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Abstract 

Predicting the onset of sepsis from clinical data is 

challenging, as physiological and laboratory 

measurements are sampled at different frequencies and 

missing data are not randomly distributed. Our team 

(“CRASHers”) propose a two-model approach, where the 

first predicts a probability of sepsis and the second 

estimates the uncertainty of these predictions. We then 

optimize a “decision rule” using both the probability and 

uncertainty to make the final prediction. A set of derived 

features was used to train a Gradient Boosting Machine 

(GBM) classification model to predict sepsis (within 6 

hours). A second GBM regression model was trained to 

estimate the uncertainty of those predictions using a 

different set of derived features. Optimal hyperparameters 

for both models were determined using Bayesian 

optimisation with 5-fold cross validation (using 70% 

records from each training set). The outputs from both 

models were then combined using logistic regression 
(using 15% of records available) to re-calibrate the 

probability of sepsis. Due to an error in setting up the test 

environment for our entries, we did not obtain a valid score 

in the hidden test set. The combined model was evaluated 

on the remaining 15% of records available for training 

(i.e., our validation set). Our uncertainty-aware approach 

achieved a Utility score of 0.412 on our validation set.  

 

 

1. Introduction 

Sepsis is defined as “life-threatening organ dysfunction 

caused by dysregulated host response to infection”. Early 

detection and treatment of sepsis can lead to better patient 

outcomes [1, 2]. With the advent of Electronic Health 

Record (EHR) systems, there has been an increase of 

studies developing prediction models to aid the 

identification of patients with sepsis in the intensive care 

unit (ICU). EHR data, however, pose a challenge to 

standard approaches to using machine learning to model 

longitudinal data. 

Most data sets derived from routinely collected clinical 

data contain a substantial proportion of missing values and 

irregularly-sampled data. In particular, some laboratory 

tests are only performed in a subset of patients for 

diagnostic purposes (e.g. troponin). Furthermore, even 

vital signs and common laboratory tests (e.g. renal 

function) are measured at different intervals (which may 

range from 1 hour to 72 hours). The frequency of 

monitoring depends on internal protocols, as well as an 

individual patient’s diagnosis and severity of illness. Most 

approaches for coping with these missing values or 

irregularly-sampled data rely on imputation methods, 

without accounting for the potential biases (and errors) that 

it may generate when making these predictions. 

We propose a two-model approach, where the first 

model predicts a probability of sepsis and the second 

estimates the uncertainty of these predictions due to 

missing data. We then optimise a decision rule, which 

considers both the probability and model’s uncertainty to 

make our final predictions. 

 

 

2. Materials and methods 

This study was performed as part of the Physionet 

Challenge 2019 [3]. 

 

2.1. Dataset 

This study used two datasets provided for the Physionet 

Challenge 2019. These datasets were originally extracted 

by the Challenge’s coordinators from patient admissions to 

three (sets A, B, C) intensive care units (ICU). All datasets 

contained hourly-stamped measurements for 34 distinct 

(time-varying) variables (8 vital signs and 26 laboratory 

test results), including the time (or hour) at which each 

value was gathered. In additions, the values of 5 

demographic (static) variables are also available for each 

record in the datasets. Two datasets (set A and set B) with 

a total of 40,336 ICU patient records were made available 

for model development, with corresponding sepsis labels 

(1 if onset of sepsis occurs within 6 hours for patients who 

developed sepsis, 0 otherwise) provided for each hourly-

stamped measurement in each record. The third dataset (set 

C) was not available to the Challenge participants but was 
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used to evaluate the final models during the Computing 

and Cardiology 2019 conference. 

 

2.2. Data pre-processing 

Prior to feature extraction, the distribution of each 

physiological measurement was manually inspected. 

Physiologically implausible values for certain variables are 

set as missing (null entries). Specifically, this process was 

performed for heart rate, respiratory rate, systolic and 

diastolic blood pressures, mean arterial pressure, 

temperature and pulse oximetry.  

 

2.3. Statistical analysis 

Our method relies on a two-model approach: (1) the first 

model estimates the probability of sepsis using an 

augmented set of features derived from the clinical data 

available; (2) the second model attempts to estimate the 

uncertainty (or error) of the predictions of the first model 

generated by the imputation method. For the latter, we use 

a second set of features that relate to the “missingness” of 

each time-varying variable. Both prediction and model’s 

uncertainty are then combined to provide a re-calibrated 

probability of sepsis.  

For the Physionet Challenge 2019, the official metric 

used to assess the performance of the submitted models is 

a customized Utility score, which rewards early prediction 

of sepsis (up to 12 hours before onset) and penalizes late 

predictions [3]. 

 

2.4. Feature extraction 

Each patient’s risk of sepsis is computed for each time 

point. Our model also considers the prior sequence of 

physiological and laboratory measurements recorded up to 

that timestamp. Thus, we converted each record’s hourly-

stamped set of variables into a new set of hourly-stamped 

variables based on the previous and current measurements 

available for that record.  

For the first model, we extracted a range of features 

from the clinical measurements, as well as deriving 

summary features from the time series. Static variables 

(e.g. age, gender), were simply repeated at each time point. 

For time-varying variables, we extracted the most recent 

measured value for each vital sign and laboratory 

measurement, maximum and minimum values of each vital 

sign within the preceding 12 and 24 hours, and difference 

between the two last recorded values of a subset of 

laboratory results (including creatinine, blood urea 

nitrogen, and platelet count); if no two previous values 

were available for a given variable, we set these variables 

to zero. If a given variable was completely missing for a 

given patient (or there were no previous or current values), 

the median value over the training data was imputed.    

For the second model, we computed the elapsed time (in 

hours) since the last recorded (non-null) value for each of 

the 34 time-varying variables. These features capture how 

recently (if at all) a given variable was measured at a given 

timestamp. If a variable is completely missing for a given 

record, or there are no previous or current values, a value 

of 1 year (8760 hours) was imputed. 

 

2.5. Model description 

Both models were fit using Gradient Boosting Machines 

(GBMs). The GBM is an ensemble method based on using 

weak learners, in our case, decision trees. GBMs iteratively 

train collections of decisions trees to classify the training 

data; with each step incorporating a new decision tree, 

which preferentially weights the correct classification of 

previously misclassified training examples. We chose a 

GBM method on the basis of favourable comparison with 

other regression-based methods. 

The XGBoost implementation [4] was chosen as it 

provides options for regularization and the handling of 

imbalanced classes. XGBoost also allows optimisation of 

other hyperparameters that control both the entire 

ensemble and structure of individual decision trees. To 

reduce overfit to the training data, we used the early 

stopping function, which stops the training (i.e., adding 

more trees) when validation scores have not improved for 

50 iterations.  

 

2.6. Hyperparameter tuning 

Given the vast number of hyperparameter combinations to 

explore and their domain (i.e., the range of values that we 

want to evaluate for each hyperparameter), we used 

Bayesian optimization. Bayesian hyperparameter 

optimization finds the value that minimizes an objective 

function by building a surrogate function (probability 

model) based on past evaluation results of the objective. 

The surrogate is cheaper to optimize than the objective, so 

the next input values are selected by applying a criterion to 

the surrogate (in our case, the expected improvement was 

used). Bayesian methods differ from random or grid search 

in that they use past evaluation results to guide which 

values to evaluate next.  A tree Parzen estimator was used 

as the optimization algorithm.  

Hyperparameters of both models (classification and 

uncertainty) were tuned using 5-fold cross validation of the 

training set. The area under the receiver operating 

characteristics curve (AUROC) and the root-mean-

squared-error were used for the first and second model, 

respectively.  

The range of tuned hyperparameters (same for both 

models) are shown in Table 1. 
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Table 1. GBM’s hyperparameters domain and distribution. 

Names of hyperparameters are those used in the XGBoost 

package (see [4]). 

* n_estimators is fixed as it is estimated via early stopping.  
 

Hyperparameter  Domain Sampling 

n_estimators*  10,000 Fixed 

eta [0.001, 1.0] Log-Uniform 

max_depth [2, 9] Uniform 

subsample [0.4, 1.0] Uniform 

colsample_bytree [0.1, 0.8] Uniform 

gamma [0.1, 5.0] Uniform 

scale_pos_weight [0.2, 20.0] Uniform  

lambda [0.1, 3.0] Uniform 

 

All other hyperparameters were set to their default 

value. 

 

2.7. Model development and assessment 

We evaluated the performance of the proposed 

prediction model by randomly dividing the 40,336 patient 

records into a training set (containing 70% of records from 

set A, and 70% of records from set B), a recalibration set 

(containing 15% of records from each set), and a validation 

set (containing the remaining 15% of records from each 

set).  

First, we trained a GBM (binary) classification model to 

predict sepsis within 6 hours of a given timestamp (the 

“Sepsis Label”) using the feature set and the best set of 

hyperparameters found using the hyperparameter tuning 

procedure described above. Secondly, we computed the 

negative log-likelihood for each prediction in our training 

set, and trained a second GBM regression model to 

estimate the error of those predictions using the second 

feature set and the best set of hyperparameters found for 

this second model. 

Using the recalibration set, we then calculated the 

predicted values from both models (i.e., the probability of 

sepsis, and the model’s uncertainty) for each record’s 

entry, and combined both predictors into a single 

recalibrated score (our decision rule) with logistic 

regression, using “Sepsis Label” as the outcome. Finally, 

in order to provide a binary prediction of “sepsis”, it was 

necessary to threshold the score value (a probability 

between 0 and 1). A threshold was chosen that maximized 

the Utility score on the recalibration set. 

We compared the performance between the proposed 

uncertainty-aware two-model approach; the single GBM 

classification model (which threshold was re-calculated 

using the same methodology); and the baseline model 

supplied by the challenge, on the held-out validation set 

(which was not used at any point during the development 

of the model presented in this study). 

 

3. Results 

The evaluation metrics on the whole held-out validation set 

(containing 6,051 records from set A and set B) for each 

model are shown in Table 2. Evaluation metrics include the 

AUROC, the area under the precision-recall curve 

(AUPRC), the F1-score, the accuracy and the Utility score. 

 

Table 2. Evaluation metrics of the uncertainty-aware 

model (our two-model approach, M2), the single GBM 

model that does not include the estimations of model 

uncertainty (single-model approach, M1), and the baseline 

model based on a time-to-event regression model (B0). 
 

Metric  B0 M1 M2 

AUROC  0.702 0.829 0.841 

AUPRC 0.057 0.101 0.112 

Utility score 0.186 0.399 0.412 

 

Our uncertainty-aware approach (M2) achieved an 

AUROC of 0.841 and a Utility score of 0.412. The Utility 

score of our model is substantially higher than the baseline 

model (Utility score of 0.186) when evaluated on the held-

out validation set. We also note an improvement on the 

Utility score of the uncertainty-aware predictions with 

respect to the predictions that do not take into account our 

estimation of uncertainty. 

Table 3 shows the AUROC and Utility score values 

obtained for each validation set (sets A and B). We note 

that the uncertainty-aware model provided a larger 

performance improvement (as given by the Utility score) 

in test set B. Figure 1 shows the distribution of the 

uncertainty estimations in the records with positive cases 

of sepsis in the validation set. 

We note that the held-out validation set used to report 

these results was generated from the publicly available 

training sets. We were not able to obtain a valid score in 

the hidden test set due to an error in setting up the test 

environment for the entries. 

 

 

4. Discussion and conclusions 

At the thresholds (or operating points) found for each 

model, we observed a large improvement in the Utility 

score with our uncertainty-aware model (M2) relative to 

the baseline model B0 (0.412 vs. 0.186), and a smaller, yet 

substantial, improvement relative to the single model 

(M1), which does not include the uncertainty estimates 

(0.412 vs. 0.399). The improvement in performance of 

model M2 is most notable for test set B (Table 3).  

An important goal that we aimed to achieve with 

modelling the uncertainty of the GBM prediction model 
was increasing the reliability of predictions. Prediction 

reliability is orthogonal to prediction accuracy, and another 
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Table 3. Evaluation metrics of the uncertainty-aware 

model (our two-model approach, M2), the single GBM 

model that does not include the estimations of model 

uncertainty (single-model approach, M1), and the baseline 

model based on a time-to-event regression model (B0) for 

both test sets A and B. 
 

Metric  B0 M1 M2 

AUROC     

Validation set A 0.703 0.826 0.835 

Validation set B 0.690 0.846 0.860 

Utility score    

Validation set A 0.221 0.424 0.426 

Validation set B 0.096 0.353 0.383 

 

study [5] showed that state-of-the-art machine learning 

models are often not reliable – they are not well-calibrated 

to correlate model confidence with model strength. 

Imputation methods for coping with missing data and/or 

irregularly-sampled sequences may contribute for the lack 

of reliability of model predictions. Thus, we evaluated our 

uncertainty calibrated model (M2) against the GBM model 

with no uncertainty recalibration (M1), and the results in 

Table 2 and Table 3 show that, although the improvement 

in discrimination (as given by the AUC) is relatively 

modest (0.835 vs. 0.826), the improvement of the Utility 

score is substantial (0.412 vs. 0.399). Hence, the 

predictions  from  the  uncertainty-aware  model  appear  to 

 
 

 
Figure 1. Stacked timelines of estimated uncertainty for the 

patients who developed sepsis (positive cases) in test set. 

Darker colors correspond to lower values of uncertainty. 

Sequences are ordered by sequence/record length (records 

with a length over 75 hours are not shown). We see that the 

uncertainty is generally larger at the start of each sequence. 

provide better calibration.  

We proposed an uncertainty-aware approach that has 

the potential to enhance reliability of both interpretations 

and predictions of sepsis provided by a GBM model. 

Further analysis of prediction reliability may be necessary 

in order to demonstrate that the model is accurately 

calibrated and thus can defer predictions when making 

prediction with an “I don’t know” option. This option 

could enhance/aid interpretability if prediction models are 

incorporated into clinical decision-making tools. 
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