Stochastic growth

Martin Ellison

1 Motivation

In this lecture we apply the techniques of dynamic programming to real macroeconomic problems. We use the technique of value function iterations to derive the solution of the stochastic growth model, in which a representative agent makes optimal choices between current consumption and investing in a productive asset, capital. To fully understand the intuition behind our results and methods, we begin by analysing a simple non-stochastic growth model and presenting Gauss codes to solve the model numerically by computer. The stochastic version of the growth model is presented in the latter half of the lecture. In this case, a simple stochastic structure is sufficient to demonstrate the theoretical concepts and numerical simulation.

2 Key reading

The majority of this lecture is derived from chapter 5 of “Dynamic Economics: Quantitative Methods and Applications” by Jérôme Adda and Russell Cooper, Massachusetts Institute of Technology, 2003.
3 Other reading

4 Non-stochastic growth model

In the non-stochastic growth model, the problem of the representative agent is to allocate resources between consumption c_t and investment in capital k_t, as in the continuous time Ramsey model. Capital is completely malleable, being able to be transformed into consumption at a rate of one-to-one. Since the model is deterministic, there is no uncertainty. Consumption gives instantaneous utility through the function $u(c_t)$, which is strictly increasing and strictly concave. Capital is productive according to the production function $y_t = f(k_t)$, which is similarly strictly increasing and strictly concave. Capital stored depreciates at the rate δ when used in production. With the representative agent discounting future utility at the rate β, the problem is as follows:

$$\max\sum_{t=1}^{\infty} \beta^{t-1} u(c_t)$$

s.t.

$$y_t = f(k_t)$$

$$y_t = c_t + \delta$$

$$k_{t+1} = k_t(1 - \delta) + i_t$$
where i_t is gross investment. Taking our now familiar dynamic programming approach, we can write the value function as

$$V(k) = \max_{k'} [u(f(k) + (1 - \delta)k - k') + \beta V(k')]$$

The first order condition is

$$u'(c) = \beta V'(k')$$

As in the previous lecture, we do not know the form is the value function $V(k)$, but we do know its first derivative $V'(k)$. Differentiating from the definition of the value function

$$V'(k) = u'(c) [f'(k) + (1 - \delta)]$$

Rolling forward one period

$$V'(k') = u'(c') [f'(k') + (1 - \delta)]$$

Substitute in the first order condition

$$u'(c) = \beta u'(c') [f'(k') + (1 - \delta)]$$

This is the Euler equation for optimal consumption smoothing in the non-stochastic growth model, analogous to the Euler equation in the cake-eating example of the previous lecture. It is economically intuitive. the left hand side shows the utility benefit of increasing consumption by one unit in the current period. The right hand side shows the benefit of postponing consumption to the next period. One unit of consumption postponed increases the productive capital next period by one unit, and so generates extra output $f'(k')$. However, the extra capital depreciates during production so that the net additional consumption available is $f'(k') + (1 - \delta)$. This is then weighted
by the marginal utility of consumption to arrive at the utility benefit of the extra consumption. It is discounted by β because the extra consumption only occurs in the next period.

To proceed from the value function and first order conditions, we have three options. Firstly, it may be possible to solve the problem analytically by guessing the form of the value function or policy function. Secondly, we could linearise or log-linearise the first order conditions to obtain an approximate solution. Thirdly, we can apply value function iterations to derive a numerical solution. In this lecture, we will investigate the first and third options. The second option, approximation, is beyond the scope of this course, although it is not conceptually difficult. Interested readers are referred to “Recursive Methods for Computing Equilibria of Business Cycle Models” by Gary Hansen and Ed Prescott in “Frontiers of Business Cycle Research”, edited by Tom Cooley, PUP, 1995. The book “Computational Methods for the Study of Dynamic Economies”, edited by Ramon Marimon and Andrew Scott, CUP, 1999, is also a good reference.

5 An analytically tractable non-stochastic growth model example

In general, it is not possible to solve analytically for the value function and policy function. However, it is possible under very strict assumptions. We begin by defining functional forms for the utility function and production function.

\[
\begin{align*}
 u(c) & = \ln c \\
 f(k) & = k^\alpha
\end{align*}
\]

These functional forms are fairly standard, although the production func-
tion does preclude the use of labour as a factor of production. Our final assumption is even less realistic. We assume $\delta = 1$ so that capital depreciation occurs at the rate of 100%. In other words, any capital saved to the next periods depreciates completely after production. The intertemporal budget constraint is therefore $k' = i$ rather that $k' = k(1 - \delta) + i$. We begin our solution by making a guess at the form of the value function.

$$V(k) = A + B \ln k$$

This is an informed, rather than random, guess because we know that the state variable is k and both the utility and production functions are logarithmic. We proceed to confirm this is correct by showing that, if this is the correct form of the value function, optimising behaviour implies a value function of the same form. If the value function is correct, the first order condition $u'(c) = \beta V'(k')$ implies

$$\frac{1}{c} = \frac{\beta B}{k}$$

The budget constraint and 100% depreciation define

$$k^\alpha = c + k'$$

Solving these equations, we can obtain expressions for the policy functions of consumption and future capital.

$$c = \left(\frac{1}{1 + \beta B} \right) k^\alpha$$

$$k' = \left(\frac{\beta B}{1 + \beta B} \right) k^\alpha$$

We now return to the value function and show that these policy functions are consistent with a value function of the form originally posited.
\[V(k) = A + B \ln k = \ln \left(\frac{1}{1 + \beta B} \right) k^\alpha + \beta \left[A + B \ln \left(\frac{\beta B}{1 + \beta B} \right) k^\alpha \right] \]

Collecting terms in the constant and \(\ln k \) gives two equations which determine \(A \) and \(B \).

\[
A = \ln \left(\frac{1}{1 + \beta B} \right) + \beta \left[A + B \ln \left(\frac{\beta B}{1 + \beta B} \right) \right]
\]
\[
B = \alpha + \beta B \alpha
\]

This is an example of the method of undetermined coefficients. The second equation defines \(B = \alpha/(1 - \beta \alpha) \), which can be used in the first equation to calculate \(A \). Once \(B \) is defined, the policy functions become

\[
k' = \beta \alpha k^\alpha
\]
\[
c = (1 - \beta \alpha)k^\alpha
\]

In this simple example, the policy functions take a particularly neat form. In each period, the consumer saves a constant proportion \(\beta \alpha \) of output \(k^\alpha \) and consumes a constant proportion \((1 - \beta \alpha) \). The higher the parameters \(\beta \) and \(\alpha \) the more the consumer saves. This makes intuitive sense. A higher \(\beta \) implies the consumer places more weight on future periods and so the return to saving increases. Similarly, higher \(\alpha \) improves the productivity of capital and so promotes saving.

The analytical results obtained in this section are elegant and intuitive. However, they are derived under very restrictive assumptions. More generally, it will be difficult to guess the intuitive form of the value function. In most cases it will be impossible.
6 Numerical non-stochastic growth model example

Our numerical example maintains the same function form for the production function but uses the more general CRRA utility function with coefficient σ equal to the coefficient of relative risk aversion.

\[
\begin{align*}
 u(c) &= \frac{c^{1-\sigma}}{1-\sigma} \\
 f(k) &= k^\alpha
\end{align*}
\]

In the limit of $\sigma \to 1$, the utility function becomes logarithmic as before. In contrast to the analytical example, we allow depreciation to be less than 100% so we have a full set of dynamic equations showing how state variables evolve.

\[
\begin{align*}
 y &= c + i \\
 k' &= k(1 - \delta) + i
\end{align*}
\]

The numerical code below solves for repeated iterations of the value function.

\[
T(W)(k) = \max_{k'} [u(f(k) + (1 - \delta)k - k') + \beta W(k')]
\]

We do not check Blackwell’s sufficiency conditions for a contraction mapping since monotonicity and discounting hold by the same arguments expressed in the previous lecture. The computer program is written in Matlab and the code complimentary is available from the homepage of the Adda and Cooper book at

http://www.eco.utexas.edu/~cooper/dynprog/dynprog1.html
There are four main parts to the code: parameter value initialisation, state space definitions, value function iterations and output.

Start new program by clearing the work space. Parameters are initialised with beta the discount factor, sigma the coefficient of relative risk aversion, alpha the exponent on capital in the production function and delta the depreciation rate.

```
CLEAR;
beta=0.9;
sigma=1;
alpha=0.75;
delta=0.3;
```

We now construct a grid of possible capital stocks. The grid is centred on the steady-state capital stock \(k^*\), which is obtained from the steady-state value of the Euler equation of the stochastic growth model. We have

\[
u'(c^*) = \beta u'(c^*) \left[f'(k^*) + (1 - \delta) \right]
\]

With \(f'(k^*) = \alpha k^{~-1}\), this reduces to

\[1 = \beta \left[\alpha k^{~-1} + (1 - \delta) \right]\]

Solving for \(k^*\).

\[k^* = \left(\frac{1}{\alpha \beta} - \frac{1 - \delta}{\alpha} \right)^{\frac{1}{\alpha - 1}}\]

The grid is centred around this point, with maximum \((khi)\) and minimum \((klo)\) values 110% and 90% of the steady-state value. There are \(N\) discrete points in the grid.
\[N=100; \]
\[kstar=((1/(alpha*beta))-((1-delta)/alpha))^{(1/(alpha-1))}; \]
\[klo=Kstar*0.9; \]
\[khi=Kstar*1.1; \]
\[step=(khi-klo)/N; \]
\[k=klo:step:khi; \]
\[n=length(k); \]

Initial values for the value function are taken by assuming that all capital is always consumed immediately. In this case, consumption is equal to the product of capital \(k^\alpha \) plus its depreciated value \((1 - \delta)k\). Before we calculate the value function we transform our variables in a Matlab friendly format. \(s \) and \(s1 \) are matrices with every column being \(k^\alpha \) and \(k \) respectively. The syntax \(^\wedge\) defines element-by-element operation, so each element of a vector or matrix is risen to the power of the exponent.

\[
kalpa=k.^\alpha;\]
\[
colones=ones(n,1);\]
\[
s = colones*kalpa;\]
\[
s1 = colones*k;\]
\[
ytot = s'+(1-delta)*s1';\]

The IF ... THEN ... ELSE structure applies the correct utility function. Obviously, these starting values will be incorrect but repeated value function iterations will converge to the true value function.

\[
IF \ sigma==1
\quad v=log(ytot); \\
ELSE
\quad v=ytot.^(1-sigma)/(1-sigma); \\
END\]
For use in the value function iterations, we define an $n \times n$ matrix C, which is indexed by column by the current capital stock k and by row by the future capital stock k'. Each element of C contains the necessary level of consumption at capital stock k to achieve capital stock k' in the future. The elements are obtained by summing current production k^α and depreciated capital $(1 - \delta)k$ and then subtracting future consumption k'. The matrix is particularly useful since it is invariant across value function iterations: the choice of c to achieve k' given k does not depend on the value function. We therefore do not need to recalculate this matrix at each value function iteration. The final part of this section of code maps consumption levels C into utility levels U by applying the suitable utility function. The syntax ./ defines element-by-element operation rather than matrix division implied by using the / operator.

```matlab
rowones = colones';
I = k*rowones;
J = colones*k;
C = (J.^alpha) - I + (1-delta)*J;
IF sigma == 1
    U = log(C);
ELSE
    U = (C.^(1-sigma))/(1-sigma);
END
```

Now we can use our first guess of the value function to get the second estimate $v1$ which will be the start of our next t iterations.

```matlab
r = U + beta*v;
v1 = max(r);
```
For each iteration, the $n \times n$ matrix w_1 collects the consequences of different actions at different initial capital levels. Each column of w corresponds to a given initial capital stock level k. The rows of w_1 then show the value of leaving different future capital stocks k'. The value of each choice is obtained by summing the value of the implied consumption level (from the utility matrix U) and the value of carrying forward capital k' to the next period (from the value function v_1 derived in the previous iteration). Once the consequences of different actions have been collected in w_1, the value function iteration proceeds by selecting the maximum value form each of its columns. As these values are implicitly stored as a row vector we line them up vertically into a matrix w. This matrix becomes the next iteration of the value function.

$$t=100$$
$$\text{FOR } j=1:t$$
$$\quad w=\text{ones}(n,1) * v_1;$$
$$\quad w_1=U+\beta * w';$$
$$\quad v_1=\text{max}(w_1);$$
$$\text{END}$$

Value function iterations are now complete. The final value function is stored in Val and the indices of the future k' choices are stored in ind. These latter indices are converted into k' values in $optk$.

$$[\text{val,ind}]=\text{max}(w_1);$$
$$\text{optk} = K(\text{ind});$$

To illustrate the results, it is useful to plot how k' varies as a function of k. This is the policy function in Figure 5.1 of Adda and Cooper.

$$\text{figure}(1)$$
The policy function is upward-sloping and crosses the 45° line at the steady-state capital stock. When capital is below its steady state \(k < k^* \), capital rises and \(k' > k \). Conversely, when \(k > k^* \) capital falls and \(k' < k \). This ensures convergence. Note also that the relationship between \(k \) and \(k' \) appears roughly linear, which might have been expected given that the departure from the guaranteed linearity of the analytical example is not large.
A second useful figure is Figure 5.2 from Adda and Cooper, showing net investment \(k' - k \) as a function of \(k \). The figure confirms that net investment is positive when \(k < k^* \) and negative when \(k > k^* \).

```matlab
figure (2)
plot(K,(optk-k)', 'LineWidth',2)
xlabel('K');
ylabel('K' - K);
```

To gain an insight into the dynamics of the adjustment process, it is useful to calculate the path of convergence of capital if initial capital is not equal to its steady-state value. The exercise is similar to the tracing out of impulse response functions in a structural vector autoregression analysis.
is the number of periods over which to follow convergence. The indices of the capital choices are stored in the $p \times 1$ vector mi and the capital stocks themselves are stored in the $p \times 1$ vector m. The initial index is taken as 1 so the initial capital stocks is at its maximum value.

```matlab
p=50;
mi=zeros(p,1);
m=zeros(p,1);
mi(1)=N;
m(1)=K(mi(1));
FOR i=2:p
    mi(i)=ind(mi(i-1));
    m(i) = K(mi(i));
END
t=1:1:50
figure(3)
plot(t,m)
xlabel('t');
ylabel('k(t)');
```
The figure shows that convergence to k^* is not instantaneous. The half-life is approximately 10 periods.

7 Stochastic growth model

The non-stochastic growth model helps in understanding the role of the value and policy functions but any realistic application in macroeconomics requires models to be stochastic. This is particularly true if we have a long-term ambition to bring macroeconomic models to the data. The concepts and techniques involved in handling stochastic models are no more complex than the deterministic case, although state spaces tend to expand as the values of stochastic shocks enter the state space. This eventually leads to problems known as the “curse of dimensionality”. If each state in a 4-dimensional model is discretised into 10 points then the total number of grid points rises to $10 \times 10 \times 10 \times 10 = 10000$. For this reason, many stochastic models are
kept to a small scale.

Our stochastic version of the growth model incorporates shocks to production technology that enter multiplicatively in the production function. Commonly known as the Solow residual, A_t accounts for unexplained changes in productivity. It changes the problem of the representative agent to be

$$\max \sum_{t=1}^{\infty} \beta^{t-1} u(c_t)$$

s.t.

$$y_t = A_t f(k_t)$$

$$y_t = c_t + i_t$$

$$k_{t+1} = k_t(1 - \delta) + i_t$$

Without loss of generality, we restrict our attention to stochastic processes for A_t that are Markovian, i.e. A_t is a sufficient statistic to form the expectation of A_{t+1}. In dynamic programming form, the value function is defined by the Bellman equation.

$$V(A, k) = \max_{k^*} \left[u(A f(k) + (1 - \delta)k - k^*) + \beta E_{A'|A} V(A', k') \right]$$

Compared with the non-stochastic growth model, there are two changes. Firstly, the value function has two arguments: the current level of technology A and the current capital stock k. Secondly, the continuation part of the value function is only defined in terms of an expectation. It is the expected continuation value, where the expectation is evaluated across the distribution of future technology A' given current technology A. The expectations remains in the first order condition.

$$u'(c) = \beta E_{A'|A} [u'(c')(A' f(k') + (1 - \delta))]$$
It is possible to solve this problem analytically as before for the limiting case of 100% depreciation and logarithmic utility. Such an exercise is left for the reader. Instead, we jump straight to a numerical solution of a stochastic growth model through value function iterations.

8 Numerical stochastic growth model example

To maintain comparability with the non-stochastic growth model example, we use the same function forms for the utility and production functions.

\[
\begin{align*}
 u(c) &= \frac{c^{1-\sigma}}{1-\sigma} \\
 f(k) &= Ak^\alpha
\end{align*}
\]

We introduce a stochastic element to \(A \) in the simplest possible manner. We assume technology can either be high \(\bar{A} \) or low \(A \) with equal probability, i.e.

\[
\begin{align*}
 A' &= \bar{A} \text{ with probability 0.5} \\
 A' &= A \text{ with probability 0.5}
\end{align*}
\]

As a more general case, one could imagine having a range of discrete values for \(A' \) with different probabilities. In this way, the distribution of \(A' \) could be matched, say, to a normal distribution. The way we have defined the stochastic element means that the distribution of \(A' \) is independent of \(A \). Economically, this is equivalent to saying that technology shocks only have a temporary and not permanent or persistent effects. It is simple (although not trivial) to extend the computer code to handle persistent shocks.
The main difference to the computer code is that policy functions and value functions become $n \times 2$ matrices, with the columns corresponding to policy and value functions conditional on high or low current productivity. We can write out the expectation in the value function as follows:

$$V(A, k) = \max_{k'} \left[u(A_f(k) + (1 - \delta)k - k') + \frac{\beta}{2} \left[V(\bar{A}, k') + V(A, k') \right] \right]$$

This Bellman equation forms the basis of the value function iterations. In practical terms, for each iteration we use the matrices CH and CL for the consumption levels necessary to achieve future capital k' when current capital is k and current technology is high and low respectively. UH and UL are the associated utility levels.

```plaintext
CLEAR ALL
sigma=1;
beta=0.9;
alpha=.75;
delta=0.3;
AH=1;
AL=0.99;
N=100;
kstarH=((1/(AH*alpha*beta))-((1-delta)/(AH*alpha)))^(1/(alpha-1));
kstarL=((1/(AL*alpha*beta))-((1-delta)/(AL*alpha)))^(1/(alpha-1));
kstar=0.5*(KstarH+KstarL);
klo=kstar*0.9;
khi=kstar*1.1;
step=(khi-klo)/N;
```
\[k = \text{length}(k); \]
\[n = \text{length}(k); \]
\[k_{\alpha} = k. \alpha; \]
\[\text{colones} = \text{ones}(n, 1); \]
\[s = \text{colones} \ast k_{\alpha}; \]
\[s1 = \text{colones} \ast K; \]
\[y_{\text{tot}H} = A_H \ast s' + (1 - \delta) \ast s1'; \]
\[y_{\text{tot}L} = A_L \ast s' + (1 - \delta) \ast s1'; \]
\[\text{IF } \sigma = 1 \]
\[v_H = \log(y_{\text{tot}H}); \]
\[v_L = \log(y_{\text{tot}L}); \]
\[\text{ELSE} \]
\[v_H = y_{\text{tot}H} \ast (1 - \sigma)/(1 - \sigma); \]
\[v_L = y_{\text{tot}L} \ast (1 - \sigma)/(1 - \sigma); \]
\[\text{END} \]
\[\text{rowones} = \text{ones}'; \]
\[I = K' \ast \text{rowones}; \]
\[J = \text{colones} \ast K; \]
\[J_{\alpha} = J. \alpha; \]
\[C_H = (A_H \ast J_{\alpha}) - I + (1 - \delta) \ast J; \]
\[C_L = (A_L \ast J_{\alpha}) - I + (1 - \delta) \ast J; \]
\[\text{IF } \sigma = 1 \]
\[U_H = \log(C_H); \]
\[U_L = \log(C_L); \]
\[\text{ELSE} \]
\[U_H = (C_H \ast (1 - \sigma))/(1 - \sigma); \]
\[U_L = (C_L \ast (1 - \sigma))/(1 - \sigma); \]
\[\text{END} \]
\[r_H = U_H + \beta \ast 0.5 \ast (v_H + v_L); \]
\[rL = UL + \beta \times 0.5 \times (vH + vL); \]
\[vH1 = \max(rH); \]
\[vL1 = \max(rL); \]
\[t = 100 \]
\[\text{FOR} \ j = 1:t \]
\[w = \text{ones}(n, 1) \times (vH1 + vL1); \]
\[wH1 = UH + \beta \times 0.5 \times w'; \]
\[wL1 = UL + \beta \times 0.5 \times w'; \]
\[vH1 = \max(wH1); \]
\[vL1 = \max(wL1); \]
\[\text{END} \]
\[[\text{valH}, \text{indH}] = \max(wH1); \]
\[[\text{valL}, \text{indL}] = \max(wL1); \]
\[\text{optkh} = K(\text{indH}); \]
\[\text{optkl} = K(\text{indL}); \]
\[\text{FIGURE}(1) \]
\[\text{plot}(K, [K', \text{optkh}', \text{optkl}], 'LineWidth', 2) \]
\[\text{xlabel('K');} \]
\[\text{ylabel('K');} \]
\[\text{legend('45 degree line', 'Policy function- High Tech', 'Policy function- Low Tech', 4);} \]
\[\text{FIGURE}(2) \]
\[\text{plot}(K, [(\text{optkh}-K)', (\text{optkl}-K)'], 'LineWidth', 2) \]
\[\text{xlabel('K');} \]
\[\text{ylabel('K'- K');} \]
The policy function figures now have two lines, each corresponding to policy conditional on current productivity. In the figures, the higher line is for high technology and the lower line is for low technology. The dynamics
of the system will change according to the value of A. The system is globally stable since for very low capital stocks the capital stock is always increasing and for very high capital stocks the capital stock is always decreasing. For intermediate levels of the capital stock, the system converges in distribution if not to a fixed point.

To appreciate the dynamics of the system, we present a simple simulation of the evolution of the capital stock over p periods. Initial capital stock is taken to be at the average steady-state value. The function $RAND(1,1)$ draws a single random number from the uniform distribution $[0, 1]$. By comparing its value with 0.5, we are able to draw shocks from the stochastic distribution of A. A typical stochastic simulation is shown below. We also print out the standard deviations of output, consumption and investment.

```matlab
p=500;
kt=Kstar*ones(p,1);
kti=(N/2)*ones(p,1);
FOR i=2:p
    IF RAND(1,1)>0.5
        yt(i)=AH*(kt(i-1))^alpha;
k(i)=indH(kti(i-1));
        kt(i)=K(kt(i));
    ELSE
        yt(i)=AL*(kt(i-1))^alpha;
k(i)=indL(kti(i-1));
        kt(i)=K(kt(i));
    END
ct(i)=yt(i)+(1-delta)*kt(i-1)-kt(i);
it(i)=yt(i)-ct(i);
END
```

22
```
t=1:1:500;
figure (3)
plot(t,kt)
xlabel('t');
ylabel('k(t)');
syt=std(yt(10:p));
sct=std(ct(10:p));
si=std(it(10:p));
```
Even with such a simple example, the simulation results are highly informative. Consumption is by far the least volatile variable, reflecting strong incentives for consumption smoothing in the model. Analysis of more complex models in this way has been a bedrock of Real Business Cycle research since the seminal contribution of Kydland and Prescott in Econometrica in 1982.