Discussion of

“The Taylor Principle in a New Keynesian Model with Capital Accumulation, Government Debt Dynamics and non-Ricardian Consumers”

by Campbell Leith and Leopold von Thadden

Martin Ellison
University of Warwick and CEPR

6th Annual Bank of Finland/CEPR Conference, Helsinki, May 2004
Motivation

Conference

The Implications of Alternative Fiscal Rules for Monetary Policy

⇒ very intuitively appealing

Paper

The Taylor Principle in a New Keynesian Model with Capital Accumulation, Government Debt Dynamics and non-Ricardian Consumers

⇒ very interesting issue
What’s the framework?

• Stripped down New Keynesian model
 - consumers optimise
 - firms optimise subject to Calvo contracts in prices
 - labour markets perfectly competitive
 - no real rigidities, habit formation or capital adjustment costs

2. Non-Ricardian consumers
 - Blanchard-Yaari model of perpetual youth

3. Monetary and fiscal policy
 - monetary rule
 - government budget constraint and fiscal rule
What question is addressed?

Intuition 1: Taylor principle

\[f^M > 1 \; \text{in} \; \ r_t = r + f^M (\pi_t - \pi) \] to achieve determinacy.

Intuition 2: Taylor-Leeper conjecture

\[f^M > 1 \; \text{in} \; \ r_t = r + f^M (\pi_t - \pi) \] and
\[f^F < 1 \; \text{in} \; \tau_t = \tau + f^F (l_t - l) \] to achieve determinacy

Intuition 3: Dupor conjecture

\[f^M < 1 \; \text{in} \; \ r_t = r + f^M (\pi_t - \pi) \] to achieve determinacy if we include capital as a state variable.
And the answer?

Intuition 4: Leith-von Thadden conjecture

Need $f^M > 1$ in $r_t = r + f^M (\pi_t - \pi)$ and $f^F < 1$ in $\tau_t = \tau + f^F (l_t - l)$ to achieve determinacy if we include capital as a state variable and consumers are non-Ricardian.
Comment on the modelling strategy
(with endogenous labour supply)

Blanchard-Yaari framework
- consumers face constant probability of death ξ
- new cohort of size ξ born each period
- some consumers are very old and have large “nonhuman” wealth

Utility function
\[
\int_{t}^{\infty} \left[\ln c_{s}^{j} + \chi \ln \left(\frac{M_{s}^{j}}{p_{s}} \right) - \eta n_{s}^{j} \right] \exp\left(- (\xi + \theta)(s - t) \right) ds
\]
- leisure is a normal good
- consumption is a non-normal good
- very old consumers demand lots of leisure
- some consumers have negative labour supply
Comment on question addressed

Intuition 3: Dupor conjecture

Need $f^M < 1$ in $r_t = r + f^M (\pi_t - \pi)$ to achieve determinacy if we include capital as a state variable.

Standard New Keynesian model, continuous time, endogenous capital

- Suppose Taylor principle holds
- Consider shock to inflation
- Central bank raises real interest rate in response to shock
- By arbitrage, return on capital must also rise
- Capital stock predetermined
- Aggregate demand and/or labour supply must rise
- Inflation rises

\Rightarrow self-confirming equilibrium and indeterminacy
Comment on question addressed

But Dupor result is not robust

- does not appear to hold in discrete time
- Li (2002, Princeton)
- in discrete time, capital stock has time to fall to increase return to capital
- normal Taylor principle applies

In this respect, Leith and von Thadden is using a sledgehammer to crack a nut
Final remarks

Paper has potential to answer some interesting questions

Need to address problem of negative labour supply
 - Change utility function, see Ascari and Rankin (ECB wp)

Most interesting problem is probably not one of indeterminacy