Long-term persistence of gene expression from adeno-associated virus serotype 5 in the mouse airways (2006)

Sumner-Jones, S. G., Davies, L. A., Varathalingam, A., Gill, D. R. & Hyde, S. C.

Gene Ther, 13, 1703-1713

Pubmed   Back   Download

Recombinant adeno-associated virus vectors based on serotype 2 (rAAV2) have been used to deliver transgenes to the airways in a variety of pre-clinical and clinical studies. Gene transfer in these studies has been severely restricted by the basolateral localization of rAAV2 receptors. Here, we studied vectors constructed from the AAV5 genome and capsid, which utilize N-linked sialic acid-containing receptors found on the apical surface of airway epithelial cells. We investigated gene transfer efficacy and duration of transgene expression following delivery of rAAV5/5 vectors to the mouse respiratory tract. Robust, dose-dependent transgene expression was observed in the epithelium lining the nose for at least 32 weeks, and for at least 52 weeks in the lung. Importantly, in the lung, transgene expression mediated by rAAV5/5 was 40-fold greater than by rAAV2/2 vectors. A distinct cellular preference for rAAV5/5-mediated transduction was observed, with transgene expression being predominantly restricted to sustentacular cells of the olfactory epithelium in the nose and alveolar type II cells in the lung. Administration of rAAV5/5 vectors to both the nose and lungs led to the rapid development of rAAV5/5-neutralizing antibodies, suggesting that repeated administration may be severely hampered by host immune responses.

Home
News
Introductory Videos
Medical Futures Innovation Award 2011
Twitter Feed
About Us
Contact Us
Careers
Resources
Lab Events
Environemental Policy
About this Site

Google Site Search

Site Feedback Form

All Site Images

 

UK CFGTC

How the Consortium works/FAQs

Consortium Website

Centre for Molecular Medicine, Edinburgh
The Roslin Institute
Dep of Gene Therapy, Imperial

Milestones

GL67A/pGM169

The Run-in Study

Single Dose Clinical Trial

Multi Dose Clinical Trial

 

Our Research

Non-viral Vector Development

Aerosol Mediated Gene Delivery

Viral Vector Development

Taqman Core Facility

Cystic Fibrosis

History of CF

Discovery of the CFTR Gene

CFTR Protein Structure

CFTR Function

CF Links

 

Gene Therapy

Introduction to Gene Therapy

Other CF Gene Therapy Groups

Why use Gene Therapy for CF

Target Cells for CF Gene Therapy

Barriers for CF Gene Therapy

Clinical Trials

Gene Therapy Successes

Gene Therapy Links

 

 

Publications

Papers in Journals

Conference Posters & Presentations

Book Chapters

D.Phil Theses

Lectures

 

Gene Therapy Seminars

Schedule

Directions & Venue