d ]

(5)

where each of the components f jds(t), f jsn(t), f jnv(t) and
f jvd(t) describe the portion of ABP in the corresponding inter-
val indicated in (5) [see Sec. II]. There are many reasonable
choices for modelling the components in (5). In order to reflect
the two time-scale decay of the blood pressure [c.f. Fig. 1]
during the diastole, a piecewise-smooth approach is proposed,
see (15) in the Appendix.

The synthetic ABP is generated by combining N pressure
waveforms:

BP(t) =
{

BP1(t),BP2(t), . . . ,BPN (t)
}

(6)

where BPj(t) is defined in (5). The time series

{(tjd, P
j
d ), (tjs, P

j
s ), (tjn, P

j
n), (tjv, P

j
v )}, j = 1, . . . , N,

(7)
are the characteristic features (onsets and peaks) of the ABP
and are needed to generate each waveform (5) of the cardiac
cycle. Since the extraction of time series (7) is common
practice in biomedical signal processing, the synthetic ABP
can be easily compared to the real ABP signal.
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Fig. 2. Features of the ABP time series including cardiac cycle, heart rate
and its power spectrum for an elderly normotensive individual (left column
(a)-(c)) and the synthetic data generated by the model (right column (d)-(f)).
Note that the power spectral density plots show visible Mayer waves in the
low frequency band (0.05−0.15) and RSA waves in the high frequency band
(0.15− 0.5).

Modelling ABP time points. The time series of differences
between the onset of ABP and the occurrence of the next
diastolic, dicrotic notch, dicrotic peak and the following onset
of ABP, that is,

∆tjk, k ∈ {dd, ds, dn, dv}, (8)

can be used to calculate tjd, tjs, tjn and tjv with the help of
expressions (1)-(4). A data-driven approach to the generation
of (8) is presented below.

The value ∆tjdd is the period of the jth cardiac cycle from
which the instantaneous heart rate can simply be obtained as

HRj = 60/∆tjdd. (9)

The incorporation of the realistic heart rate variability,
in particular RSA and Mayer waves with the characteristic
peaks in the power spectrum at around 0.25 Hz and 0.1 Hz
respectively, will now be considered. Fig. 2(a-c) show a typical
plot of cardiac cycles, the corresponding instantaneous heart
rate and the power spectrum density (PSD), with visible peaks
in the low frequency (0.04 to 0.15 Hz) high frequency (0.15
to 0.40 Hz) bands (see Sec. II). By plotting PSD for ∆tjds,
∆tjdn, ∆tjdv and ∆tjdd extracted from different ABP signals,
we observed that they exhibit similar spectral content. Thus
the incorporation of Mayer and RSA waves into the time series
(8) is accomplished by the following unified approach:

∆tjk = ∆t̄k+αk

[
cm sin(2πfM j)+cR sin(2πfR j)

]
+εk Ejk ,

(10)
where ∆t̄k denotes the mean value of the signal, Ejk is a
random variable for additive noise, αk and εk are the scaling
constants corresponding to the periodic and noise components,
respectively; γM , γR are the amplitudes; and fM , fR are the
frequencies (in Hz) of the Mayer and RSA waves, respectively.
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Fig. 3. Time-series of the differences between the occurrence of diastolic
pressure the rest of the peaks of the ABP waveform.

Modelling ABP pressure points. Here we model the time
series of pressure values P j

d , P j
s , P j

n and P j
v , corresponding

to the time occurrences of those events at tjd, tjs, tjn and tjv
using well established physiological principles.

The fast parasympathetic (vagal) branch of the autonomic
control system exerts beat-to-beat effects on each period of the
cardiac cycle and therefore on the instantaneous heart rate (see
(9)). The first approximation of the action of the baroreflex
[3], [4], [13] on the cardiac pacemaker can be described as
∆tjdd = α0P

j
s +c1, where α0 is the baroreflex sensitivity coef-

ficient [23], [19], and c1 is the offset. We immediately obtain
the values for the systolic pressure P j

s = (∆tjdd − c1)/α0.
However, it might be more convenient to express the offset c1
in function of the more intuitive mean systolic pressure P s as
P j
s = P s + (∆tjdd−∆t̄dd)/α0. Thus the relationship between

the cardiac cycles and the systolic pressure with added noise
[23], [4] is

P j
s = P s + (∆tjdd −∆t̄dd)/α0 + γs Gjs , (11)

where Gjs is the random variable and γs is the scaling factor.
Let P j

d = P d + pjd and P j
s = P s + pjs, where pjd and pjs are

the variations around the mean value of the diastolic P d and
systolic P s pressure, respectively. By the application of the
Windkessel model [24] and an approximation derived in [4]
we obtain pjd = P d · pj−k

s · (1/P s − α0/τ). Thus the systolic
pressure points are

P j
d = P d + P d

[
pj−k
s · (1/P s − α0/τ)

]
, (12)

where τ is the Windkessel time constant.
There is an approximately linear relationship between the

pulse pressure ∆P j
ds = P j

s − P j
d and ∆P j

dn = P j
n − P j

d .
For dicrotic notch pressure, it can be formally written as
∆P j

dn ≈ an ∆P j
ds − bn, where an and bn are the scaling

factor and the shift. An analogous approximate equality holds
for the dicrotic peak, where the scaling and the shift factors
are now av and bv , respectively. We confirmed that this
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ds

and (a) ∆P j
dn and (b) ∆P j

dv . The constants used in the simulation are
(an, bn) = (0.5, 8) and (av , bv) = (0.5, 12).

relationship holds for most of the time-series extracted from
the steady-state portion of ABP measured in young and elderly
individuals (see an example in Fig. 4). Thus we calculate the
dicrotic notch pressure points as

P j
n = P j

d + ∆P j
dn ≈ P

j
d + an ∆P j

ds − bn. (13)

As before, there is an approximate expression ∆P j
dv ≈

av ∆P j
ds − bv , which can be used to obtain

P j
v = P j

d + ∆P j
dv ≈ P

j
d + av ∆P j

ds − bv, (14)

where again av and bv are the scaling factor and the shift
associated with the dicrotic peak.

IV. RESULTS

The results featured here are intended to show the new ABP
model’s capabilities to generate realistic ABP signals including
common ABP artefacts.

The ABP model parameters used here to generate the
synthetic blood pressure signal are given in Table I (time
points) and Table II (pressure points). The values have been
chosen to match real ABP data [blue solid line in Figs 2-
5], which was taken from an elderly normotensive individual
performing a sit-to-stand manoeuvre.

Fig. 2 shows the real and synthetically generated time
series of cardiac cycles ∆tjdd [Figs. 2(a,d)] together with the
corresponding instantaneous heart rate HRj [Figs. 2(b,e)]. The
PSD [Figs. 2(c,f)] display visible Mayer waves in the low
frequency band (0.05 − 0.15) and RSA waves in the high
frequency band (0.15− 0.5). The Lomb-Scargle periodogram
[11], [22], [8] for unevenly sampled time series was used to
estimate the power spectrum.

The time intervals ∆tjk in (8) are modelled here using a
data-driven approach described by equation (10). A binomially
distributed additive noise Edd ∼ B(N, πs), where N is the
number of trials of the Bernoulli process with probability of
success πs, has been added to each time series for a purely
empirical rationale. As a result [Figs. 3(d-f)] synthetically
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Fig. 5. Beat-to-beat fit of the synthetic ABP (red broken) waveform to the
real ABP (blue solid) from an elderly normotensive individual. (a) Comparison
of the two signals during steady-state period (sitting phase) and (b) during
orthostatic stress (sit-to-stand manoeuvre).

generated time series ∆tjds, ∆tjds, ∆tjds exhibit qualitatively
equivalent fluctuations as the ones extracted from the real ABP
signal [Figs. 3(a-c)]. In general ∆tjds is nearly constant, with
randomly and sparsely distributed deviation “spikes”. Thus the
periodic coefficient αds is set to zero here [see Tab. I].

The linear relationship between ∆P j
dn, ∆P j

dn and the pulse
pressure ∆P j

ds (see (13) and (14)) is illustrated in Fig. 4. The
dicrotic notch scaling-shift pair (an, bn) = (0.5, 8) has been
estimated by fitting an ∆P j

ds − bn to ∆P j
dn to the real ABP

signal [Fig. 4(a)]. The pair (av, bv) = (0.5, 12) [Fig. 4(b)] is
calculated similarly. Recall that the time series ∆P j

dn, ∆P j
dv

are used to compute the dicrotic notch P j
n and dicrotic peak

P j
v pressure points, respectively.
The piecewise smooth approach (15), aimed to approximate

an ABP waveform, is illustrated in Fig. 5. Beat-to-beat fit
of the model to the steady-state portion of ABP is shown in
Fig. 5(a). A plot of ABP during a single cardiac cycle, with
the visible two time-scale decrease of blood pressure, is shown
in the magnifying window. Qualitatively similar results are
obtained for a non-steady-state ABP signal [Fig. 5(b)], here
due to orthostatic stress induced by sit-to-stand manoeuvre.
The plots have been produced by extracting the time series
(7) from the real ABP signal a priori, by applying a peak
detection algorithm, and then used as input for the ABP model
(6).

Some of the capabilities of the new ABP model are illus-
trated in Fig. 6. The blood pressure generated for different
values of the mean arterial pressure (MAP) are shown in
Fig. 6 (a,b). Recall that MAP is calculated as MAP = P d +
(P s−P d), where P d and P s are the mean diastolic and mean
systolic pressure, respectively. The ABP signal generated for
HR=40 and HR=90 is given in Fig. 6 (c,d). The mean values
of heart rate can be expressed in terms of the mean cardiac
cycle ∆t̄dd via relationship (9). Finally, the synthetic ABP
generated for the baroreflex sensitivity α0 = 5 and α0 = 15
is shown in Fig. 6 (e,f).
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Fig. 6. Synthetic ABP generated by the model for the indicated values of: (a,b)
mean arterial pressure MAP; (c,d) heart rate HR; (e,f) baroreflex sensitivity
α0. Unless it has been indicated explicitly, the generic values of the parameters
of the model used here are given in Tables I and II.

The model is also capable of generating ABP with addi-
tional features randomly distributed in the signal, including
various types of artefacts. The reflection of ectopic heartbeats
in the real blood pressure [Fig. 7(a)] is characterized by the
extended drop of ABP. Similar effects can be obtained by
the ABP generator [Fig. 7(b)]. The real and synthetic ABP
with events affecting diastolic values of the individual cardiac
cycles are shown in Fig. 7(c,d).

V. DISCUSSION

The ABP model, introduced here, is capable of simulating
many important aspects of human blood pressure. The spectral
content of the time series of periods (of cardiac cycles) can be
selected by the user in advance [see (10)]. A number of other
dynamic features of the ABP model can also be prescribed by
changing its basic parameters [Table II]. This includes mean
systolic P s and diastolic pressure P d, and the corresponding
physiological control quantities, namely baroreflex senstivity
coefficient α0 and Windkessel time constant τ , respectively.

There are numerous advantages of having a realistic ABP
generator. It can, for example, serve as a tool to compile a
virtual database of blood pressure waveforms reflecting indi-
viduals under different clinical conditions. This can be used as
a platform for testing different biomedical signal processing
approaches (e.g. in the context of cerebral autoregulation [17],
[12]). Additional tests can be performed for various types
and levels of noise and sampling frequencies, which is an
important step in the validation process.

A limited application of the new model in compiling a
virtual ABP database is shown in Figs. 6, where regular
(i.e. artefacts-free) signals with different values of the mean
arterial pressure, heart rate and baroreflex sensitivity is plotted.
The database can easily be extended to include waveforms for
the desired values of diastolic pressure (12), systolic pressure
(11), dicrotic notch [see (13), (14)], signal morphology [see
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Fig. 7. Real and synthetic ABP with ectopic beats (a,b) and diastolic artefacts
(c,d).

(15)] and noise levels [see (10)]. It is also possible to incorpo-
rate into the synthetic ABP certain artefacts often encountered
in the real signal. An example of ectopic heartbeats and
the corruption of a single diastolic pressure point have been
illustrated in Fig. 7. However, many types of artefacts can also
be easily simulated in a similar manner [9].

Generators of physiological signals, including ECG and
ABP, have often been used in conjunction with Kalman filters
in order to track the “true” signal and limit the contribution of
noise [21], [20]. Typically this required the initial calibration
of the model by fitting it to the real physiological data [2]. In
the approach presented here the initial calibration is reduced to
finding only five data points. Due to the specific design of the
current ABP model, the filtering can be easily decoupled into
separate components responsible for each of the characteristic
features of the ABP (see (7)). This could permit the removal of
certain artefacts embedded in the signal such as the corruption
of a single peak, which typically cannot be detected by adap-
tive segmentation methods [7]. Kalman filter-based methods
associated, for example, only with systolic time series can be
used to correct this particular pressure point.

A limitation of the model is that equation (11) implies that
the phase between the cardiac cycles periods tjdd and systolic
pressure Ps is zero. It has previously been observed [4] that
this is approximately the case in the region of the respiratory
frequency around (0.20− 0.35 Hz). However, close to 0.1 Hz
the pressure leads the cardiac cycle periods by a substantial
amount (approximately π/3 radians, [4]). Thus equation (11)
cannot reflect the real data in the whole relevant physiological
frequency range.

VI. CONCLUSION

A new model capable of generating realistic ABP wave-
forms is proposed here. In future work the authors plan to use
it for compiling synthetic databases of blood pressure signals
reflecting individuals under different conditions in order to test
biomedical signal processing techniques applied in the context
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k dd ds dn dv
∆t̄k 0.97 0.13 0.36 0.421
αk 1.1 0 0.6 0.6
εk 0.015 0.015 0.005 0.007
Ek B(10, 0.07) B(10, 0.015) B(10, 0.1) B(10, 0.1)

TABLE I
MODEL PARAMETERS TO GENERATE ∆tjk , k ∈ {dd, ds, do, dv}.

Description Symbol Value Units
Mean systolic pres. P s 145.7 mmHg
Baroreflex sens. α0 7 ms/mmHg

Systolic noise [γs,Gjs ] [10, U(0, 1)] [-, mmHg]
Mean diastolic pres. P d 69 mmHg
Windkessel const. τ 1850 ms
Dicrotic notch pair [an, bn] [0.5, 12] [-, mmHg]
Dicrotic peak pair [av, bv] [0.5, 8] [-, mmHg]

TABLE II
MODEL PARAMETERS TO GENERATE Pk , k ∈ {d, s, n, v}.

of ABP and cerebral autoregulation [1]. It is also hoped that
the model will be helpful when coupled it with filtering tools
and artefact removal techniques.

APPENDIX A

The piecewise-smooth approach is proposed here to model
the blood pressure waveform (5) as follows:

fds(t) = (Ps−Pd)/(ts−td) · (t−td) + Pd

fsn(t) = (Pn−Ps)/(tn−ts) · t+Ps − (Pn−Ps)/(tn−ts)ts
fnv(t) = (Pv−Pn)/(tv−tn) · t+Pn−(Pv−Pn)/(tv−tn)tn

fvd(t) = Pd′ +(Pv−Pd′) · [(td′−t)/(td′−tv)] · F (t),
(15)

where the function F (t) is chosen so that the pressure during
the last phase of diastole (i.e. in [tv, td′ ]) exhibits a two time-
scale decay. For convenience the superscript indicating the jth
cardiac cycle has been omitted, and td′ denotes the end of the
cardiac cycle (equivalently the beginning of the next cardiac
cycle). The function F (t) is modelled as

F (t) = cd exp[m1(td′ − tv)] + (1− cd) exp[m2(td′ − tv)],

where cd ∈ [0, 1] and m1,m2 ∈ {1, . . . , 10} are the parame-
ters shaping the decay function. Here cd = 0.5, m1 = 1 and
m2 = 3. Note that F (tv) = 1 and thus fpd′(tv) = Pv and
fpd′(td′) = Pd′ .
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