Modification of nasal epithelial potential differences of individuals with cystic fibrosis consequent to local administration of a normal CFTR cDNA adenovirus gene transfer vector (1995)

Hay, J. G., McElvaney, N. G., Herena, J. & Crystal, R. G.

Hum Gene Ther, 6, 1487-1496

Pubmed     Back

Mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) manifest on the nasal epithelial surface of individuals with cystic fibrosis (CF) by Na+ hyperabsorption and diminished beta-agonist-induced Cl- conductance, resulting in an abnormal bioelectric phenotype across the nasal epithelium. A clinical trial was conducted to determine if a replication-deficient, recombinant adenovirus vector containing a normal copy of the CFTR cDNA (AdCFTR) could, when administered to the nasal epithelium, correct the abnormal bioelectric phenotype. Nine individuals with CF received 2 x 10(5) to 2 x 10(8.5) plaque forming units of AdCFTR to the epithelium of one nostril. Measurements made included: baseline electrical potential difference (PD) between the surface of the nasal epithelium and the interstitial fluid, change in PD in response to amiloride, which inhibits apical Na+ channels, and change in PD in response to isoproterenol in a low Cl- solution, a measure of cAMP-regulated Cl- conductance. The functional integrity of the epithelium was evaluated by the PD response to ATP. Each individual served as their own control with measurements made in the nostril to be treated before AdCFTR administration, and in the contralateral untreated nostril. On the average, in the treated nostril over 2 weeks after the local administration of the adenovirus vector compared to measurements made in the same nostril before treatment, baseline PD decreased toward normal (-53.3 +/- 4.0 to -34.6 +/- 3.4, p = 0.01), response to amiloride decreased toward normal (36.9 +/- 4.7 to 19.7 +/- 3.0, p = 0.02), and response to low Cl- and isoproterenol increased toward normal (-4.5 +/- 1.5 to -9.1 +/- 2.1, p = 0.05). There were no changes in response to ATP (-15.3 +/- 2.7 to -15.8 +/- 1.9, p = 0.39), suggesting that the epithelium remained functionally intact. Importantly, there were no significant changes in measurements made in the untreated nostril. While limited to the nasal epithelium, these data suggest an adenovirus vector can safely deliver sufficient CFTR cDNA function to improve the abnormal CF bioelectric phenotype.

Introductory Videos
Medical Futures Innovation Award 2011
Twitter Feed
About Us
Contact Us
Lab Events
Environemental Policy
About this Site

Google Site Search

Site Feedback Form

All Site Images



How the Consortium works/FAQs

Consortium Website

Centre for Molecular Medicine, Edinburgh
The Roslin Institute
Dep of Gene Therapy, Imperial



The Run-in Study

Single Dose Clinical Trial

Multi Dose Clinical Trial


Our Research

Non-viral Vector Development

Aerosol Mediated Gene Delivery

Viral Vector Development

Taqman Core Facility

Cystic Fibrosis

History of CF

Discovery of the CFTR Gene

CFTR Protein Structure

CFTR Function

CF Links


Gene Therapy

Introduction to Gene Therapy

Other CF Gene Therapy Groups

Why use Gene Therapy for CF

Target Cells for CF Gene Therapy

Barriers for CF Gene Therapy

Clinical Trials

Gene Therapy Successes

Gene Therapy Links




Papers in Journals

Conference Posters & Presentations

Book Chapters

D.Phil Theses



Gene Therapy Seminars


Directions & Venue