Enhanced lung gene expression after aerosol delivery of concentrated pDNA/PEI complexes (2008)

Davies, L. A., McLachlan, G., Sumner-Jones, S. G., Ferguson, D., Baker, A., Tennant, P., Gordon, C., Vrettou, C., Baker, E., Zhu, J., Alton, E. W., Collie, D. D., Porteous, D. J., Hyde, S. C. & Gill, D. R.

Mol Ther, 16, 1283-1290

Pubmed   Back   Download

A major limitation of many self-assembling nonviral gene transfer formulations is that they are commonly prepared at relatively low component concentrations. While this typically has little impact on their use in cell culture, it can severely limit the progress of in vivo studies. In order to overcome this, we have developed a simple, scalable, pharmaceutically acceptable concentration method that has allowed us to increase the concentration of a commonly used pDNA/PEI formulation from 0.2 to >8 mg/ml plasmid DNA (pDNA). Crucially, the concentration method was found to have only minimal impact on the electrostatic properties or size of the pDNA/PEI particles. When delivered as an aerosol to the mouse lung, the concentrated pDNA/PEI formulations resulted in a 15-fold increase in lung reporter gene expression, with minimal impact in terms of inflammation or toxicity. Importantly, this performance advantage was replicated after aerosol administration to sheep lungs, with reporter gene expression being similarly approximately 15-fold higher than with the conventional pDNA/PEI formulation, and lung inflammation falling to background levels. These findings demonstrate that concentrated pDNA/PEI formulations offer increased aerosol gene transfer with decreased inflammatory sequelae, and represent a promising advance in the field of nonviral lung gene transfer. It seems likely that similar benefits might be achievable with alternative delivery routes and with other nonviral formulations.

Introductory Videos
Medical Futures Innovation Award 2011
Twitter Feed
About Us
Contact Us
Lab Events
Environemental Policy
About this Site

Google Site Search

Site Feedback Form

All Site Images



How the Consortium works/FAQs

Consortium Website

Centre for Molecular Medicine, Edinburgh
The Roslin Institute
Dep of Gene Therapy, Imperial



The Run-in Study

Single Dose Clinical Trial

Multi Dose Clinical Trial


Our Research

Non-viral Vector Development

Aerosol Mediated Gene Delivery

Viral Vector Development

Taqman Core Facility

Cystic Fibrosis

History of CF

Discovery of the CFTR Gene

CFTR Protein Structure

CFTR Function

CF Links


Gene Therapy

Introduction to Gene Therapy

Other CF Gene Therapy Groups

Why use Gene Therapy for CF

Target Cells for CF Gene Therapy

Barriers for CF Gene Therapy

Clinical Trials

Gene Therapy Successes

Gene Therapy Links




Papers in Journals

Conference Posters & Presentations

Book Chapters

D.Phil Theses



Gene Therapy Seminars


Directions & Venue