Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter (2001)

Gill, D. R., Smyth, S. E., Goddard, C. A., Pringle, I. A., Higgins, C. F., Colledge, W. H. & Hyde, S. C.

Gene Ther, 8, 1539-1546

Pubmed   Back   Download   Citations of this article on Google Scholar

For effective gene therapy of chronic disease, persistent transgene expression at therapeutic levels is required. Clinical studies of airway gene transfer in patients with cystic fibrosis (CF) have resulted in short-lived transgene expression. We used intra-nasal dosing of naked plasmid DNA to the murine lung as a model for investigating the duration of airway gene transfer from a series of reporter expression plasmids. Transgene expression was transient when mediated by the viral promoters CMV, RSV and SV40, falling to less than 10% of peak expression after 2 weeks, although the presence of the adenoviral E4ORF3 gene in cis, resulted in extended duration of reporter activity from the CMV promoter. Transient expression from these promoters was not due to loss of the vector as determined by quantitative TaqMan PCR analysis. However, use of the promoters from the human polybiquitin C (UbC) and the elongation factor 1alpha (EF1alpha) genes resulted in persistent gene expression in the mouse lung. The UbC promoter directed high-level reporter activity which was maintained for up to 8 weeks and was still detectable 6 months after a single administration. Such persistent airway transgene expression from a nonviral vector without the concomitant expression of a potential antigen has not been reported previously. Thus, despite the persistence of vector DNA in vivo, attenuation of promoter function may lead to silencing of transgene expression and careful selection of promoter sequences is recommended for in vivo gene transfer.

Home
News
Introductory Videos
Medical Futures Innovation Award 2011
Twitter Feed
About Us
Contact Us
Careers
Resources
Lab Events
Environemental Policy
About this Site

Google Site Search

Site Feedback Form

All Site Images

 

UK CFGTC

How the Consortium works/FAQs

Consortium Website

Centre for Molecular Medicine, Edinburgh
The Roslin Institute
Dep of Gene Therapy, Imperial

Milestones

GL67A/pGM169

The Run-in Study

Single Dose Clinical Trial

Multi Dose Clinical Trial

 

Our Research

Non-viral Vector Development

Aerosol Mediated Gene Delivery

Viral Vector Development

Taqman Core Facility

Cystic Fibrosis

History of CF

Discovery of the CFTR Gene

CFTR Protein Structure

CFTR Function

CF Links

 

Gene Therapy

Introduction to Gene Therapy

Other CF Gene Therapy Groups

Why use Gene Therapy for CF

Target Cells for CF Gene Therapy

Barriers for CF Gene Therapy

Clinical Trials

Gene Therapy Successes

Gene Therapy Links

 

 

Publications

Papers in Journals

Conference Posters & Presentations

Book Chapters

D.Phil Theses

Lectures

 

Gene Therapy Seminars

Schedule

Directions & Venue