
Chapter 9

Monetary policy rules

9.1 Motivation

So far in the course the focus has been on constructing stochastic dynamic general equilibrium models which

match various characteristics observed in the data. To some extent this has been successfully achieved so

we now proceed to consider how monetary policy itself should be designed. We are able to do this because

the models that have been developed are derived from fairly solid microfoundations, in other words we do

not fall foul of the Lucas critique. In this lecture we assess different rules for setting monetary policy.

9.2 Key readings

Rotemberg andWoodford (1998) “Interest-Rate Rules in an Estimated Sticky Price Model”NBERWorking

Paper, No. 6618

Taylor (1993) “Discretion Versus Policy Rules in Practice”, Carnegie-Rochester Conference Series on

Public Policy, 39, 195-214

9.3 Related reading

Chow (1980) Analysis and Control of Dynamic Economic Systems, Wiley

Hansen and Sargent (2001) “Robust Control and Model Uncertainty”, mimeo

Levin, Wieland and Williams (1998) “Robustness of Simple Monetary Policy Rules under Model Un-

certainty”, NBER Working Paper, No. 6570

Rotemberg and Woodford (1998) “An Optimization-Based Econometric Framework for the Evaluation

of Monetary Policy: Expanded Version”, NBER Technical Working Paper, No. 233

Tetlow and von zur Muehlen (1999) “Simplicity Versus Optimality: the choice of monetary policy

rules when agents must learn”, Board of Governors of the Federal Reserve System Finance and Economics

Discussion Series, No. 1999-10
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9.4 An optimising framework

The paper by Rotemberg andWoodford (1998) pulls together many of the theoretical issues we have studied

so far. At the heart of their framework is a dynamic IS curve based on intertemporal maximisation and

an aggregate supply curve based on the sticky prices in the New Keynesian Phillips curve. Rather than

assuming a cash-in-advance constraint and facing the problems of generating substantial liquidity effects,

they jump directly to a formulation in which the instrument of monetary policy is the interest rate itself.

The central bank is assumed to set interest rates as a function of past rates, current and past inflation and

current and past values of the output gap. In other words, interest rates are set according to a rule of the

form in equation (9.1).

rt = r
∗ +

nrP
k=1

µk (rt−k − r∗) +
nπP
k=0

φk (πt−k − π∗) +
nyP
k=0

θk (yt−k − y∗) (9.1)

In this equation the central bank is constrained to react linearly to current and past economic variables.

However, as we will see later this is not a binding constraint because rules such as (9.1) (subject to including

a sufficient number of lags) encompass the optimal monetary policy.

Rotemberg and Woodford (1998) have a neat way of calibrating their model. They wish to cali-

brate/estimate their theoretical model to match the variances of the three endogenous variables: interest

rates, inflation and output. The trick is to recognise that these variances can be completely described by (i)

the variances of the fundamental disturbances and (ii) the impulse responses of the three variables to the

fundamental disturbances. Hence, instead of matching variances directly, they match the impulse response

functions of the structural model to those estimated using a simple structural vector autoregression. This

approach has the considerable advantage that shocks in the model have effects similar to those observed

in the data, for example Figure 9.1 shows the estimated and theoretical responses of output to a monetary

policy shock.

Figure 9.1: Responses of output to a monetary policy shock in the model and data.

The dynamic IS curve, the aggregate supply curve and the interest rate rule (9.1) completely describe

the structure of the economy. However, in order to decide on what is the best monetary policy, i.e. what

58



the µ, φ and θ coefficients in the monetary policy rule should be, we need to define some target for what

monetary policy is trying to achieve. Traditionally, it has been assumed that monetary policy should

minimise some quadratic loss function (9.2), where losses are caused by inflation or output being away

from their respective targets. χ is the relative weight placed on inflation variability relative to output

variability.

L =
∞P
t=0
βt
h
(yt − y∗)2 + χ (πt − π∗)2

i
(9.2)

This is not a completely satisfactory objective for a central bank. If the model is micro-founded on

the basis of a representative optimising agent then maximising the welfare of that agent is the appropriate

target for central bank policy. In an important innovation, Rotemberg and Woodford (1998) do exactly

this and derive the central bank’s objective function directly from the welfare of the representative agent.

They begin with the utility function (9.3), in which welfare depends on the expected utility of consumption

ct and the expected disutility of the work needed to produce output yt in each state of the world z.

W = E

½
u(ct)−

1R
0

v(yt(z))dz

¾
(9.3)

Rotemberg and Woodford (1998) take a second order Taylor series approximation of this to give an

objective function of the form (9.4).

W = −Ω
³
L+ π∗

2
´

L = var(πt) + ψ
−1var(πt −Et−2πt) + Λvar {Et−1(ŷt − yst } (9.4)

This is similar in structure to the ad hoc quadratic loss function (9.2), although the match is not perfect.

If the central bank did minimise (9.2) then there is no guarantee that the welfare of the representative agent

(9.4) would be maximised. In this framework the problem of the central bank is to choose the monetary

policy which maximises the welfare of the representative agent (9.4) subject to the dynamic IS curve and

the New Keynesian aggregate supply curve. The objective (9.4) is quadratic and the constraints can be

log-linearised so the problem is in the standard form of linear-quadratic control. For this type of problem,

it is possible to show that the optimal monetary policy is indeed of the form shown in Equation (9.1), with

interest rates reacting linearly to interest rates, inflation and the output gap. In other words, Equation

(9.1) does describe the optimal policy and the problem of the central bank reduces to that of finding the

correct coefficients µ, φ and θ and the correct lags nr, nπ and ny for the monetary policy rule.1

9.5 Optimal monetary policy

The full optimal rule as calculated by Rotemberg and Woodford (1998) is shown in Equation (9.5).

1For more details of how this is done using the Matrix Riccati equation see Chow (1980), pp. 156-160.
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r̂t = 0.29r̂t−1 + 0.42r̂t−2 + 1.28r̂t−3 + 0.22ŷt−1 − 0.25ŷt−2 + · · ·
+0.16π̂t + 1.00π̂t−1 + 2.45π̂t−2 − 1.45π̂t−3 + 0.74π̂t−4
−0.08π̂t−5 + 0.25π̂t−6 + 0.33π̂t−7 + 0.23π̂t−8 + 0.25π̂t−9
+0.19π̂t−10 + 0.17π̂t−11 + 0.13π̂t−12 + 0.19π̂t−13 + 0.06π̂t−14 + · · · (9.5)

The omitted terms in ŷt−j are all of size smaller than 0.01 and the omitted terms in π̂t−j are all of size

0.03 or smaller. If coefficients of 0.0001 were to be included then the optimal policy would need 18 lags of

output and 49 lags of inflation. Such complexity raises obvious questions about the operational feasibility

of fully optimal monetary policy rules such as (9.5).

9.6 Simple monetary policy rules

In contrast to the complex monetary policy rules outlined above, Taylor (1993) suggested a very simple

rule for setting interest rates (9.6).

it = 0.5yt + 1.5πt (9.6)

This paper has been enormously influential, generating a whole industry of research. As Taylor himself

comments, it is simple enough to put on the back of a business card. Interest rates are set according to the

current output gap and inflation. Clearly such a rule is not optimal so why would a central bank ever want

to follow this rule? One answer is that it may be a good approximation to the optimal rule. It is certainly

a fair approximation to the behaviour of the Federal Reserve Board over the past forty years. Figure 9.2

shows the path of the actual Federal funds rate (the key instrument for monetary policy in the US) and the

rate that would have prevailed if monetary policy had followed the Taylor rule. The two series match each

other quite well, especially bearing in mind the considerable difficulties involved in obtaining a reasonable

estimate of the current output gap. This evidence suggests that the Taylor rule is a good approximation

of the behaviour of the Fed. Whether that implies optimality depends on whether the Fed is believed to

have acted optimally over the period.
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Figure 9.2: The Federal funds rate and Taylor rule based interest rate.

In addition to matching the behaviour of the Federal Reserve Board, simple rules have several other

desirable features. We will consider two possibilities: robustness and transparency.

9.7 Robustness

In optimal control theory, policies are distinguished between the good, the bad and the optimal. The

complex rule calculated for the Rotemberg-Woodford economy is an example of an optimal rule, the

question remains whether it is a good or bad rule. In the context of the Rotemberg-Woodford framework

it is a good rule - in fact the best by definition. However, if the economy is not well characterised by the

Rotemberg-Woodford model (maybe the economy is not New Keynesian after all) then the optimal policy

could turn out to be a very bad policy. What the policy maker would really like is a policy rule which

performs well across a wide range of models and in a variety of situations. Such a rule would be robust to

errors made in the specification of the underlying model. A recent paper by Levin, Wieland and Williams

(1998) assesses whether the Taylor rule may be a good rule in this sense. They analyse the performance

of a modified Taylor rule against more complex rules across three different underlying models (the Taylor

Multi-Country model (TMCM), the MSR model of Orphanides and Wieland, and the FRB staff model).

Their first step is to calculate the optimal weights for a modified Taylor rule in the FRB model, resulting

in the rule (9.7).

rt = rt−1 + 0.8(πt − π∗) + 1.0yt (9.7)
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This rule is then applied to each model in turn and compared to what could have been achieved if the

Taylor rule had been fine-tuned to each model. The results are shown in Table 9.1.

Model
Loss with Taylor rule

fine-tuned to model

Loss with Taylor rule

fine-tuned to FRB model
Difference

TMCM 3.61 3.64 0.03

MSR 0.33 0.33 0.00

FRB 2.02 2.02 0.00

Table 9.1: Robustness of Taylor rules

The results indicate that the Taylor rule gives a robust performance in the face of specification error.

Even the worst-case scenario, a Taylor rule tuned to the FRB model when the correct model is the Taylor

Multi-Country model (TMCM), does not lead to large welfare losses. We now turn our attention to the

extent to which more complex rules are similarly robust to model misspecification. The computational

burden of calculating such rules is considerable so Levin, Wieland and Williams (1998) restrict themselves

to 12-parameter or 8-parameter rules. To give an example, they calculate a 12-parameter rule optimised

for the MSR model and apply it to both the FRB and TMCM models. The results are shown in Table 9.2.

Model
Loss with optimal rule

fine-tuned to MSR model

TMCM 3.78

MSR 0.16

FRB 1.92

Table 9.2: Robustness of optimal rules

Fine-tuning the monetary policy rule to the MSR model leads to a significant reduction in loss if the

MSR model is the correct specification. The loss falls from 0.33 in Table 9.1 to 0.16 in Table 9.2. However,

if there is misspecification and the TMCM is really the correct model then this optimal rule performs worse

than the Taylor rule. The loss in Table 9.1 under the FRB Taylor rule was only 3.64 but the loss with

the optimal MSR rule rises to 3.78 in Table 9.2. In this sense the optimal policy is not robust to model

misspecification. It is bad rather than good.

The analysis of Levin, Wieland and Williams (1998) has been criticised because the models it considers

are all rather similar. In such an analysis it is not surprising that generally all monetary policy rules are
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quite robust. A more satisfactory approach is to formally search for robust policies across well-defined

misspecifications. According to robust control theory, the best policy is a min-max strategy, which effec-

tively entails choosing the policy action which gives the least costly (i.e. leads to the smallest deviation of

inflation from target) worst outcome, given an assumption about the range of misspecifications that may

occur. Recent work by Hansen and Sargent (2001) and others has developed these ideas more fully.

9.8 Transparency

One further advantage of a simple monetary policy rule is that it is easily understood. Private agents are

able to quickly learn the policy of the central bank, an issue examined by Tetlow and von zur Muehlen

(1999). They consider rules of the type (9.8) in a Fuhrer-Moore type model.

rt = rr
∗ +Et−1πt + βR(Rt−1 − πt−1) + βπ(πt−1 − π∗) + βyyt−1 + ut (9.8)

A simple Taylor rule is equal to equation (9.8) with the added restrictions βR = 0 and βπ = βy = 0.5.

This rule is then compared with optimal 2-parameter rules (with βR = 0) and optimal 3-parameter rules.

In steady-state there is full information and rational expectations so private agents know the parameters of

the rule in force. For this case the expected losses are given in Table 9.3, where losses have been normalised

by the loss under the optimal 3-parameter rule.

Rules Loss

Taylor 1.58

Optimal 2-parameter 1.02

Optimal 3-parameter 1.00

Table 9.3: Steady-state losses under different policy rules

In steady-state it is obvious which rule is the best: the optimal rule is optimal. Now, though, consider

a central banker who inherits one of the policy rules. Is it profitable to switch to a new policy rule which

gives better steady-state performance? The answer depends on how quickly private agents are able to

learn the new coefficients in the policy rule and the costs incurred during the learning process. Learning

is not instantaneous since there is always some random noise ut in the policy rule which disguises the

policy maker’s true intended actions. Tetlow and von zur Muehlen (1999) report simulation evidence for

the welfare cost of switching between different monetary policy rules. Table 9.4 highlights some of their

results.
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Switch Percentage change in loss

Taylor ⇒ Optimal 2-parameter - 18 %

Taylor ⇒ Optimal 3-parameter - 13 %

Optimal 2-parameter⇒ Optimal 3-parameter + 4 %

Table 9.4: Welfare consequences of changing the monetary policy rule

The simulations show that it is always beneficial to switch away from the Taylor rule. However, there

are larger gains in terms of reduced welfare loss in switching to an optimal 2-parameter rule than an optimal

3-parameter rule. This is because the 2-parameter rule is easier for private agents to learn. Even though in

steady-state the 3-parameter rule does better, the costs of introducing it (due to private agents having to

go through a protracted learning process) are higher than for introducing the 2-parameter rule. Similarly,

if the central bank inherits a 2-parameter rule then there are no incentives to switch to the 3-parameter

rule, even though it is better in the long run. Such results may explain why simple rules have gained so

much favour.
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