
Chapter 10

Monetary policy under uncertainty

10.1 Motivation

In recent times it has become increasingly common for central banks to acknowledge that the do not have

perfect information about the structure of they economy they are attempting to control. There may be

uncertainty surrounding the precise values of the key parameters of the model or, at a deeper level, there

may be fundamental uncertainties regarding which is the correct model. In this lecture we concentrate

on parameter uncertainty and discuss how the nature of monetary policy changes when such uncertainty

is formally accounted for. The models we use will be static and quite stylised to highlight the precise

mechanisms in action.

10.2 Key readings

Brainard (1967) “Uncertainty and the Effectiveness of Policy”, American Economic Review Papers and

Proceedings, 57, 411-425.

Sack (2000) “Does the fed act gradually? A VAR analysis”, Journal of Monetary Economics, 46, 229-

256.

10.3 Related reading

Shellekens (2000) “Caution and Conservatism in the Making of Monetary Policy”, European Central Bank

Working Paper, No. 25

Theil (1958) Economic Forecasts and Policy, North-Holland Amsterdam

Tinbergen (1952) On the Theory of Economic Policy, North-Holland Amsterdam
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10.4 Certainty equivalence

If the uncertainty faced by the central bank takes a particularly simple form then the optimal policy of the

central bank is to behave “as if” everything was known with certainty. This will typically be the case if the

only source of uncertainty is an additive error term. Equation (10.1) describes a monetary transmission

mechanism in which inflation π is determined by the interest rate i through the known coefficient b, where

b < 0. u is an i.i.d. error term with mean zero and variance σ2u.

π = bi+ u (10.1)

The central bank is assumed to have a quadratic loss function (10.2), which penalises the deviation of

inflation from a target level π∗.

L = (π − π∗)2 (10.2)

The timing of the model is such that the central bank has to set the interest rate i before the error

term u is revealed. In other words, the central bank does not know the true state of the world when it

moves and so it has to set interest rates to minimise the expectation of the loss in (10.2). Substituting

from (10.1) into (10.2) we can write

Le = E
£
(bi+ u− π∗)2¤

= b2i2 +E(u2) + π∗
2

+ 2biE(u)− 2biπ∗ − 2π∗E(u)
Note that the expectation operator only continues to apply to terms in u because b, i and π∗ are all

known by the central bank at the time the decision is taken. From the definition of u as a random error

term, we also have E(u2) = σ2u and E(u) = 0 so the expected loss can be expressed as in (10.3).

Le = b2i2 + σ2u + π∗
2 − 2biπ∗ (10.3)

The central bank chooses i to minimise this expected loss and so derives the optimal policy under

certainty equivalence (10.4).

i =
π∗

b
(10.4)

This policy is completely independent of the uncertainty surrounding the error term u. It is as if the

central bank has completely ignored the uncertainty and set policy such that the inflation target is met in

expectation, i.e. πe = π∗. In the literature this is known as the “certainty equivalence principle”. When

uncertainty is additive, as here in the case of a simple additive error term, the central bank can ignore

the uncertainty and set policy as if everything was known with certainty. The result was first proposed by

Theil (1958) and Tinbergen (1952). However, as we will see, the conditions under which it holds are quite

restrictive and it is not really applicable to most real-world situations of interest.
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10.5 Brainard conservatism

The paper by Brainard (1967) shows that certainty equivalence no longer holds for more complex specifi-

cations of uncertainty. More specifically, if there is uncertainty about the parameters of the model then

the central bank should not behave as if the uncertainty does not exist, a result described some thirty

years later by Alan Blinder as the “Brainard uncertainty principle”. The key difference is that uncertainty

about a parameter is multiplicative rather additive uncertainty: the more a policy is used the more that

the uncertainty is multiplied into the system. To see how this changes the nature of the optimal policy

consider the monetary transmission mechanism with parameter uncertainty (10.5).

π = bi+ u

b ∼ (b̂,σ2b)
(10.5)

The first part of equation (10.5) is identical to that in (10.1) in the discussion of certainty equivalence

except now there is uncertainty about the parameter b. However, although the central bank does not

know the precise value of b, it does know the distribution from which it is drawn, i.e. it knows its mean

b̂ and variance σ2b . There are many reasons why this might be a reasonable description of the central

bank’s knowledge of the monetary transmission mechanism. It could be that the central bank has poor

information about how the transmission mechanism works, for example the current state of the ECB in

Euroland. Alternatively, there may be fundamental uncertainties in the transmission of monetary policy

which preclude ever being able to predict with certainty what the effect of interest rates on inflation is.

The structure of the stylised economy (10.5) is shown in Figure 10.1. The central straight line shows the

relationship π = b̂i, which holds in expectation. The curved lines are confidence bands showing the range

of inflation that is expected for given interest rates.

i

π

π = b i^

Figure 10.1: Uncertainty about the structural relationship.
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Figure 10.1 shows how the parameter uncertainty is multiplicative. As interest rates are moved further

away from zero it becomes increasingly more difficult to predict the level of inflation. Uncertainty would

be minimised with a zero interest rate, at which the only uncertainty is additive due to the error term,

but then expected inflation would be zero and not equal to target. Mathematically, the expected loss with

parameter uncertainty is given by

Le = E
£
(bi+ u− π∗)2¤

= E(b2)i2 +E(u2) + π∗
2

+ 2E(bu)i− 2E(b)iπ∗ − 2π∗E(u)

Again, the definition of u as a random error term implies E(u2) = σ2u and E(u) = 0. The mean of b

gives E(b) = b and the variance of b̂ can be written as σ2u = E(b − b̂)2 = E(b2) − E(b̂2), which gives an
expression for E(b2). By making the further simplifying assumption that uncertainties about b and u are

unrelated, in other words E(bu) = 0, the expected loss can be described by equation (10.6).

Le = σ2bi2 + σ2u + (b̂i− π∗)2 (10.6)

The optimal policy (10.7) is derived by differentiating (10.6) with respect to the interest rate i.

i =
b̂π∗

b̂2 + σ2b
(10.7)

This policy differs from the certainty equivalent policy (10.4) by the extra variance term σ2b in the denom-

inator. The presence of parameter uncertainty means that optimal policy is more cautious.
¯̄
iBrainard

¯̄ ≤¯̄
iCertainty.Equivalence

¯̄
implies that interest rates are closer to zero under the Brainard policy than under

certainty equivalence. The reason is that additional caution reduces the amount of uncertainty that policy

introduces into the system. At the extreme, as σ2b →∞ and parameter uncertainty becomes infinite, the

optimal policy is to do nothing and set interest rates to zero, i → 0. In contrast, parameter uncertainty

disappears as σ2b → 0 and the interest rate is set equal to that under certainty equivalence. This result

is often referred to as Brainard conservatism - parameter uncertainty introduces a motive for caution in

optimal policy. Such a policy means that the central bank does not expect to achieve its inflation target,

i.e. πe 6= π∗. The reason for this is that aiming to hit the target exactly involves large potential losses,

especially if the parameter b turns out to be high and the monetary transmission mechanism is more potent

than expected.

10.6 Is Brainard uncertainty empirically relevant?

Whether Brainard uncertainty is a useful concept to explain the behaviour of the Federal Reserve Board

is the subject of a study by Sack (2000). He models the structure of the economy using a five dimensional

vector autoregression in industrial production growth, unemployment, consumer price inflation, commodity
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price inflation (to control for price puzzles) and the federal funds rate. Structure is imposed by a recursive

Choleski ordering in which the federal funds rate ordered last. Assuming the model is correctly identified,

the first four equations in the model describe the structural form of the economy whilst the last equation

is the estimated policy function of the fed.1 The policy maker is assumed to minimise a present-value

quadratic loss function (10.8)

L = 1

2
Et

½∞P
i=1
βi
£
(πt+1 − π∗)2 + λu(ut+1 − u∗)2

¤¾
(10.8)

where λu denotes the relative importance of the deviations of unemployment and inflation from their

respective targets.

After estimating the model with OLS, Sack (2000) calculates a “certainty equivalent” policy rule by

assuming that the point estimates from the VAR are the true values known with certainty. This rule will

be linear in the past values of the variables in the system since it is a standard linear-quadratic control

problem. The coefficients depend on preferences λu and the point estimates of the VAR coefficients. This

rule is then compared to a “Brainard” policy rule which takes into account that the point estimates of the

VAR are uncertain. The standard OLS errors of the parameter estimates are used as an indicator of the

uncertainty surrounding each parameter. The new optimal rule is still a linear function of past values of

variables in the system but now the coefficients of the rule depend on both the point estimates of the VAR

and the variance-covariance matrix of the coefficient estimates.

Sack (2000) calculates the impulse response functions implied by the optimal rules with and without

allowance for parameter uncertainty and compares these to those estimated purely from the data. He finds

that the optimal policy rule taking parameter uncertainty into account is closer to the actual behaviour of

the federal funds rate than an optimal policy disregarding parameter uncertainty. Figure 10.2 shows how

the optimal policy with parameter uncertainty tracks the federal funds rate better, suggesting that caution

induced by Brainard uncertainty is quantitatively important.

1Because this is not a true structural model based on microfoundations it is questionable whether the results are robust

and not subject to Lucas critique problems.
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Figure 10.2: The interest rate under actual and optimal policies

Both of the optimal policy rules exhibit considerable persistence in interest rates. This is known as

“interest rate smoothing” and implies that the fed should adjust interest rates gradually rather than

aggressively. Table 10.1 shows simulation evidence for the persistence of interest rate changes under the

two optimal policies and compares these to the actual estimated behaviour of the federal funds rate.

Federal funds rate ∆i = −0.02 + 0.46∆i−1 + 0.01∆i−2
Optimal policy

with parameter uncertainty
∆i = −0.02 + 0.10∆i−1 + 0.22∆i−2

Optimal policy

without parameter uncertainty
∆i = −0.04 + 0.15∆i−1 + 0.09∆i−2

Table 10.1: Persistence structure of interest rates

The optimal rule with parameter uncertainty comes closest to matching the persistence observed in

the federal funds rate, giving further support for the claim that Brainard uncertainty and caution are an

important feature of the data and do help to explain the behaviour of the Federal Reserve Board. However,

the degree of interest rate smoothing in the optimal rule with parameter uncertainty still falls short of that

actually observed in the federal funds rate so there must be some additional explanation for the smoothness

of interest rates.

70


