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1. Interactive MATLAB    
 

 
 
 
 
Launch MATLAB by double clicking on the appropriate icon. In this first exercise we will use 
MATLAB in interactive mode, which means it behaves similarly to a pocket calculator. After 
opening, the screen is divided into three parts. In the top right-hand corner is the command 
window. It is in here that interactive commands can be typed in and executed immediately. 
The top left-hand window shows the current values of all the variables in the system – it is a 
glorified version of the memory button on a calculator. 
 

1. Enter the command A = [1, 2; 3, 4] to define the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

43
21

A . Print the matrix 

by typing A in the command window. You should also be able to see A appear as a 
current variable in the system. If you click on it you can see its values.  

 
2. Define a second matrix B = [0.5, 0.6; 1, 1.5]. What are the values of C = A*B, C = 

B*A, C = A.*B and C = A.^B? 
 

3. Find the inverse of the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21
22

D . To look up the function for inverting 

matrices type help matfun. What is the inverse of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

11
22

D ? 

 
4. Use the colon operator to define a row vector X with elements starting from 0 and 

proceeding to 100 in steps of 1. The syntax of the command is 
(start):(increment):(finish). Check in the memory section that X has been defined 
correctly. 

 
5. Define a second vector Y that contains the squares of the values in the elements of 

X. Plot the graph of X against Y using the command plot(x,y); 
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2. Drawing from a  
    normal distribution  
 
 
In this exercise we use MATLAB’s ability to draw random numbers form a normal 
distribution. The numbers drawn are not completely random (for that we would need to sit 
for hours rolling a die or tossing a coin) but to all intents and purposes they can be thought 
of as random. In fact, there are only 2^1492 random numbers in the computer, but for most 
purposes this is more than sufficient. 
 

1. Define a vector Z of 100 random numbers by the command Z = randn(100,1). The 
numbers should have mean zero and unit variance. What is the mean and variance 
of the simulated series? To find the functions for mean and variance use help 
datafun. 

 
2. We are now ready to start programming in MATLAB. Open a new M-file from the File 

menu and include just the command Z = randn(100,1). Now select debug and run 
from the run menu. The end result is just the same as if you had used MATLAB 
interactively. 

 
3. The next task is to calculate the mean of the simulated series recursively, i.e. first 

calculate the mean of the first element of Z, then the mean of the first two elements 
of Z, the first three, and continuing up until the last calculation of the mean of all 100 
simulated numbers. In MATLAB, the easiest way to do this is to begin by defining the 
random numbers Z. Next, use a for i=1:100 … end loop to calculate the means 
recursively. Each time the loop is executed the mean has to be calculated for Z(1:i) 
and stored in memory. Complete the exercise by plotting the recursive estimates of 
the mean. 

 
4. Repeat the exercise above but for recursive estimation of the variance of the 

simulated series. Plot the recursive estimates on the same graph as the mean using 
the plot(x,y,’r’);hold on; plot option. Which estimate converges quickest, the mean 
or the variance? 

 
5. How many numbers do you need to simulate before the simulated mean is within 

0.01 of the theoretical mean of zero? To program this exercise it is easier to use a 
while … end loop, in which the condition for continuing the loop is that the absolute 
value of the estimated mean is greater than 0.01. Compare you results with the 
convergence of the variance estimates. (In this part you may find it useful to start 
your program with the command randn(‘state’,0). This forces the computer to use 
the same random numbers each time you run the program so guarantees that the 
results stay the same). 
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3. Simulating an 

    AR(1) process  
 
 
In some models it is assumed that the interest rate followed an AR(1) process of the form 

ttt vii += −1
ˆˆ ρ . This exercise is designed to simulate the behaviour of interest rates under 

such an assumption. 
 

1. Define the shocks tv  to the interest rate in the same way as before. To have shocks 
with variance 0.1, we need to write vt = 0.1^0.5*randn(100,1). 

 
2. Simulate the series for tî  using a for … end loop with different values of the 

persistence parameter ρ . Use a value of zero for 1−̂i . 
 

3. What are the theoretical mean and variance of tî ? How do the simulated mean and 
variance compare with the theoretical values? 
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4. Simulating a Markov- 
    switching process 
 
 
Another simple way in which interest rates might be set is to assume they follow a Markov-
switching process. In this scenario, interest rates switch between a discrete set of values, 
with switches occurring randomly. The simplest case is one with only two states and 
symmetric probabilities of switching between the states. In this exercise we will simulate this 
process and examine its behaviour. 
 

1. Suppose that the central bank switches interest rates between the levels of -1% and 
+1%. The probability of switching from either -1% to +1% is 5%, i.e. 0.05. Simulate 
the behaviour of interest rates for 500 periods. The easiest way to do this is again 
with a for … end loop from 1 to 500. To assess whether there has been a switch 
each period, make a random draw from a uniform distribution using rand(1,1). If this 
number is greater than 1-0.05 = 0.95 then the process should switch. This will ensure 
that switches occur on average 5% of the time. A neat trick to use here is that when 
there is a switch, the interest rate is equal to the previous period’s interest rate 
multiplied by -1. If there is no switch then the previous interest rate prevails. 

 
2. Plot the simulated series. 

 
3. The theoretical mean and variance for this Markov-chain are 0 and 1 respectively. 

How do these compare with the mean and variance obtained from simulations? 
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5. Log-linearisation of 
    baseline model 
 
 
This exercise is about log-linearisation of the baseline DSGE model presented in the 
classes. To make the exercise more concrete, we introduce calibrated values for the 
parameters of the model. These numbers, taken from Ellison and Scott (2000) are chosen 
so that key-features of the model are matched to the UK economy. 
 

Parameter Calibrated value Explanation 
 

β 0.99 Discount rate 
σ 1 Intertemporal elasticity of substitution 

in consumption 
χ 1.55 Multiplier on hours worked in disutility 

of work in utility function 
η 0 1+ η is exponent on hours worked in 

disutility of work in utility function 
θ 2.064 Elasticity of demand for firm i’s 

product 
ω 0.5 Percentage of firms unable to change 

their price each period 
α 3 (1/α) is elasticity of wages w.r.t output 

gap 
δ 1.5 Coefficient on inflation in simple rule 

for interest rate 
 

1. Calculate the steady-state value of output, Y , in the economy. Can you explain why 
you get quite a nice round answer? Using MATLAB, investigate how Y  varies with 
the calibrated parameters ηχθ ,,  and σ . What is the economic intuition for each of 
these relationships? 

 
2. Prepare a MATLAB program with the state-space form matrices 010 ,, BAA as a 

function of the deep calibrated parameters. We will use these matrices in the next set 
of exercises when we solve the baseline DSGE model. 
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6. Log-linearisation of 
    an RBC model 
 
 
The baseline DSGE model we have discussed so far emphasises the role that nominal 
shocks play in the determination of output. Another class of models known as Real 
Business Cycle (RBC) models, focuses on technology shocks as the dominant source of 
output fluctuations. In this exercise, we derive the log-linearised form of a simple RBC 
model. The exercise involves considerable work with pencil and paper rather than MATLAB. 
In a simple RBC model, the consumer maximises the discounted value of current and 
expected future utility from consumption, subject to a budget constraint and the (exogenous) 
law of motion for technology. The full problem is given below. 
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The utility function is of the standard CRRA form. The left hand side of the budget constraint 
shows expenditure, which is divided between consumption Ct and capital Kt carried forward 
to the next period. The right hand side of the budget constraint is correspondingly income, 
which derives from the productivity and depreciated value of existing capital, α

1−tt KA  and  

1)1( −− tKδ . δ  is the discount rate. Technology is assumed to follow and AR(1) process with 
persistence parameter ρ  and i.i.d. shocks tε . 
 

1. Show that the Euler equation for consumption can be written in the following form. 
 

[ ])1( 1
11 δαβ ασσ −+= −
+

−
+

−
ttttt KACEC  

 
Interpret the Euler equation. 

 
2. Find the steady state values KCA ,,  of technology, consumption and capital in the 

model by taking steady-state versions of the Euler equation, budget constraint and 
low of motion for technology. How do KCA ,,  vary with αβδ ,, . Why? 

 
3. Log-linearise the first order conditions, i.e. Euler equation, budget constraint and law 

of motion for technology, to obtain a 3-dimensional system in ttt KCA ,,  and the shock 

tε . You will need the general formula to log-linearise the budget constraint. 
 

4. Put the model in state-space form 
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7. The CRRA utility 
    function when σ = 1 
 
 
It is well known that the constant relative risk aversion utility function tends in the limit to the 
logarithmic function when σ = 1. In other words, 
 

t
t C
C

iml ln
1

1

1
=

−

−

→ σ

σ

σ
 

 
Prove that this is correct. To do this, you will need to apply l’Hôpital’s rule, which is repeated 
below. 
 

 If 0)(
1

=
→

σ
σ

fiml and  0)(
1

=
→

σ
σ
giml  then 

)('
)('

)(
)(

11 σ
σ

σ
σ

σσ g
fiml

g
fiml

→→
=  

 
 
There are a couple of tricks to the proof! 
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8. B-K conditions in 
    baseline model 
 
 
This exercise is designed to check whether the Blanchard-Kahn conditions hold in the 
baseline model with AR(1) policy shocks. The state-space form of the model is given by 
 
 
 
 
 
 
We use the same calibration as in exercise 6 and ρ = 0.5. The following M-file sets up the 
standard state space form 10110 ++ += tttt BXAXEA ε  and calculates the alternative state 
space form 11 ++ += tttt BAXXE ε . The code is available for download from  
 

http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/ellison/boe/q8.m 
 

% Calibrated parameter values 
 
clear; 
beta=0.99; 
sigma=1; 
chi=1.55; 
eta=0; 
theta=2.064; 
omega=0.5; 
alpha=3; 
delta=1.5; 
rho=0.5; 
 
% Calculate kappa  
 
kappa=(1-omega)*(1-beta*omega)/(alpha*omega); 
 
% Define state space matrices 
 
A0=zeros(3,3); 
A0(1,1)=1; 
A0(2,2)=1; 
A0(2,3)=sigma^-1; 
A0(3,3)=beta; 
 
A1=zeros(3,3); 
A1(1,1)=rho; 
A1(2,1)=sigma^-1; 
A1(2,2)=1; 
A1(2,3)=sigma^-1*delta; 
A1(3,2)=-kappa; 
A1(3,3)=1; 

1
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1

1
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1
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ˆ
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σ
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B0=zeros(3,1); 
B0(1,1)=1; 
 
% Calculate alternative state space matrices 
 
A=inv(A0)*A1; 
B=inv(A0)*B0; 
 

1. Use the command [p,lambda] = eig(A) to perform the Jordan decomposition of the A 
matrix. The p* matrix can be extracted using the command pstar = inv(p). Are the 
Blanchard-Kahn conditions satisfied for this calibration of the model? If the 
eigenvalues are complex use abs(lambda) to obtain their magnitude.  

 
2. Partition the lambda, pstar and R=Pstar*B matrices. Before doing this, ensure that 

the stable eigenvectors (with absolute value less than one) are in the top-left corner 
of the lambda matrix and the unstable eigenvectors (with absolute value greater than 
one) are in the bottom-right partition of the lambda matrix. If the eigenvalues are in 
the wrong places, use the following code to sort them into ascending order. 

 
% Sort eigenvalues and eigenvectors in ascending order 
 
val=diag(lambda); 
t=sortrows([val p’],1); 
lambda=diag(t(:,1)); 
p=t(:,2:4)’; 
pstar=inv(p); 
 
What does each row of this code do? 
 

3. Derive the law of motion for forward-looking variables as a function of backward-
looking variables in the model. Your final law of motion may include terms with 
extremely small imaginary components, e.g. i16103.12.1 −×+−  . If this happens do not 
worry, it is due to the computer being unable to distinguish between very small 
numbers and zero. Use the command real(x) to ignore the imaginary part. 

 
4. Derive the law of motion for future backward-looking variables as a function of 

current backward-looking variables. 
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9. B-K conditions and δ 
 
 
 
 
 
This exercise investigates the relationship between the Blanchard-Kahn conditions and the 
value for δ, the coefficient on inflation in the simple monetary policy rule. We use the same 
state-space form as in the previous question, so begin with the following M-file. The code 
can be downloaded from 
 

http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/ellison/boe/q9.m 
 

% Calibrated parameter values 
 
clear; 
beta=0.99; 
sigma=1; 
chi=1.55; 
eta=0; 
theta=2.064; 
omega=0.5; 
alpha=3; 
delta=1.5; 
rho=0.5; 
 
% Calculate kappa  
 
kappa=(1-omega)*(1-beta*omega)/(alpha*omega); 
 
% Define state space matrices 
 
A0=zeros(3,3); 
A0(1,1)=1; 
A0(2,2)=1; 
A0(2,3)=sigma^-1; 
A0(3,3)=beta; 
 
A1=zeros(3,3); 
A1(1,1)=rho; 
A1(2,1)=sigma^-1; 
A1(2,2)=1; 
A1(2,3)=sigma^-1*delta; 
A1(3,2)=-kappa; 
A1(3,3)=1; 
 
B0=zeros(3,1); 
B0(1,1)=1; 
 
% Calculate alternative state space matrices 
 
A=inv(A0)*A1; 
B=inv(A0)*B0; 
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% Jordan decomposition of A 
 

[p,lambda] = eig(A); 
pstar = inv(p); 
 
% Sort eigenvalues and eigenvectors in ascending order 
 
val=diag(lambda); 
t=sortrows([val p’],1); 
lambda=diag(t(:,1)); 
p=t(:,2:4)’; 
pstar=inv(p); 

 
1. What restrictions are required on the parameter δ to ensure that the Blanchard-Kahn 

conditions are met? To answer this question, write a for … end loop that checks 
whether the Blanchard-Kahn conditions are satisfied for different values of δ from 0 
to 2 in steps of 0.1. If the eigenvalues are complex use abs(lambda) to obtain their 
magnitude. For each value of δ check that there are 1 stable and 2 unstable roots. 
What is the economic intuition for your result? 

 
2. For values of δ which satisfy the Blanchard-Kahn conditions, investigate how the 

solved-out equilibrium laws of motion depend on δ. Use the command real(x) to 
ignore any extremely small imaginary parts. 
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10. B-K conditions in 
      RBC model 
 
 
In exercise 6 you were asked to derive the state-space form of a real business cycle model. 
You should have obtained an algebraic equation of the form 
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The following M-file sets up the state-space form and solves for the Jordan decomposition 
for a simple calibration of the model. It is available for download at 
 

http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/ellison/boe/q10.m 
 

% Calibrated parameter values 
 
clear; 
beta=0.9; 
alpha=0.75; 
sigma=1; 
delta=0.3; 
rho=0.95; 
 
% Calculate steady-state values 
 
kbar=((1-(1-delta)*beta)/(alpha*beta))^(1/(alpha-1)); 
cbar=kbar^alpha-delta*kbar; 
ybar=kbar^alpha; 

 
% Define state space matrices 
 
A0=zeros(3,3); 
A0(1,1)=1-(1-delta)*beta; 
A0(1,2)=(1-(1-delta)*beta)*(alpha-1); 
A0(1,3)=-sigma; 
A0(2,2)=kbar; 
A0(3,1)=1; 
 
A1=zeros(3,3); 
A1(1,3)=-sigma; 
A1(2,1)=ybar; 
A1(2,2)=alpha*ybar+(1-delta)*kbar; 
A1(2,3)=-cbar; 
A1(3,1)=rho; 

 
B0=zeros(3,1); 
B0(3,1)=1; 
 

13



 
 
 
 
 
 
 
 
 
 
% Calculate alternative state space matrices 
 
A=inv(A0)*A1; 
B=inv(A0)*B0; 
 

 % Jordan decomposition of A 
 

[p,lambda] = eig(A); 
pstar = inv(p); 
 
% Sort eigenvalues and eigenvectors in ascending order 
 
val=diag(lambda); 
t=sortrows([val p’],1); 
lambda=diag(t(:,1)); 
p=t(:,2:4)’; 
pstar=inv(p); 

 
1. Are the Blanchard-Kahn conditions satisfied for this calibration of the model? If the 

eigenvalues are complex use abs(lambda) to obtain their magnitude.  
 

2. Can you find alternative calibrations for which the Blanchard-Kahn conditions do not 
hold? Use the command real(x) to ignore any extremely small imaginary parts. 
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11. Stylised facts 
       
 
 
This exercise asks you to calculate some stylised facts for the baseline model with 
persistent interest rate shocks. As a reminder, the state space form and recursive solution 
of the model are defined by 
 
 
 
 
  
 
 
 
 
 
 
The MATLAB M-file below calculates the state space form, performs the Jordan 
decomposition, and prints out the matrices of the recursive solution to the model. It can be 
downloaded from 
 

http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/ellison/boe/q11.m 
 

% Calibrated parameter values 
 
clear; 
beta=0.99; 
sigma=1; 
chi=1.55; 
eta=0; 
theta=2.064; 
omega=0.5; 
alpha=3; 
delta=1.5; 
rho=0.5; 
 
% Calculate kappa  
 
kappa=(1-omega)*(1-beta*omega)/(alpha*omega); 
 
% Define state space matrices 
 
A0=zeros(3,3); 
A0(1,1)=1; 
A0(2,2)=1; 
A0(2,3)=sigma^-1; 
A0(3,3)=beta; 
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A1=zeros(3,3); 
A1(1,1)=rho; 
A1(2,1)=sigma^-1; 
A1(2,2)=1; 
A1(2,3)=sigma^-1*delta; 
A1(3,2)=-kappa; 
A1(3,3)=1; 
 
B0=zeros(3,1); 
B0(1,1)=1; 
 
% Calculate alternative state space matrices 
 
A=inv(A0)*A1; 
B=inv(A0)*B0; 
 

 % Jordan decomposition of A 
 

[p,lambda]=eig(A); 
pstar=inv(p); 
 
% Sort eigenvalues and eigenvectors in ascending order 
 
val=diag(lambda); 
t=sortrows([val p’],1); 
lambda=diag(t(:,1)); 
p=t(:,2:4)’; 
pstar=inv(p); 
 
% Partition matrices 
 
LAMBDA1=lambda(1,1); 
LAMBDA2=lambda(2:3,2:3); 
 
P11=pstar(1,1); 
P12=pstar(1,2:3); 
P21=pstar(2:3,1); 
P22=pstar(2:3,2:3); 
 
R=pstar*B; 

 
 % Print out matrices of recursive solution of model 
 

real(inv(P11-P12*inv(P22)*P21)*LAMBDA1*(P11-P12*inv(P22)*P21)); 
real(inv(P11-P12*inv(P22)*P21)*R(1)); 
real(-inv(P22)*P21); 
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1. Using the above code as a starting point, simulate the model for n periods, where n is 
a large number such as 1000. To do this, begin by drawing random numbers (of unit 
variance) from a normal distribution for the interest rate innovations {εt} using the 
command et = randn(n,1). Next, simulate the backward-looking variables {wt} 
recursively using a for … end loop. Finally, calculate the forward-looking variables 
{yt} directly from the backward-looking variables {wt}. In this model, wt is the 
persistent shock vt to the interest rate and yt is a 2 × 1 vector of the output gap and 
inflation. 

 
2. Calculate the interest rate each period by applying the simple interest rate rule 

ttt vi += πδ ˆˆ . 
 

3. Calculate the standard deviations of the interest rate, output gap and inflation using 
the command std(x). To ameliorate the effect of starting values, only use simulated 
values from 100:(n-1). Do your calculated standard deviations agree with those given 
in the lecture? If not, why not? 

 
4. Calculate the correlations between the interest rate, output gap and inflation using 

the command corrcoef(X). This command calculates the correlation between the 
columns of X so define X as a 900 × 3 vector, in which the columns are the simulated 
interest rate, output gap and inflation respectively. 

 
5. Calculate the autocorrelation of the output gap. You can use the same command 

corrcoef(X) as before. This time, fill the first column of X with the simulated output 
gap observations from 100:(n-1) and the second column with simulated output gap 
observations from 99:(n-2). By doing this, you are calculating the correlation 
coefficient between the output gap at time t (the first column) and the output at time t-
1 (the second column). Calculating further autocorrelations is a simple generalization 
of this procedure. 

 
6. Calculate the cross correlation between the output gap and interest rates at lag 1 and 

lead 1. The simplest approach to doing this is to follow the procedure in part (5), 
although this time fill the second column of X with interest rate observations from 
99:(n-2) for the correlation between the output gap at time t and interest rates at time 
t-1, and interest rate observations for 101:n for the correlation between the output 
gap at time t and interest rates at time t+1. 
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12. Impulse response 
      functions 
 
 
This exercise is about impulse response functions, in our case the response of interest 
rates, the output gap and inflation to innovations εt+1 in the interest rate shock vt. The steps 
necessary to calculate the impulse responses are very similar to parts (1) and (2) of the 
previous exercise performed when simulating the model. In fact, if you want it is possible to 
recycle much of the code from the previous exercise when answering this question. The 
state space form and recursive solution of the model remain the same: 
 
 
 
 
  
 
 
 
 
 
 
As in the previous exercise, the starting point is a MATLAB M-file to calculate the state 
space form, perform the Jordan decomposition, and print out the matrices of the recursive 
solution to the model. The code below is identical to that in the previous exercise and can 
be downloaded from 
 

http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/ellison/boe/q12.m 
 

% Calibrated parameter values 
 
clear; 
beta=0.99; 
sigma=1; 
chi=1.55; 
eta=0; 
theta=2.064; 
omega=0.5; 
alpha=3; 
delta=1.5; 
rho=0.5; 
 
% Calculate kappa  
 
kappa=(1-omega)*(1-beta*omega)/(alpha*omega); 
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% Define state space matrices 
 
A0=zeros(3,3); 
A0(1,1)=1; 
A0(2,2)=1; 
A0(2,3)=sigma^-1; 
A0(3,3)=beta; 
 
A1=zeros(3,3); 
A1(1,1)=rho; 
A1(2,1)=sigma^-1; 
A1(2,2)=1; 
A1(2,3)=sigma^-1*delta; 
A1(3,2)=-kappa; 
A1(3,3)=1; 
 
B0=zeros(3,1); 
B0(1,1)=1; 
 
% Calculate alternative state space matrices 
 
A=inv(A0)*A1; 
B=inv(A0)*B0; 
 

 % Jordan decomposition of A 
 

[p,lambda]=eig(A); 
pstar=inv(p); 
 
% Sort eigenvalues and eigenvectors in ascending order 
 
val=diag(lambda); 
t=sortrows([val p’],1); 
lambda=diag(t(:,1)); 
p=t(:,2:4)’; 
pstar=inv(p); 
 
% Partition matrices 
 
LAMBDA1=lambda(1,1); 
LAMBDA2=lambda(2:3,2:3); 
 
P11=pstar(1,1); 
P12=pstar(1,2:3); 
P21=pstar(2:3,1); 
P22=pstar(2:3,2:3); 
 
R=pstar*B; 
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% Print out matrices of recursive solution of model 

 
real(inv(P11-P12*inv(P22)*P21)*LAMBDA1*(P11-P12*inv(P22)*P21)); 
real(inv(P11-P12*inv(P22)*P21)*R(1)); 
real(-inv(P22)*P21); 

 
1. Calculate the response up to horizon h of the output gap and inflation to a unit εt 

shock. To do this efficiently, define the shocks {εt} to be zero in all periods except the 
first by applying the pair of commands et = zeros(h,1) and et(1) = 1. The response of 
the backward-looking variables {wt} can be calculated recursively using a for … end 
loop. The forward-looking variables {yt} are calculated as before as a function of the 
backward-looking variables. Graph the impulse response functions of the output gap 
and inflation using the plot(x,y) command. Are the impulse response functions the 
same as those in the lecture? They should be! 

 
2. Calculate the impulse response function for the interest rate by applying the simple 

interest rate rule ttt vi += πδ ˆˆ . Add this to your graph. 
 

3. What is the impulse response function for the real interest rate? Use the ex post real 
interest rate as defined by tti π̂ˆ − . 

 
4. Investigate the consequences for the impulse response function of changing the 

degree of persistence ρ in the interest rate shock. What happens if ρ = 0? Do you 
appreciate now why we added this persistent shock to make the model more 
interesting? 
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13. FEVD 
       
 
 
This question is about calculating the forecast error variance decomposition in the simplest 
possible model. Unfortunately, the model is not very simple since we need to introduce an 
additional shock. FEVD only makes sense if we have more than one shock - in the one-
shock model we have looked at so far, the interest rate shock is responsible for 100% of the 
variance in each variable at any horizon (because it is the only shock!). 
 
To allow for a second shock in the system, we introduce persistent cost-push shocks in the 
Phillips curve. The model is therefore given by the following structural equations: 
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The two shocks vt and ut are AR(1) processes with shocks v

t 1+ε  and u
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The state-space form of the model is as follows: 
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We calibrate the model with four additional parameters. The calibration of the other 
parameters is the same as before. 
 

Parameter Calibrated value Explanation 
 

ρv 0.5 Persistence of interest rate shocks 
ρu 0.8 Persistence of cost-push shocks 
vσ  1 Standard deviation of interest rate shocks 

uσ  0.5 Standard deviation of cost-push shocks 
 
The following M-file sets up the state-space form, solves for the Jordan decomposition of 
the model, and calculates the impulse response functions. The impulse response functions 
are stored in two variables, irf_v and irf_u. irf_v is a 4 × 25 matrix which shows the response 
of ( )'ˆˆ tttt xuv π  to a unit v

tε  shock over the horizons 1 to 25. Each column of irf_v 
corresponds to a different horizon. irf_u is a similar 4 × 25 matrix for the response to a unit 
u
tε  shock. The M-file is available for download at 

 
http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/ellison/boe/q13.m 
 
% Calibrated parameter values 
 
clear; 
beta=0.99; 
sigma=1; 
chi=1.55; 
eta=0; 
theta=2.064; 
omega=0.5; 
alpha=3; 
delta=1.5; 
rhov=0.5; 
rhou=0.8; 
sigmav=1; 
sigmau=0.5; 
 
% Calculate kappa  
 
kappa=(1-omega)*(1-beta*omega)/(alpha*omega); 
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% Define state space matrices 
 
A0=zeros(4,4); 
A0(1,1)=1; 
A0(2,2)=1; 
A0(3,3)=1; 
A0(3,4)=sigma^-1; 
A0(4,4)=beta; 
 
A1=zeros(4,4); 
A1(1,1)=rhov; 
A1(2,2)=rhou; 
A1(3,1)=sigma^-1; 
A1(3,3)=1; 
A1(3,4)=sigma^-1*delta; 
A1(4,2)=-1; 
A1(4,3)=-kappa; 
A1(4,4)=1; 
 
B0=zeros(4,2); 
B0(1,1)=1; 
B0(2,2)=1; 
 
% Calculate alternative state space matrices 
 
A=inv(A0)*A1; 
B=inv(A0)*B0; 
 

 % Jordan decomposition of A 
 

[p,lambda]=eig(A); 
pstar=inv(p); 
 
% Sort eigenvalues and eigenvectors in ascending order 
 
val=diag(lambda); 
t=sortrows([val p’],1); 
lambda=diag(t(:,1)); 
p=t(:,2:5)’; 
pstar=inv(p); 
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% Partition matrices 
 
LAMBDA1=lambda(1:2,1:2); 
LAMBDA2=lambda(3:4,3:4); 
 
P11=pstar(1:2,1:2); 
P12=pstar(1:2,3:4); 
P21=pstar(3:4,1:2); 
P22=pstar(3:4,3:4); 
 
R=pstar*B; 

 
 % Calculate impulse response functions 
 

h=20; 
irf_v=zeros(4,h); 
irf_u=zeros(4,h); 
irf_v(1:2,1)=inv(P11-P12*inv(P22)*P21)*R(1:2,:)*[1;0]; 
irf_u(1:2,1)=inv(P11-P12*inv(P22)*P21)*R(1:2,:)*[0;1]); 

 
i=1; 
for i=1:(h-1); 

irf_v(1:2,i+1)=inv(P11-P12*inv(P22)*P21)*LAMBDA1*(P11- 
   P12*inv(P22)*P21)*irf_v(1:2,i); 

  irf_u(1:2,i+1)=inv(P11-P12*inv(P22)*P21)*LAMBDA1*(P11- 
   P12*inv(P22)*P21)*irf_u(1:2,i); 

 end; 
 

irf_u(3:4,:)=-inv(P22)*P21*irf_u(1:2,:); 
irf_v(3:4,:)=-inv(P22)*P21*irf_v(1:2,:); 

 
irf_v=real(irf_v); 
irf_u=real(irf_u); 
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1. Verify your understanding of the M-file by plotting the response of the output gap and 
inflation to the two different types of shocks. Note that the shock in each case is 
normalised to 1, not to one standard deviation. It is probably more informative to use 
the subplot option to generate a different graph for each set of impulse response 
functions. 

 
2. Calculate the impulse response function of the interest rate to each shock using the 

formula ttt vi += πδ ˆˆ . Add these to the graphs. 
 

3. Calculate the forecast error variance decomposition of output at horizons up to h = 
10. As the FEVD is a simple transform of the impulse response functions, it is 
relatively straightforward to use a for … end loop to apply the relevant formula: 
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For each value of h from 1 to 10 in the for … end loop, sum the squares of the 
relevant elements of irf_v and irf_u. The FEVD should be calculated from these two 
sums, weighted by the corresponding variances of the shocks. Graph your results. 
 

4. Calculate the FEVD for inflation and interest rates and compare them to the results 
obtained for output. 

 
5. Investigate how the results change as the relative persistence and/or the relative 

variance of the two shocks changes. 
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14. Multi-shock 
      DSGE model 
 
 
In this exercise you are required to analyse a version of the baseline DSGE model in which 
there are three shocks: interest rate shocks, cost-push shocks and aggregate demand (IS) 
shocks. In the analysis you should be able to recycle a lot of the code used before, most 
notably from exercises 11 to 13. The basic structure of the model is the same as before, 
consisting of a dynamic IS curve, a Phillips curve, and a simple rule for monetary policy. 
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The three shocks are assumed to be independent AR(1) processes given by 
 
 

 
  
 
 
The model is calibrated as before, with the only additional parameters to calibrate being 
those relating to the shock processes. For completeness, the full calibration is reported 
below: 
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Parameter Calibrated value Explanation 
 

β 0.99 Discount rate 
σ 1 Intertemporal elasticity of substitution 

in consumption 
ω 0.5 Percentage of firms unable to change 

their price each period 
α 3 (1/α) is elasticity of wages w.r.t output 

gap 
δ 1.5 Coefficient on inflation in simple rule 

for interest rate 
ρv 0.5 Persistence of interest rate shocks 
ρu 0.8 Persistence of cost-push shocks 
ρg 0.3 Persistence of AD shocks 
vν  1 Standard deviation of interest rate 

shocks 
uν  0.5 Standard deviation of cost-push 

shocks 
uν  1 Standard deviation of AD shocks 

 
1. Substitute out for the interest rate in the IS curve and write down the state-space 

form of the model 10110 ++ += tttt BXAXEA ε . You should find that Xt is a 5×1 vector 
( )'ˆˆ ttttt xguv π  and εt is a 3×1 vector ( )'111

g
t

u
t

v
t +++ εεε . The parameter matrices 

A0, A1 and B0 are of dimension 5×5, 5×5 and 5×3 respectively. 
 

2. Invert the state space form into the alternative specification 11 ++ += tttt BAXXE ε  and 
perform the Jordan decomposition of the 5×5 matrix A. Check that the Blanchard-
Kahn conditions are satisfied. As there are three backward-looking variables 
( )ttt guv  and two forward-looking variables ( )ttx π̂ˆ  in the model, you should 
have three stable eigenvalues of magnitude less than 1 and two unstable 
eigenvalues of magnitude greater than 1. 
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3. Partition the Xt vector into backward-looking variables ( )'~
tttt guvw =  and forward 

looking variables ( )'ˆˆ~
ttt xy π= . Partition also the matrices Λ and P from the Jordan 

decomposition. Calculate the solution for the equilibrium behaviour of the economy 
using the equations 

 
 
 
 
 

4. Calculate via simulation a series of stylised facts which summarise the behaviour of 
this model economy. Pay particular attention to the correlations and cross-
correlations between variables, which are no longer ±1 because there are many 
shocks hitting the economy. Do the signs of the correlations match with your 
expectations based on the behaviour of the UK economy? If not, why do you think 
the model and data are different? How (heuristically) would you change the model to 
better match UK data? 

 
5. Derive the responses of interest rates, the output gap and inflation to the three 

different shocks. Explain the intuition for the response of each variable to each type 
of shock. 

 
6. Which of the three shocks contributes most to fluctuations in interest rates, the output 

gap and inflation? The key to answering this is to perform a forecast error variance 
decomposition for the three variables. As a reminder, the relevant formula is 
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7. Assume that the welfare of agents in the economy can be measured by the function  

 
 
 
 

Which type of shock is most detrimental to welfare in this economy? 
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15. DSGE model 
      with persistence 

 
 

This exercise is about the effects of introducing ad hoc persistence factors in the baseline 
model. Doing so is particularly prevalent in policy circles, following the lead of authors such 
as Del Negro-Schorfeide and Smets-Wouters. The persistence factors introduce extra 
lagged terms in the dynamic IS equation and the Phillips curve. 
 

 
 

 
 
 
 
 

 
 
 
 

Since we are attempting to explain the persistence of the output gap and inflation by the 
lagged terms, it no longer makes sense to have persistent interest rate shocks. We 
therefore proceed with interest rate shocks being white noise.  
 
 
 
The calibration of the economy is standard, except for the parameters on lagged 
endogenous variables in the IS and Phillips curves. As a baseline, we take the numbers 
estimated by Smets-Wouters for the euroarea economy. The full calibration is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

αω
βωωκ

πδ

κπ
βγ
βπ

βγ
γ

π

πσ

)1)(1(

ˆˆ

ˆˆ
1

ˆ
1

ˆ

)ˆˆ(ˆ
1

1ˆ
1

ˆ

11

1
1

11

−−
=

+=

+
+

+
+

=

−−
+

+
+

=

+−

+
−

+−

ttt

ttt
p

t
p

p
t

ttttttt

vi

xE

EixE
h

x
h
hx

11 ++ = ttv ε

29



 
       
 
 

Parameter Calibrated value Explanation 
 

β 0.99 Discount rate 
σ 1 Intertemporal elasticity of 

substitution in consumption 
ω 0.5 Percentage of firms unable to 

change their price each period 
α 3 (1/α) is elasticity of wages w.r.t 

output gap 

h
h
+1

 0.35 Coefficient on lagged output gap 
in IS curve 

h+1
1  0.65 Coefficient on expected future 

output gap in IS curve 

p

p

βγ
γ
+1

 
0.29 Coefficient on lagged inflation in 

Phillips curve 

pβγ
β

+1
 0.7 Coefficient on expected future 

inflation in Phillips curve 

δ 1.5 Coefficient on inflation in simple 
rule for interest rate 

2
εσ  1 Variance of interest rate shocks 

vρ  0 Persistence of interest rate 
shocks 

 
1. Substitute out for the interest rate and 11 ++ = ttv ε  in the IS curve and write down the 

state-space form of the model 10110 ++ += tttt BXAXEA ε . You should find that Xt is a 
4×1 vector ( )'ˆˆˆˆ 11 tttt xx ππ −−  and εt is a 1×1 vector ( )1+tε . Two of the equations in 
the state-space form simply connect the second and third terms ( )'ˆˆ ttx π  of Xt+1 to 
the fourth and fifth terms ( )'ˆˆ ttx π  of Xt, for example the first and second rows of the 
state-space form take on the following form: 
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The parameter matrices A0, A1 and B0 are of dimension 4×4, 4×4 and 4×1 
respectively. 

 
2. Invert the state space form into the alternative state space form 11 ++ += tttt BAXXE ε  

and perform the Jordan decomposition of the 4×4 matrix A. Check that the 
Blanchard-Kahn conditions are satisfied. As there are two backward-looking 
variables ( )11 ˆˆ −− ttx π  and two forward-looking variables ( )ttx π̂ˆ  in the model, you 
should have two stable eigenvalues of magnitude less than 1 and two unstable 
eigenvalues of magnitude greater than 1. 

 
3. Partition the Xt vector into backward-looking variables ( )'ˆˆ~

11 −−= ttt xw π  and forward 
looking variables ( )'ˆˆ~

ttt xy π= . Partition also the matrices Λ and P from the Jordan 
decomposition. Calculate the solution for the equilibrium behaviour of the economy 
using the equations 

 
 
 
 
 
4. Calculate via simulation a series of stylised facts which summarise the behaviour of 

this model economy. Pay particular attention to the autocorrelations of the output gap 
and inflation. How do these autocorrelations change as the degree of calibrated 
persistence in the IS and Phillips varies from 0 to close to 1? 

 
5. Derive the responses of interest rates, the output gap and inflation to the interest rate 

shock for different calibrations of the persistence parameters. What degree of 
persistence is needed to come close to your view of the degree of persistence of 
inflation and the output gap in the UK economy? 
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16. Optimised 
      Taylor rule 

 
 

This final exercise takes you through the steps necessary to optimise the coefficients on a 
simple Taylor rule. The structure of the economy is given as before by a dynamic IS curve 
and Phillips curve, with a Taylor rule for monetary policy. 
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The interest rate, cost-push and AD shocks are assumed to be an AR(1) processes 
 
  
 
 
 
 
The aim of monetary policy is assumed to be minimisation of a weighted average of the 
variances of inflation, the output gap and interest rates. A suitable objective function is 
therefore 
 
 
 
 
where λx and λi  are suitable weights. A full calibration of the economy is given below. 
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1. Substitute out for the interest rate in the IS curve and write down the state-space 

form of the model 10110 ++ += tttt BXAXEA ε  for given Taylor rule parameters. You 
should find that Xt is a 5×1 vector ( )'ˆˆ ttttt xguv π  and εt is a 3×1 vector 
( )'111

g
t

u
t

v
t +++ εεε . The parameter matrices A0, A1 and B0 are of dimension 5×5, 5×5 

and 5×3 respectively. 
 
2. Set up a grid for the parameters in the Taylor rule. You will need a row vector indx = 

0:0.1:2 to act as an index for the grid points, varying from 0 to 2 in steps of 0.1. 
 
 
 
 
 
 
 
 
 

Parameter Calibrated value Explanation 
 

β 0.99 Discount rate 
σ 1 Intertemporal elasticity of substitution in 

consumption 
ω 0.5 Percentage of firms unable to change their 

price each period 
α 3 (1/α) is elasticity of wages w.r.t output gap 
vρ  0.5 Persistence of interest rate shocks 

uρ  0.5 Persistence of cost-push shocks 

gρ  0.5 Persistence of AD shocks 

vυ  1 Standard deviation of interest rate shocks 

uυ  1 Standard deviation of cost-push shocks 

gυ  1 Standard deviation of AD shocks 

xλ  0.1 Weight on output gap variance in objective 
function 

iλ  1 Weight on interest rate variance in objective 
function 
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3. Proceed to check the Blanchard-Kahn conditions for each combination of Taylor rule 

parameters. The easiest way to do this is to loop through the combinations by a pair 
of nested for … end loops. 

 
for i = 1:21 
 for j = 1:21 
 
 % Your code to check Blanchard-Kahn conditions 
 % for πδ = indx(i) and xδ = indx(j) 
 
 end 
end 

 
For each combination of Taylor rule parameters indexed by i and j, calculate the state 
space form 10110 ++ += tttt BXAXEA ε , recycling the code in part 1. Invert the state 
space form into the alternative state space form 11 ++ += tttt BAXXE ε  and perform the 
Jordan decomposition of the 5×5 matrix A. Check that the Blanchard-Kahn conditions 
are satisfied. As there are three backward-looking variables ( )ttt guv  and two 
forward-looking variables ( )ttx π̂ˆ  in the model, you should have three stable 
eigenvalues of magnitude less than 1 and two unstable eigenvalues of magnitude 
greater than 1. If the Blanchard-Kahn conditions are satisfied for parameters indexed 
by i and j, then store the value 1 in the ith row and jth column of a matrix bkij. 
Otherwise store 0 in bkij. Storing 1 or 0 in bkij can be achieved easily using the if … 
else … end statements. 
 

4. Graph a surface plot of the matrix bkij using the command surface(indx,indx,bkij). 
The combinations of Taylor rule parameters for which the Blanchard-Kahn conditions 
hold should appear in a different colour than those for which it fails. Can you explain 
why the region where the Blanchard-Kahn conditions are satisfied is shaped how it 
is? 
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5. The mathematical condition for the Blanchard-Kahn conditions to hold under a 

general Taylor rule is 0)1()1( >−+− xδβδκ π . Do your numerical results confirm this? 
Do your results shed any further light on the results obtained in exercise 9? 

 
6. Simulate the economy for all combinations of Taylor rule parameters that satisfy the 

Blanchard-Kahn conditions. There are two obvious ways to do this. Firstly, you could 
loop through all combinations i and j of parameters using a double for … end loop 
again, performing a simulation only for those combinations for which bkij is equal to 
1. Alternatively, you can combine checking the Blanchard-Kahn conditions and 
simulating in the same loops - simply include the simulation in the branch of the if … 
else … end that is selected when the Blanchard-Kahn conditions are satisfied. 

 
To simulate the economy for relevant Taylor rule parameters, you will need to 
partition the Xt vector into backward-looking variables ( )'~

tttt guvw =  and forward 
looking variables ( )'ˆˆ~

ttt xy π= . Partition also the matrices Λ and P from the Jordan 
decomposition and calculate the solution for the equilibrium behaviour of the 
economy using the equations 

 
 
 
 
 

For each combination of Taylor rule parameters, simulate the economy and calculate 
the variance of simulated inflation, output gap and interest rates. Unconditional 
expected welfare is then a weighted average 2

ˆ
2
ˆ

2
ˆ iixx σλσλσπ ++  of these variances. 

Store this number in the ith row and jth column of a matrix lossij. If the Blanchard-
Kahn conditions are not satisfied for the row i and column j combination then store a 
very high value such as +9999 in lossij.  
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7. Calculate the optimal combination of Taylor rule parameters. The best combination is 

that which minimises the loss in lossij. To find out the location of the minimum, use 
the MATLAB command [C, I] = max(-lossij) to find the indices of the minimum. The 
optimal Taylor rule parameters can then be read off from the elements of I using the 
indx vector. Do the parameters you obtain look familiar? 

 
8. This approach to optimisation is rather slow because it relies heavily on brute force to 

find the optimal coefficients. A lot of time is wasted particularly in simulating the 
economy for each combination of Taylor rule parameters. One way to speed up the 
process is to recognise that, for each parameter combination, the equilibrium law of 
motion for the economy is linear: 

 
 

 
 

Due to linearity, we can derive the variances of yt and wt directly, without simulation. 
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Use these analytical formulae to replace the simulations in your code. Do you get the 
same results? How much faster is the search for the optimal Taylor rule coefficients 
now? 
 

9. Investigate how the optimised Taylor rule coefficients change with the parameters of 
the model. 
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