Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis (1997)

Porteous, D. J., Dorin, J. R., McLachlan, G., Davidson-Smith, H., Davidson, H., Stevenson, B. J., Carothers, A. D., Wallace, W. A., Moralee, S., Hoenes, C., Kallmeyer, G., Michaelis, U., Naujoks, K., Ho, L. P., Samways, J. M., Imrie, M., Greening, A. P. & Innes, J. A.

Gene Ther, 4, 210-218

Pubmed     Back

In cystic fibrosis (CF), mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene results in defective transepithelial ion transport, leading to life shortening inflammatory lung disease. Before lung studies, we tested the safety and efficacy of gene delivery to the nasal epithelium of CF patients using pCMV-CFTR-DOTAP cationic liposome complex. A single dose of 400 micrograms pCMV-CFTR:2.4 mg DOTAP was administered in a randomised, double-blinded fashion to the nasal epithelium of eight CF patients, with a further eight receiving buffer only. Patients were monitored for signs and symptoms for 2 weeks before treatment and 4 weeks after treatment. Inflammatory cells were quantified in a nasal biopsy taken 3 days after treatment. There was no evidence for excess nasal inflammation, circulating inflammatory markers or other adverse events ascribable to active treatment. Gene transfer and expression were assayed by the polymerase chain reaction. Transgene DNA was detected in seven of the eight treated patients up to 28 days after treatment and vector derived CFTR mRNA in two of the seven patients at +3 and +7 days. Transepithelial ion transport was assayed before and after treatment by nasal potential difference during drug perfusion and by SPQ fluorescence halide ion conductance. Partial, sustained correction of CFTR-related functional changes toward normal values were detected in two treated patients. The level of gene transfer and functional correction were comparable to those reported previously using adenoviral vectors or another DNA-liposome complex, but here were sustained and uncompromised by false positives. These results justify further studies with pCMV-CFTR-DOTAP aimed at treating CF lung disease.

Introductory Videos
Medical Futures Innovation Award 2011
Twitter Feed
About Us
Contact Us
Lab Events
Environemental Policy
About this Site

Google Site Search

Site Feedback Form

All Site Images



How the Consortium works/FAQs

Consortium Website

Centre for Molecular Medicine, Edinburgh
The Roslin Institute
Dep of Gene Therapy, Imperial



The Run-in Study

Single Dose Clinical Trial

Multi Dose Clinical Trial


Our Research

Non-viral Vector Development

Aerosol Mediated Gene Delivery

Viral Vector Development

Taqman Core Facility

Cystic Fibrosis

History of CF

Discovery of the CFTR Gene

CFTR Protein Structure

CFTR Function

CF Links


Gene Therapy

Introduction to Gene Therapy

Other CF Gene Therapy Groups

Why use Gene Therapy for CF

Target Cells for CF Gene Therapy

Barriers for CF Gene Therapy

Clinical Trials

Gene Therapy Successes

Gene Therapy Links




Papers in Journals

Conference Posters & Presentations

Book Chapters

D.Phil Theses



Gene Therapy Seminars


Directions & Venue