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ABSTRACT 

Cerebral autoregulation refers to the physiological process that maintains stable cerebral blood 

flow during changes in arterial blood pressure. In this study, we propose a simple, nonlinear 

quantitative model with only four parameters that can predict cerebral blood flow velocity as a 

function of arterial blood pressure. The model was motivated by the viscoelastic-like behavior 

observed in the data collected during a postural change from sitting to standing. Qualitative 

testing of the model involved analysis of the dynamic responses to step-changes in pressure both 

within and outside the autoregulatory range, while quantitative testing was used to show that the 

model can fit dynamics observed in data measured from a healthy young and a healthy elderly 

subject. The latter involved analysis of structural and practical identifiability, sensitivity 

analysis, and parameter estimation. Results showed that the model is able to reproduce observed 

overshoot and adaptation and predict the different responses in the healthy young and the 

healthy elderly subject. For the healthy young subject, the overshoot was significantly more 

pronounced than for the elderly subject, but the recovery time was longer for the young subject. 

These differences resulted in different parameter values estimated using the two datasets.   
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INTRODUCTION 

The brain accounts for only two percent of human body mass, yet approximately one fifth of the 

body's blood supply goes to the brain. Cerebral autoregulation (CA) is a term used to describe 

the brain's ability to regulate cerebral blood flow (CBF) over a wide range of blood pressures.  

The system works by altering the local environment, keeping the flow at homeostasis under 

changes in arterial blood pressure (ABP). The flow of blood to the brain is modulated both by 

local and global mechanisms including myogenic, metabolic, shear-dependent, and neurovascu-

lar regulation. These four regulatory responses act collectively to maintain an approximately 

constant CBF and oxygen supply amidst ABP changes. Myogenic regulation (33) operates by 

changing electrical properties of stretch-activated ion channels in arteriolar smooth muscle cells. 

Metabolic regulation (31) refers to the negative feedback system operating to balance metabolic 

demand with oxygen delivery. This response is driven by the imbalance between cerebral meta-

bolism (demand) and oxygen delivery through CBF (supply) and acts by means of a vasoactive 

substance. Shear-stress regulation (35) responds to changes in wall stress imposed by changes in 

blood pressure and is coupled with the myogenic response. This mechanism facilitates the 

endothelium producing nitric oxide due to the viscous friction of blood flow along the vessel 

wall. Lastly, the neurogenic component of autoregulation describes the interaction between 

intracranial nerves and cerebral vessels (12, 33). While it has been established that these four CA 

mechanisms operate on different time-scales (4, 15, 32, 38) that are larger than a heart beat, the 

exact physiological mechanisms underlying observed dynamics are still under debate. 

Generally CA is studied from two perspectives: static and dynamic. Static CA refers to 

the net effect a change in ABP has on CBF. It is typically illustrated by the CA curve, which is 

an s-shaped curve (see Figure 3) showing the range of ABP (approximately 50 to 150 mmHg) 

over which CBF is maintained.  Outside this range CBF will change proportionally with changes 

in ABP. Dynamic CA refers to the time-varying response to the ABP perturbation. This is typi-

cally studied by analyzing adaptation following a step-increase in ABP. In clinical studies, an 

ABP change is typically induced by subjecting the patient to either postural or respiratory chal-

lenges such as head-up tilt, sit-to-stand, or CO2 rebreathing (43). 

In this study, we assess CA using data measured during postural change from sitting to 

standing. Upon standing, in the upper body ABP drops due to gravitational pooling, while in the 

lower extremities ABP increases. This leads to a decrease in cardiac output and therefore a 
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reduced flow to the brain. In response to this stimulus the autonomic and autoregulatory systems 

are activated. Baroreflex regulation restores blood pressure by regulating heart rate, cardiac 

contractility, and vascular tone, while CA responds via vasodilatation restoring blood flow to the 

brain.  

Simultaneous recordings of ABP and cerebral blood flow velocity (CBFV) allow resear-

chers to study dynamic adaptation. Figure 1 shows sample data from a sit-to-stand experiment.  

We note that a drop in ABP leads to an immediate drop in CBFV, which is followed by a 

recovery, overshoot and adaptation. This type of behavior resembles stress-strain responses ob-

served in viscoelastic materials (10), including large arteries (42).  This study develops a CA 

model that can predict both static and dynamic responses to changes in ABP. For changes in 

ABP within the CA range, the model adapts to a baseline value of CBFV, while outside the CA 

range changes in CBFV are proportional to ABP. 

Numerous authors have tried to explain both static and dynamic aspects of CA. A variety 

of physiologically-based models have been proposed (32, 35, 40, 41). Ursino and Lodi used two-

element (40) and three-element (39, 41) Windkessel models to predict dynamic autoregulatory 

responses to changes in cerebral perfusion pressure, arterial CO2 pressure, and arterial 

compliance. Payne (32) proposed a lumped parameter model that relates ABP, partial CO2 

arterial pressure, and neural stimulation to predict CBF and the change in hemoglobin. Spronck 

et al. (35) developed a lumped parameter model that predicts static CA regulation including all 

four autoregulatory mechanisms. A common theme in these physiological models is that they 

include numerous parameters and were primarily developed to predict qualitative features rather 

than to fit clinical data. The physiologically-based models can be contrasted with statistical 

black-box approaches (7, 30). This group of methods includes the autoregulation index (ARI) 

(36), autoregressive-moving average (ARMA), autoregressive exogenous (ARX) (18, 19), and 

transfer function analysis (11, 29, 46).  Although most of these methods can be used to analyze 

clinical data, they are rather limited in explaining physiological mechanisms underlying CA. 

This study combines the two modeling methodologies deriving a simple nonlinear model 

that uses measured values of ABP as an input to quantitatively predict CBFV dynamics during 

postural change from sitting to standing. The model is motivated by the analysis of time-varying 

dynamics observed in the filtered and pulsatile measurements of ABP and CBFV. This analysis 

showed that CBFV responds nonlinearly to changes in ABP. We found it important to develop a 
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model that incorporates the CA curve in order to distinguish between fluctuations in ABP. 

Perturbations of ABP within the CA range enable CBFV to return to baseline, whereas 

perturbations outside this range causes CBFV to follow changes in ABP. The objective of the 

present study is to derive a model motivated by physiology while still keeping it as simple as 

possible. The latter is important since it facilitates model-based analysis of large and patient-

specific ABP/CBFV datasets by comparing the estimated parameters. This type of analysis 

allows parameters to play the role of autoregulatory indices, which can be compared within and 

between groups of subjects. In this study, the model is validated using ABP/CBFV data from a 

representative healthy young and healthy elderly subject, but future studies aim at obtaining 

model parameters using data from a larger cohort of subjects. More specifically, the present 

study addresses data analysis, model development, and shows how stability analysis, as well as 

structural and practical parameter identifiability methods can be used to demonstrate that the 

model displays correct qualitative and quantitative behavior. Finally parameter estimation is used 

to show that the model can fit CBFV measurements recorded during a postural change from sit-

ting to standing. 

 

MATERIALS AND METHODS 

Data.  The sit-to-stand anonymized patient data analyzed in this paper were used with permis-

sion from Dr. Lipsitz, Hebrew SeniorLife, Boston, MA. The Institutional Review Board at 

Hebrew SeniorLife approved the study and all subjects provided written informed consent (17). 

Beat-to-beat arterial pressure was measured noninvasively in the middle cerebral artery (MCA) 

using a photoplethysmographic Finapres monitor (Ohmeda Monitoring Systems, Englewood, 

CO). The subject’s nondominant hand was supported by a sling at the level of the right atrium to 

eliminate hydrostatic pressure effects. In order to minimize the effects of respiration, subjects 

were required to breathe at a rate of 15 breaths per minute with the assistance of tape-recorded 

cues. Test subjects also underwent Doppler ultrasonography by a trained technician in order to 

measure the changes in blood flow velocity within the MCA due to active postural changes. The 

2 MHz probe of a portable Doppler system (MultiDop X4, DWL-Transcranial Doppler Systems 

Inc., Sterling, VA) was strapped over the temporal bone and locked in position with a Mueller-

Moll probe fixation device to image the MCA. The MCA blood flow velocity was identified 

according to the criteria of Aaslid (1) and recorded at a depth of approximately 50-65 mm. The 
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blood flow velocity waveform, derived from a Fourier analysis of the Doppler frequency signal 

and continuous pressure signal, was digitized at 250 Hz and stored in the computer for later 

analysis. 

Data processing.  To inspect the trends observed in the pulsatile ABP and CBFV data, a simple 

filtering procedure was applied to both signals. The filtered signals pa  and Vmca  are computed as 

weighted averages, where the present value is weighted higher than the past, according to the ex-

pression 

(1.1) x =α x(s)e−α (t−s ) ds,
−∞

t

∫   

where x ∈ {pa
d,Vmca

d }  is the pulsatile data and α  (1/s)  represents the weighing parameter.  

Alternatively, differentiating equation (1.1) we obtain 

(1.2) dx
dt

=α x − x( ).  

In this study α = 1 for both subjects. We note that the bigger value of 𝛼, the smoother the data is 

at the cost of delaying arrival of peaks and troughs. Figure 1 shows the pulsatile and filtered ABP 

and CBFV data for a healthy young and a healthy elderly subject. A zoom (before postural 

change) of the data from the elderly subject is included to show inter-beat ABP and CBFV 

dynamics. The black vertical lines indicate when the subjects undergo a postural change from 

sitting to standing, which causes the pooling of blood in the legs. As a result, the ABP in the 

upper body drops, while lower body ABP (not measured) increases. In response, baroreflex and 

autoregulation are activated, restoring ABP and CBFV to baseline levels. The young subject 

displays a larger overshoot before recovery than the elderly one; and the recovery time is longer 

in the elderly than in the young subject.  

Model formulation.  The proposed model is partially based on the trends observed in the filtered 

ABP/CBFV (input/output) data. The drop in ABP during a postural change from sitting to 

standing is a consequence of the blood volume redistribution triggered by gravitational forcing. 

Without active control systems, ABP would remain low, leading to reduced flow to the brain.  

While the autonomic system is activated to restore blood pressure, CA maintains CBF relatively 

constant. The latter is facilitated by vessel dilatation/constriction.  To understand how the body 

adapts to these changes, it is necessary to develop a dynamic model. The data demonstrate that 
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the recovery time (the elapsed time between the minimum CBFV and the time at which CBFV 

returns to its baseline value) is longer in the elderly than in the young individual. For the young 

subject the recovery time is approximately 12 seconds, while it is 15 seconds for the elderly 

subject (see Figure 1). Conversely, the overshoot in the CBFV dynamics is larger in the young 

than in the elderly subject. Unfortunately, from the data used in this study it is not possible to 

determine what physical properties cause a larger overshoot in the young subject. 

As noted earlier, the relationship between ABP and CBFV closely resembles strain-stress 

responses observed in viscoelastic-type materials (see (6, 9, 22, 42)), including overshoot, 

adaptation, and a phase shift. It is well-known that blood vessels exhibit viscoelastic properties 

(10). Moreover, cerebral arteries responsible for regulating CBF contain collagen and the 

regulatory deformation is likely to be viscoelastic. The model developed in this study is 

empirical and we do not have data at intermediate stages to determine exactly what type of 

viscoelastic response is exhibited. In general, tissue shows a continuous relaxation in response to 

stress (10), yet our previous study (23) revealed that with two relaxation time-constants it is 

possible to fit the response to ABP changes. Inspired by these studies, we chose to use the model 

depicted in Figure 2, which includes two Voigt bodies connected with a spring. Further, we will 

show how the model’s parameters can be related to features associated with the adaptation, 

recovery, and overshoot. It should be noted that this study only accounts for the CA response due 

to changes in pressure. The stimulus (see Figure 2) is denoted by fs , which represents either 

mean or pulsatile ABP. Numerous studies (e.g. (3, 12, 44) have attempted to predict the myoge-

nic contribution to CA as a function of ABP, yet it is still unclear if CA responds to changes in 

mean or pulsatile pressure. To study the difference between these inputs, we consider two cases. 

The first case uses pulsatile pressure obtained via interpolating the measured ABP, i.e. fs = pa
d , 

and the second case explores the mean pressure stimulus predicted by interpolating the filtered 

pressure fs = pa . To simplify notation in the remainder of this manuscript, we write fs = p , 

where p∈ {pa
d, pa} . 

The dynamic component of CA described above, predicts the transient response of CBFV 

to beat-to-beat fluctuations in ABP. Without any further model components CBFV would adapt 

to zero rather than to the given baseline flow. Therefore, to account for both dynamic adaptation 
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and baseline flow, we assume that 𝑉!"#, representing CBFV in the middle cerebral artery, is 

given by 

(1.3) Vmca =Vdyn +Vbas ,   

where Vdyn  models the transient character of the signal and Vbas  is the baseline value of CBFV. 

The dynamic portion of CBFV is predicted by determining the strain-stress relationship on each 

mechanical element in the model (see Figure 2). Let ε j  and σ j  for j = 0,  1,  2  be the strain and 

stress associated with the spring and the two Voigt bodies. Following the diagram in Figure 2, 

we can write:  

(1.4) 

ε0 = fs − v1 σ 0 = kaut fs − v1( )

ε1 = v1 − v2 σ 1 = k1 v1 − v2( ) + b1 dv1
dt

− dv2
dt

⎛
⎝⎜

⎞
⎠⎟

ε2 = v2 σ 2 = k2v2 + b2
dv2
dt
.

  

To incorporate the CA curve into our model, the spring k2  is assumed to be a function of ABP, 

i.e. k2 = k2 (p) . Since the two Voigt bodies and a spring are connected in series, the total stress 

equals to the stress on each element (6), i.e. σ 0 =σ 1  and σ 0 =σ 2 , yielding 

(1.5) 
kaut fs − v1( ) = k1 v1 − v2( ) + b1 dv1

dt
− dv2
dt

⎛
⎝⎜

⎞
⎠⎟

kaut fs − v1( ) = k2v2 + b2 dv2dt .
 

By making the following substitutions 

(1.6) a = kaut
b1

,  b = kaut
b2

,  c = k1

b1

,  d = k2

b2

,  

we obtain a simplified system of equations of the form 

(1.7) 

dv1
dt

= − a + b + c( )v1 + c − d( )v2 + a + b( ) fs
dv2
dt

= −bv1 − dv2 + bfs ,
 

where a,  b  and c  are nonnegative parameters, while d  includes the pressure-dependent resis-

tance, k2 (p) , used to discriminate between pressure stimuli both within and outside the CA 

range. Initial values for !a , !b , and !c  were chosen to ensure that the eigenvalues of the system 
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are negative, thereby ensuring adaptation to baseline flow. Finally, the dynamic (transient) 

autoregulation component of the blood flow velocity within the MCA is given by 

(1.8) Vdyn = M ( fs − v1),  

where M ≈1 , representing the amplification. It was noted that d(p)  was modeled to distinguish 

between pressures within and outside the CA range.  Figure 3 shows a normalized pressure-flow 

data sets from rats (8, 13) and cats (20, 21); and a CA curve (solid line), which was modeled 

using a cubic polynomial of the form 

(1.9) faut (p) = 2.03⋅10
−6 p3 − 6.02 ⋅10−4 p2 + 5.94 ⋅10−2 p −1.95.  

It is known that the CA range is modulated in disease, e.g., hypertension (34, 37). By 

incorporating the steady-state expression for !!v1  into equation (1.8), we obtain  

(1.10) d(p) = b c faut
M  c fs − (a + c) faut

,  

ensuring that at the steady-state !
Vdyn = faut .  Moreover, it should be noted that within the auto-

regulatory range faut ≈ 0  and as a result d ≈ 0 . The CA curve is determined a priori, and there-

fore no parameters are added to the final model. Using the first  “steady” portion of the subject-

specific data set  (before standing) and denoted by Vmca
d , we compute the baseline value of the 

CBFV as 

(1.11) Vbas =
1
T

Vmca
d dt,

0

T
∫  

where T = 50  is the length of the considered interval (in seconds).  The values of Vbas for the 

young and elderly subjects have been estimated to be 57.4 cm/s and 37.7 cm/s, respectively.  By 

combining the dynamic Vdyn  and the baseline Vbas ,  the CBFV in the middle cerebral artery is 

predicted using equation (1.3).  In summary, the proposed model uses ABP as an input fs  to 

predict CBFV	  during postural changes from sitting to standing. 

Steady-state and initial conditions.  The model is formulated as a system of two algebraic and 

ordinary differential equations in v1  and v2 . To solve this system, appropriate initial conditions 

must be determined by, e.g., analyzing steady-state behavior within the model. We assume a 
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constant input stimulus fs = p , where p  is the mean pressure over the “steady” portion of the 

data (e.g. during sitting). Thus, the steady-state of (1.7) is given by 

(1.12) v1
* = fs (bc + ad)

bc + (a + c)d
,   v2

* = bcfs
bc + (a + c)d

,   

where d  is evaluated at p = p .  From this we get Vmca =Vbas +M fs − v1
*( ) .  It should be noted 

that additional forcing is incorporated in d representing the pressure-dependent spring.  However, 

at rest (before postural change), perturbations in pressure are assumed to be within the CA range.  

Given that the CA curve was normalized around zero during rest, the input stimulus is faut = 0 , 

which implies that v1
* = v2

* = fs . One consequence of this assumption is that for simulations exa-

mining dynamics outside the CA range fs  will no longer be constant. 

Time-constants. Time-constants associated with the model equation (1.7) were computed to fur-

ther analyze dynamics around the nominal values of the parameters a,  b  and c . Since the eigen-

values λ1,  λ2 of the Jacobian associated with system (1.7), for a constant stimulus fs , are given 

by 

(1.13) λ 1,2 =
1
2

−a − b − c − d ± (a + b + c + d)2 − 4(bc + (a + c)d)( ),  

where d  is evaluated at p = p , the time-constants of system of equations (1.7) are τ1,2 = 1/ λ 1,2 .  

Recall that d(p)  is not a parameter but a pressure dependent function. We assume that CBFV 

returns to its baseline value after approximately 20 seconds, in agreement with the sit-to-stand 

data analyzed in this study (see Figure 1). To facilitate this adaptation, we	  impose the condition 

for the steady-state (1.12) to be locally stable, i.e. we require that the eigenvalues (1.13) be 

negative.  This condition is used as a criterion for choosing the initial values (before 

optimization) for the parameters a,  b  and c . For this study it is assumed that a = 0.25 , b = 0.1 , 

and c = 0.9 .  Moreover, assuming that CA operates on more than one time-scale, we checked 

that optimized parameters generate two distinct time constants,  τ1  τ 2 , which reflect the fast 

and slow components of the CA dynamics.  
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Structural identifiability.  As a preliminary step for studying the model's ability to fit measured 

data, we consider the structural identifiability problem. It addresses the question of whether it is 

possible to uniquely infer the model parameters given perfect and noise-free data. If possible, 

structural identifiability should be considered before the practical one. Recall that the practical 

identifiability establishes if the model parameters can be determined uniquely given a specific 

(noisy) dataset. Thus, structural identifiability is a necessary condition for practical iden-

tifiability. If a model is unidentifiable, the parameters can take an infinite number of values and 

still produce the same response (24).  

Now, we consider the structural identifiability problem for the CA model given in 

(1.3,1.7-1.11), assuming that ABP is within the autoregulatory range, i.e. faut = 0 and 

consequently d = 0 , see equation (1.10). Note that under this assumption, system (1.3,1.7-1.11) 

reduces to two linear differential equations. As discussed in (22), the structural identifiability of 

the model given by equations (1.4) can be established by computing the input/output equation. 

To check the structural identifiability of the model (1.3,1.7-1.11), we compute the input/output 

equation, that is, the equation relating p  with Vmca . First, we differentiate equation (1.3), and 

replace !!dv1 /dt  with the expression in equation (1.7). Next !!v1 is extracted from equation (1.3) 

and substituted into the current expression in equation (1.14). Finally, differentiating the 

resulting expression, replacing !!dv2 /dt  with the equivalent expression in (1.7), and collecting 

similar terms yields the following input/output equation 

(1.14) M d 2p
dt 2

+Mc dp
dt

= d
2Vmca
dt 2

+ a + b + c( ) dVmca
dt

+ bc Vmca −Vbas( ).  

The structural identifiability is determined by whether the corresponding coefficient map 

(1.15) φ a,  b,  c,  M( ) = M ,  Mc,  a + b + c,  bc[ ]  

is one-to-one. It is straightforward to see that equation φ(a,b,c,M ) = φ(a∗,b∗,c∗,M ∗)  has a 

unique solution, and thus the model is structurally identifiable in the variables a,  b,  c , and M .  

The above analysis assumed that faut = 0 , but this is not the case in general. However, if 

faut  is approximated by a piecewise linear functions, the model can be analyzed in its entirety.  

For example, if we assume that faut = kp , for some suitable value of k , it can be shown that the 

model given by (1.3,1.7-1.11) is structurally identifiable. Unfortunately, it is rather tedious to 
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check the property for the full nonlinear model  (1.3,1.7-1.11), i.e. when faut  is not necessarily 

assumed to be identically zero but given by equation (1.9). Thus, to analyze the ability of the 

general model to fit the data, the sensitivity and practical identifiability problem is considered in 

the following section. 

Sensitivity and practical identifiability.  Practical identifiability can be determined by 

considering the sensitivity matrix. To define sensitivities, we assume that the model can be 

written as 

(1.16) 
dv
dt
= f (t,v;θ ),

h(t;θ ) = g(t,v;θ ),
 

where t  denotes time, v  represents the state vector [v1,v2 ],  θ = [a,b,c,M ] is the parameter vec-

tor, h(t;θ ) =Vmca  is the model output, and g  is an algebraic function. The model output Vmca

defined in equation (1.3) is computed as a function of the time t , the states v , and the parameter 

vector θ .  Each column of the sensitivity matrix, 

(1.17) S = ∂Vmca
∂θ

,   

is a time-varying vector that measures how sensitive the model output is to a given parameter at 

time t  (for more details see (27)). Given that model parameters do not have the same units, sen-

sitivities cannot easily be compared across the parameter space. To remedy this problem, the sen-

sitivity matrix is often scaled relative to the parameter and the time-varying data. The relative 

sensitivity matrix is defined by 

(1.18) 
 
S = ∂Vmca

∂θ
θ
Vmca

.  

As noted above, the sensitivities are functions of time for each parameter.  For the purpose of pa-

rameter identification, it is useful to be able to rank the parameters according to their sensitivity. 

Insensitive parameters are typically not identifiable. Several measures can be used to obtain 

ranked sensitivities, but in this study, they are predicted by imposing a two-norm on each column 

of the sensitivity matrix 

(1.19) Si = Si 2 .  



	   12	  

Plots of the relative (time-varying) and ranked sensitivities (scaled such that the most 

sensitive parameter has sensitivity equal to one) for the model parameters are shown in Figure 4.  

Note that M  is the most sensitive model parameter, while 𝑎 and 𝑐 are the least sensitive. For 

model outputs predicted numerically, parameters for which the ranked sensitivity Sθi < ξ , 

where ξ  is the tolerance of the ODE solver, are insensitive. For this study, the ODEs were 

solved numerically using Matlab's ODE solver “ode15s” with absolute and relative error set at 

1⋅10−8 . Thus, according to the definition above, all parameters are “sensitive”. 

A correlation analysis was performed to explore possible pairwise correlations among the 

sensitive model parameters (25). The correlation matrix c can be computed from the covariance 

matrix C = (STS)−1 , as 

(1.20) ci, j =
Ci, j

Ci,iC j , j

. 

The matrix c  is symmetric with ci, j ≤1  and all ci, i = 1 . Here, we denote the parameter pairs for 

which ci, j > 0.95  as correlated. By this definition, all the model parameters are practically 

identifiable. 

Parameter estimation.  The model was fit to data minimizing the least squares error  

(1.21) J = 1
N

Vmca
d (ti )−Vmca (ti ,θ )

Vmca
d (ti )

⎛
⎝⎜

⎞
⎠⎟i=1

N

∑
2

,  

where Vmca
d  denotes the filtered CBFV data, and Vmca  is the model output. For each dataset, the 

parameters were estimated (see Table 1) using the Levenberg-Marquardt method (14) with 

nominal values a = 0.25,  b = 0.1,  c = 0.9,  and M = 1.  

 

RESULTS 

Qualitative results. The qualitative responses of the model (equations (1.3,1.7-1.11)) to pressure 

step-stimuli within and outside the CA range are presented in Figure 5.  Input pressures outside 

of the CA range are denoted by an “o”. The upper and the lower panels of the figure show the 

filtered and the pulsatile response, respectively.  Figures 5A and 5D show that a step-increase in 

the input pressure 𝑝 within the autoregulatory range (solid line) results in an initial overshoot 
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followed by adaptation to the same baseline value.  On the other hand, a step-increase in ABP 

outside the CA range (dotted line) results in Vmca  settling to a new, higher steady-state value.  

This is a consequence of incorporating the CA curve into the model.  Similarly, the qualitative 

response of Vmca to a pressure step-decrease results in Vmca settling at lower CBFV value.  

Motivated by the sit-to-stand experiment, Figures 5C and 5F show the model's response to a 

“dip” in ABP.  Results for this stimulus show that the model is able to predict the overshoot and 

baseline CBFV values recorded before the sit-to-stand protocol. Given that in vivo blood pres-

sure is always pulsatile, we tested that the model could also reproduce correct behavior when 

responding to a pulsatile stimulus.   

 

Quantitative responses. Figure 6 shows the model output 𝑉!"# (equation (1.3)) plotted against 

the pulsatile and filtered ABP/CBFV data from the healthy young and elderly subjects.  For both 

subjects, the fits were generated using the optimal parameter values given in Table 1. The 

rightmost column shows a zoom of the steady-state segment of the data and the model response. 

Results obtained using the filtered ABP signal as an input show that the model is able to fit the 

baseline, dip, overshoot, and adaptation for both the young and elderly subjects. These three 

features are also captured in the model results computed using the pulsatile ABP data as a 

stimulus. Though it should be noted that for both the young and the elderly subjects, the model 

does not fully predict the widening effect portrayed by the data shortly following the transition 

from sitting to standing. Data for the young subject showed larger overshoot following the ABP 

stimulus, while the recovery time was larger for the elderly subjects. Both features can be seen in 

simulation results, in particular for the study using filtered ABP as an input, it should be noted 

that the stimulus differs between the healthy young and the healthy elderly. The comparison of 

estimated model parameters shows clear differences. While the parameter M is of the same order 

of magnitude for both subjects, the Voigt body parameters representing time-scales vary 

significantly between the two subject types. 

 

DISCUSSION 

This study developed a simple nonlinear model using ABP as an input to predict CBFV and 

analyzed the model’s dynamics using both synthetic (pulsatile and non-pulsatile) and 

experimental data from a healthy young and a healthy elderly subject.  Results showed that the 
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model is able to capture the CBFV drop, overshoot, and recovery, including both the more 

pronounced overshoot exhibited by the young subject and the longer time for recovery exhibited 

by the elderly subject.  The model has only four parameters and was motivated by the 

viscoelastic-like response observed in the data recorded during postural change from sitting to 

standing.  Comparison of estimated model parameters showed that the Voigt body parameters 

a,  b,  and c  were significantly higher for the elderly subject, while M was similar for both 

subjects.  Given that simulations were performed using one subject in each age group, statistical 

comparison of values is not feasible. Assuming that all other model parameters are held at their 

nominal values, increasing 𝑎  or 𝑏  results in a smaller CBFV drop and overshoot, while 

increasing 𝑀  produces a more pronounced drop and overshoot. The model response is 

insensitive to changes in c (see Figure 4).  Moreover, increasing a  results in a longer recovery 

time. The higher values of a  and b  in aging could explain observed differences.   

One noticeable discrepancy between the fits using pulsatile ABP as an input is that for 

the young subject, the estimated pulsatile CBFV does not predict the pulse widening observed 

immediately upon the postural change from sitting to standing.  This widening is less 

pronounced in the elderly subject. This feature was captured in our previous, physiologically-

based model (26), though it had more than 60 parameters compared to the 4 parameters in the 

current approach. It is likely that there may be a feature of CA that this model cannot quantify.  

For example, if the parameters associated with the change in vessel compliance are not nec-

essarily constant, then they could be determined as a function of strain. More discussion about 

changes in vessel compliance with age can be found in studies by Carey et al. (5) and Yam et al. 

(45). Moreover, it should be noted that model simulations were performed using the same 

parameter set, independent of the nature of the ABP input, i.e. the model was calibrated only to 

the filtered and not the pulsatile response. We note that estimating parameters using the pulsatile 

ABP input signal did not provide a better fit. 

Although the model output did not fit all aspects of pulsatile CBFV dynamics, the main 

features of this more complex signal were predicted well. Despite the numerous physiologically-

based models that have been developed (see e.g. (32, 35, 39-41)) to our knowledge this is the 

first ABP/CBFV model that allows both qualitative and quantitative prediction of both the 

average (filtered) and transient (dynamic) responses associated with CA. The main aim of the 

present study was to model the transient part of ABP/CBFV response. Although the 
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measurements (e.g. the amplitude) of the CBFV depend on the angle of insonation, and that it 

may vary between individuals, it is likely that it mainly affects the scaling and not the dynamics 

of ABP/CBFV response.	  

Aside from model development, extensive model analysis was performed.  To our know-

ledge, no previous CA models have been analyzed whether or not estimated parameters were 

identifiable. This question is particularly relevant if parameter values are used as physical 

biomarkers describing the differences both within and between groups of subjects. We showed 

that the linear model (when faut = 0 ) is structurally and practically identifiable. For the full 

nonlinear model (when faut ≠ 0 ) it was not possible to show structural identifiability analytically.  

If the CA curve is approximated by a piecewise linear function, identifiability can be proven 

analytically. Regardless, subsequent sensitivity analysis showed that all model parameters were 

sensitive and practically identifiable allowing estimation of all model parameters. Given that the 

model has only four parameters, the optimizations were relatively fast. For one dataset it took 

approximately ten minutes using Matlab on a Macbook Pro with a 2.3 GHz Intel Core i5 

processor.  

While its simplicity makes the model computationally feasible to work with, it may be 

difficult to infer what specific physiological mechanisms were compromised. Moreover, this 

type of model is not yet able to predict the cause of disease, similar to many statistical methods 

(7, 30) and efforts aiming at computing various autoregulation indices (18, 19, 28, 36). One way 

to improve the current approach could be by incorporating some mechanisms present in phy-

siologically-based models, at the same time keeping it computationally efficient. Several 

previous aprroaches could be used as a point of departure for this effort including the works by 

Ursino et al. (40, 41), Arciero et al. (2) or Spronck et al. (35), which quantify in detail the 

metabolic, myogenic, shear-dependent, and neurogenic responses. The advantage of the latter 

models is that they can be used to understand how each mechanism impacts the overall 

dynamics, a feature not provided by our study. The disadvantage is the high number of 

parameters, which are typically unidentifiable, making the model difficult to validate against 

experimental data. 

 

In conclusion, the CA model developed in this study is able to predict both qualitative and 

quantitative dynamics associated with ABP/CBFV response during a postural change from 
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sitting to standing. Qualitative features were analyzed by imposing step-changes and a “dip” 

change in ABP within and outside the CA range. Quantitative responses were analyzed by 

showing that the model can fit both filtered and pulsatile CBFV dynamics during a postural 

change from sitting to standing, a feature that to our knowledge has not been tested in previous 

modeling studies. Parameter estimation was used to show that the model could be adapted to 

distinguish responses in a healthy young and healthy elderly subject. The model provided very 

good agreement with the data (for the subjects shown). Finally, we showed that the model 

exhibits an important nonlinearity related with the CA curve. 
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TABLE 
 

Parameter Equation Description Value (Y) Value (E) 
a (1.7) Voigt-body parameter 0.438 2.50 
b (1.7) Voigt-body parameter 0.0100 0.280 
c (1.7) Voigt-body parameter 0.264 2.71 
M (1.8) Mathematical amplifier 1.20 1.00 

 

Table 1: Estimated model parameters and values for the healthy young (Y) and elderly (E) 

subjects. 

 
 

FIGURE CAPTIONS 
 

Figure 1: Trends in ABP/CBFV dynamics. Graphs show pulsatile and filtered ABP and CBFV 

data for a healthy young (left column) and a healthy elderly (middle column) subject during the 

sit-to-stand experiment. The black vertical lines mark the time at which the subjects stand. 

 

Figure 2: Mechanical analog used for predicting Vdyn . Schematic diagram depicting the me-

chanical analog model used for predicting the dynamic CA component Vdyn . The model includes 

two viscoelastic Voigt body elements combined with a spring accounting for the elastic portion 

of the response. The stick figure illustrates the sit-to-stand experiment. Circles are used to mark 

locations at which the ABP (closed circle) and CBFV (open circle) are measured. The ABP is 

used as the model stimulus via !fs  (closed circle), and the model output !
Vdyn (open circle) is used 

to estimate the patient-specific CBFV. 

 

Figure 3: CBF-Pressure Curve. Empirical fit of faut  against normalized experimental CBF and 

ABP data from rats (8, 13) and cats (20, 21).  These data suggests that CA range is defined for 

ABP between approximately 50 and 150 mmHg. 

 

Figure 4: Sensitivity analysis. This figure shows the relative (time-varying) [left panel] and 

ranked [right panel] sensitivities of the model parameters with respect to the model output, 

CBFV. 
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Figure 5: Qualitative responses. This figure presents six qualitative responses computed using 

the ABP/CBFV model. Simulations were done by varying the input pressure (ABP) assuming: 

step increases (A), step decreases (B), ABP drop followed by recovery (C), oscillating step 

increases (D), oscillating step decreases (E), and an oscillating ABP drop followed by recovery 

(F). Solid lines represent ABP changes within the CA range, and dotted lines indicate pressure 

changes outside of the CA range. Steps outside of the CA range are denoted by “o”. 

 

Figure 6: Quantitative responses. Estimated mean and pulsatile CBFV model output compared 

to filtered and pulsatile CBFV data for a young subject and an elderly subject.  The vertical black 

line in each plot denotes the beginning of orthostatic stress. 
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Figure 1: Trends in ABP/CBFV dynamics 
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Figure 2: Mechanical analog used for predicting Vdyn  
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Figure 3: CBF–Pressure Curve 
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Figure 4: Sensitivity analysis 
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Figure 5: Qualitative responses 

  

0 100 200

10
50
90

130
170

AB
P 

(m
m

Hg
)

0 100 200
30
60
90

0 100 200

35
80

125
170

0 100 200
30
60
90

40 60 80 100

40
60
80

40 60 80 1000
20
40
60

CB
FV

 (c
m

/s)

0 100 200

5
45
85

125
165

Time (s)

AB
P 

(m
m

Hg
)

0 100 200
25
50
75
100

0 100 200

35
75

115
155
195

Time (s)
0 100 200 0

25
50
75
100

40 60 80 100

40
60
80

100

Time (s)
40 60 80 1000

20
40
60

CB
FV

 (c
m

/s)

D

A B C

E F

o

o

o

o

o

o

o

o



	   28	  

 
 

Figure 6: Quantitative responses 
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