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Abstract

The diagnosis of cardiovascular diseases such as atrial
fibrillation (AF) is a lengthy and expensive procedure that
often requires visual inspection of ECG signals by ex-
perts. In order to improve patient management and reduce
healthcare costs, automated detection of these pathologies
is of utmost importance.

In this study, we classify short segments of ECG into
four classes (AF, normal, other rhythms or noise) as part of
the Physionet/Computing in Cardiology Challenge 2017.
We compare a state-of-the-art feature-based classifier with
a convolutional neural network approach. Both methods
were trained using the challenge data, supplemented with
an additional database derived from Physionet.

The feature-based classifier obtained an F1 score of
72.0% on the training set (5-fold cross-validation), and
79% on the hidden test set. Similarly, the convolutional
neural network scored 72.1% on the augmented database
and 83% on the test set. The latter method resulted on a
final score of 79% at the competition. Developed routines
and pre-trained models are freely available under a GNU
GPLv3 license.

1. Introduction

Electrocardiogram (ECG) recording is an important
clinical tool for detecting cardiac disorders. A typical
ECG recording lasts from a few seconds (e.g. during a
cardiologist visit) to multiple days using a Holter device.
The number and position of lead electrodes also varies
from one or two channels (on a wearable or smartphone
device) to greater numbers (if a more detailed depiction
of the heart activity is needed). Despite ECG being a
well-established method, the classification of arrhythmic
or ectopic episodes is generally performed in a manual
or semi-automated manner by cardiologists, who review
each signal in the search for abnormalities. The process
is therefore expensive, prone to mistakes, and suffers from
inter- and intra-rater variability. Between the pathologies

screened, atrial fibrillation (AF) is the most prevalent car-
diac arrhythmia and can occur in sustained or intermittent
episodes. These two states make the diagnosis of AF chal-
lenging, particularly when only a few seconds of recording
is available.

A number of approaches for automated classification of
normal/abnormal ECG signals have been proposed. Typi-
cally, they use various hand-engineered features including
heart rate variability (HRV) metrics [1] and morphologi-
cal characteristics (e.g. P-wave absence) [2]. Deep learn-
ing methods are increasingly popular due to their ability
to automatically learn features at multiple levels of ab-
straction (i.e. layers). This allows the system to learn
complex functions by mapping the input to the output di-
rectly from data without depending on hand-engineered
features [3]. Those methods have been successfully ap-
plied in the field of computer vision, however applications
to 1-dimensional biomedical signals (e.g. ECG) have just
started to emerge in the literature. For example, deep neu-
ral networks have been used in ECG anomaly detection on
Physionet databases [4, 5]. Recently, Rajpurkar et al. [6]
proposed a much deeper network, which discriminated 12
types of heart conditions, normal rhythm and noisy record-
ings. Their work was validated using a large dataset of
64,121 ECG signals from 29,163 patients.

In this study, we benchmark a feature-based and a deep
learning approach in classifying short ECG segments as
proposed by the Physionet/Computing in Cardiology Chal-
lenge 2017 [7] (henceforth referred to as “Challenge”).

2. Materials

The training dataset for the Challenge (denoted TRAIN-
DB) consisted of 8,528 short single lead ECG segments,
as described in [7]. In order to improve the training of
classifiers we reduced the class imbalance in the TRAIN-
DB by increasing the number of AF and noisy recordings.
The resulting dataset we denote by AUG-DB, see Figure 1.
For this purpose, we carefully selected 2,000 10-s ECG
segments with AF from different Physionet databases [8]
(INCART-DB, LTAFDB, AFDB). The number of noisy
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Figure 1. Class distribution for TRAIN-DB and AUG-DB.
Classes include atrial fibrillation (A), normal rhythm (N),
other rhythm (O), and noisy recording (∼).

recordings was increased by time-reversing the existing
284 noisy segments and simulating 2,000 additional ones
(using the FECGSYN toolbox [9]). The test set (TEST-
DB) consisted of a subset of the 3,658 hidden records [7].

3. Methods

Now we briefly describe the feature-based and deep
learning approaches used in the Challenge.

3.1. Feature-based approach

The feature-based approach was implemented in
Matlab R© with the WFDB Toolbox [8, 10] as the only de-
pendency. Each ECG segment was preprocessed using
10th order bandpass Butterworth filters with cut-off fre-
quencies of 5Hz and 45Hz (narrow band) and 1Hz to 100
Hz (wide band). We used four well-known QRS detectors
to each narrow-band preprocessed ECG: gqrs [10], Pan-
Tompkins (jqrs) [11], maxima search [12], and matched
filtering. To generate a reliable consensus of QRS de-
tection, we applied a voting system based on kernel den-
sity estimation, from which we extracted features for atrial
and ventricular activity using HRV metrics and signal-
quality indices. Following [13], we calculated classical
time domain, frequency domain, and non-linear HRV met-
rics as well as new metrics based on clustering of beats
on Poincaré plots. We obtained a range of signal-quality
indices [14, 15], including the bSQI , which compares the
outputs of multiple QRS detectors with agreement indi-
cating high quality signals. In addition to features based
on QRS detections, beats were delineated from wide band
preprocessed signals using the ecgpuwave [16] for ex-
tracting morphological features such as P-wave power and
QT-interval. A total of 169 features were obtained and
applied on a supervised learning strategy. We combined
an ensemble of bagged trees (50 trees) and a multilayer
perceptron (2-layer, 10 hidden neurons, feed-forward) in a
consensus classifier by averaging the probabilities for each
class in each record.

To account for the varying length of the signals, in a
second approach, we divided the preprocessed ECG sig-
nals into 10-second segments with 50% overlap. First, we
computed the features based on each segment (along each
recording), and then computed the summary statistics such
as mean standard deviation and min/max (for each feature),
which were subsequently used in combination with bagged
trees and neural network.

3.2. Deep learning approach

Traditional deep supervised learning techniques include
Convolutional and Recurrent Neural Networks (in short
CNN and RNNs, respectively). CNNs are particularly
prevalent in the field of computer vision due to proper-
ties such as translation invariance, parameter sharing and
sparse connectivity, which make their training computa-
tionally efficient [17]. One drawback of CNNs is the fact
they operate on grid-like structures (e.g. images or fixed
segment windows). A recent development that facilitated
training and improved accuracy of deeper CNNs was the
advent of Residual Networks (ResNet) [18]. ResNets use
shortcut identity connections, to make feature maps from
shallower layers available at later stages, which has been
compared to a feed-forward long-short term memory (a
subclass of RNNs) [19] without gates [20]. Recently, Ra-
jpurkar et al. [6] applied a 34-layer ResNet to classify 30-s
single lead ECGs segments into 14 different classes. This
method accepts as an input a raw ECG segments and out-
puts the classifications without requiring hand-engineered
features.

Here, we use the ResNet approach by [6, 18] on both
TRAIN-DB and AUG-DB. As input we provided zero
mean unit variance raw ECG signals. Since CNNs require
a fixed window size, we truncated these segments to the
first minute. We also tested other variations of the pro-
posed model by changing the depth, reducing the number
of filters at each layer, and padding the signals to 30 s. In
an attempt to provide more immediate information to the
network we used a simple ECG template subtraction algo-
rithm (developed in Matlab [9]) for cancelling QRS-T ac-
tivity from ECG segments. The resulting residual together
with original signals are then provided to the network. The
proposed deep learning models were developed in Python
3.5 using Keras framework with Tensorflow as backend.

3.3. Experiments

We used a 5-fold cross-validation procedure to assess
the performance of the proposed methods. To avoid that
the algorithmic performance is evaluated on the artificial
data, the training/validation split was done as follows.
First, the 5-folds were split on the TRAIN-DB, one fold
being held as the validation split. Second, the whole AUG-
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Table 1. Performance of the approaches for the Challenge, variations are specified by number of convolutional filters per
layer (CF), number of layers (L) and segment length (SEG). Unless stated otherwise, ResNets follow the model in [6].
Abreviations: normal rhythm (N), atrial fibrillation (A), other rhythm (O), noisy segment (∼) and not available (n.a.).

Description Validation on training (%) Results for TEST-DB (%)
Set N A O ∼ Total N A O Total

Feature-based approach (no segmentation) TRAIN-DB 90.6 72.1 74.8 50.5 72.0 89 80 69 79
Feature-based approach (10 s segments) TRAIN-DB 89.9 76.8 73.7 66.0 76.6 90 77 68 78
ResNet (original 34 L, 30s SEG) AUG-DB 90.2 65.7 69.8 64.0 72.4 n.a. n.a. n.a. n.a.
ResNet (16 CF, 60s SEG) TRAIN-DB 82.6 46.6 60.0 60.2 62.4 92 70 75 79
ResNet (16 CF, 60s SEG) AUG-DB 88.5 67.7 66.6 65.6 72.1 93 78 78 83
ResNet (16 CF, 34 L, 30s SEG, no noise) AUG-DB 89.6 65.3 69.1 0.0 56.0 71 41 43 52
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Figure 2. Correlations amongst proposed features us-
ing Kendall’s τb coefficient. Blank spaces represent non-
significant ( p > 0.05) or weak correlations ( |τb| < 0.2).

DB was added to the training split. Following the Chal-
lenge scoring system, results are reported as F1-score for
each individual class and mean F1 across all classes.

4. Results

The results of cross-validation on the TRAIN-DB (or
AUG-DB) as well as official test results (on TEST-DB)
are shown in Table 1. Figure 2 illustrates the correlations
among the 169 features used. Our best performing ResNet
approach for the TEST-DB was chosen as final submission
resulting on a final score of F1 = 79 %.

5. Discussion

The calculation of hand-engineered ECG features is
heavily influenced by the choice of preprocessing steps in-
cluding the application of low and high-pass filters, QRS
detectors and potential adjustments for ectopic or missed

beats. All these factors affect the derived HRV met-
rics. Similarly, morphological features require ECG de-
lineation, which is also prone to errors. Although we com-
puted a wide range of features, many of those are corre-
lated with each other (see Figure 2).

Deep learning methods benefited from the augmented
dataset. Results for ResNet with 16 convolutional fil-
ters per layer increased from 62.4% to 72.1% on cross-
validation (see Table 1). However, since our augmented
dataset might be labelled inconsistently with the original
training set, further inclusion of augmented data did not
improve the results. Feature-based classifiers did not ben-
efit from augmenting the training set (results not shown).
In order to comply with the 50 MB entry size limit of
the Challenge, we modified the model from [6] by re-
ducing the number of filters at each layer to 16, reducing
the number of parameters approximately from 13.5 to 1.5
million. Table 1 shows that despite lower accuracy dur-
ing training, deep learning methods scored higher on the
TEST-DB compared to the feature-based approach. The
removal of 10 layers of the best performing method on
the Challenge leads to a decrease the validation results to
F1 = 69.4%, whereas the addition of 10 layers improves
it to F1 = 75.6%. The inclusion of atrial activity residu-
als improved the performance to F1 = 74.4%. Our final
score using on the Challenge was 4% worse than the first
place, which indicates that training and/or model can be
improved.

The advantage of deep learning methods is that they
do not require hand-engineered features and perform non-
linear operations on a higher level of abstraction. Addi-
tionally, the availability of pre-trained models facilitates
the reproduction of those approaches, which can then be
fine-tuned to other databases/scenarios. Drawback of such
methods is that they are computationally expensive and re-
quire large datasets for training. Due to the multiple lay-
ers of abstraction, the interpretation of the operations per-
formed by the network during classification is yet to be
achieved. The model used in this study (proposed by Ra-
jpurkar et al. [6]) relies on Residual Network architecture
for ECG classification. Despite the interesting application
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and large dataset used, the manuscript lacks details on how
the cross validation was performed and how the data was
exactly annotated. Moreover, it fails to justify some of
their model choices e.g. network architecture, weight ini-
tialisation function, number of layers and filter. Further
works should benchmark how influential these parameters
are for the given task.

The reported disagreement among experts in annotating
the data ([7]) was possibly due to the variable length of
segments. This lead to an inconsistent noise classification
and annotating the normal segments as “others” because
of a single ectopic beat. Our results suggested that the
low number of noisy segments (see Figure 1) made the
data augmentation necessary. Due to the problems with
the annotation of noisy segments, the results for this class
were omitted during the Challenge’s test phase. By ig-
noring noisy segments during training, we noticed a clear
decrease in performance (“no noise” in Table 1). Surpris-
ingly, the final competition ranking differed significantly
from the ranking during the test phase. This suggests that
the split for the TEST-DB was sub-optimal and not repre-
sentative of the method’s performance.

6. Conclusion

We have presented a comparison of a feature-based and
a deep learning approach to classify rhythms from short
ECG segments. Our results show that deep learning al-
gorithms are capable of classifying short ECG recordings.
The algorithms and models are available open-source un-
der a GNU GPLv3 license at https://github.com/
fernandoandreotti/cinc-challenge2017.
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