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Abstract

The Darwin unification project is pursued. A meta-model encompass-
ing an important class of population genetic models is formed by adding
an abstract model of the number of successful gametes to the Price equa-
tion under uncertainty. A class of optimisation programs are defined to
represent the ‘individual-as-maximising-agent analogy’ in a general way.
It is then shown that for each population genetic model there is a cor-
responding optimisation program with which formal links can be estab-
lished. These links provide a secure logical foundation for the common-
place biological principle that natural selection leads organisms act as if
maximising their ‘fitness’, provides a definition of ‘fitness’, and clarifies
the limitations of that principle. The situations covered do not include
frequency dependence or social behaviour, but the approach is capable of

extension.

1 Introduction

Population genetics is the part of biology in which the operations of natural
selection should be studied, and their consequences worked out. Most biologists
who study adaptiveness in the field hold the view, following Darwin (1859),
that natural selection leads organisms to act as if they are maximising their
fitness. This view is not supported by the current state of population genetics,
despite recent exegesis and developments, discussed in Section 2.2, of the first
candidate supporting theory, the Fundamental Theorem of Natural Selection of
Fisher (1930).

The discrepancy has many consequences for the current status of biology.
Lacking a formalised version of Darwin’s theory, biologists have a collection of
theories based on optimisation which have no common root in basic theory.
Thus widely used and taught ideas in many biology courses, optimal foraging,
ESSs and inclusive fitness, have no single underlying theory to match the single

underlying intuition. There are arguments about what kind of average of fitness
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is maximised by natural selection, arithmetic or geometric. Challenges to ortho-
doxy have to be met with ad hoc arguments, rather than a simple application
of a general Darwinian result. Finally, the central concept of Darwinian fitness
remains ill-defined, and a source of conceptual difficulty.

There is valuable work establishing the foundations of ESS theory (Ham-
merstein, 1996) and inclusive fitness (Taylor, 1996), which reveal the nature of
the ideas and their logical bases. However, these are not unifying foundations,
and do not attempt to justify the optimisation view as a whole.

Darwins original argument has been successfully expounded and advanced
in words e.g. Williams (1966), Dawkins (1976), but there is no accepted math-
ematical representation of these advances. Grafen (1999) proposed a project
to construct one, effectively finding a replacement for the fundamental theorem
that would justify the general biological view that natural selection leads or-
ganisms to act as if maximising their fitness. Grafen (2000) made progress in
developing the covariance selection mathematics of Price (1970, 1972) to include
arbitrary uncertainty. The present paper now fulfils a further step in the project
by establishing the first formal link between the Price equation and optimisation
programs.

Section 2 first discusses why this link is important, and in particular why
establishing the nature of the ‘target of selection’ in an appropriately elaborated
Price equation, as Grafen (2000) did, is not enough. Sections 3 to 7 introduce
and use a highly technical mathematical apparatus, and will not be found easy
to read. Accordingly, Section 2 also contains an overview of the technical ar-
guments, and an explanation for why such an apparatus is required. Later,
Section 8 reviews the argument in non-technical terms. Thus it should be possi-
ble for a reader to jump straight from Section 2 to Section 8 and retain a sense
of the argument of the paper.

A curious parallelism in later sections is worthy of note. The population
genetic development of Sections 3 and 4 will treat organisms as machines whose

morphology and behaviour can be studied, but are taken as given. The ap-
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proach here uses Price’s covariance selection mathematics (Price, 1970, 1972a)
as developed by Grafen (2000), but is general enough to include a wide range
of simple population genetic models. See Grafen (2000) for a discussion of the
dynamic insufficiency of Price’s method in this context: it does not compromise
the exactness of the results obtained here.

The optimisation development in Section 5 will treat organisms as designed
solutions to problems. The approach will use the formal structures of optimi-
sation programs, and will be motivated by examples from behavioural ecology,
for the sake of concreteness. However, the ideas are very general to the adapta-
tionist approach in biology.

The parallelism is that these sections develop two very different kinds of
formal structure, which have both been used extensively by biologists, and are
often used to discuss the same phenomena. Indeed, biologists have frequently
employed ideas from both types of structure simultaneously, in a productive
promiscuity. Here, similar ideas have to be treated with different words and
separate notations, because a formal justification for adaptationism requires us
to distinguish sharply between dynamics and optimisation. The formal links
established in Section 5, and discussed in Section 8, will seem at first like weak
truisms to readers who take the validity of the optimisation analogy for granted.
Their whole point, however, is precisely to justify, to as large an extent as can
be logically defended, the validity of that analogy.

This paper develops a formal link between population genetics and optimi-
sation programs in a special case. The apparatus required is so elaborate that it
seemed right to pause there, which more or less attains the level of representing
the adaptationist arguments of Darwin (1859). The last remaining technical
restriction at that level is to discrete generations. However, a major purpose
is to prepare for extensions that will encompass the twentieth century addi-
tions to adaptationist theory, and so bring to fulfilment the ‘formal Darwinism

unification project’ of Grafen (1999).
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2 Motivation

This section’s first aim is to clarify the importance of employing optimisation
programs, and constructing a formal link between them and population genetic
models. Second a comparison is made between the present exercise and Fisher’s
fundamental theorem of natural selection. The final subsections provide an
overview of the technical arguments and make the case that the abstraction

gained by the sophisticated mathematics employed is important.

2.1 The inadequacy of ‘targets of selection’

The Price equation in its simplest form states that the change in a p-score equals
the covariance across individuals between the p-score and relative fitness, for-
mally, using notation of Grafen (2000) but ignoring uncertainty for the purposes

of illustration,
Ap =G [pi, vi] (1)

Following Grafen (2000), we assume perfect transmission, that is, no mutation,
no gametic selection, fair meiosis, and that all contributing loci have the same
mode of inheritance.

It is tempting to conclude that selection leads individuals to act as max-
imising v;, their relative fitness, and if this were so there would be no need
to introduce optimisation programs. The term with which p; appears in the
covariance was called the ‘target of selection’ by Grafen (2000). However, by
considering social behaviour as an example, we can see that natural selection
need not lead to maximisation by individuals of the target of selection. The
technical arguments of this paper will not include social behaviour, but the
purpose is to develop an approach that will be ready to include it.

The arguments that lead to Equation (1) still apply when there are social
interactions of the kind envisaged by Hamilton (1964), and for which he showed

natural selection caused individuals to act as if maximising their inclusive fitness.
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It is instructive to examine just where the difficulty arises. An individual’s
v; may depend on her own actions, and also on those of other individuals. The
Price equation acts as an after-the-fact accounting scheme, which is exactly true
in a diverse set of circumstances, but does not recognise issues of control. In
the case of interacting with sibs, suppose that an individual increased her own
v; and provided a positive element to the sum that constitutes the covariance
in Equation (1); if she also reduced the v; of her relatives, she would contribute
negative elements to that same sum. Thus whether a trait spreads would not
be revealed solely by the effect of an action on an individual’s own v;. Put in
another way, the individual could increase her v; by altering the genotypes of
her relatives, so that they were altruistic to her. These genotypes are not under
her direct control, and yet she should receive some benefit for having altruistic
genes because these are likely to be shared with relatives and so indirectly she
does increase her v;. The target of selection in the Price equation therefore does
not reveal how selection will act on individual behaviour when interactions with
relatives is concerned. In view of the absence of the concepts of control or of the
set of possible phenotypes, this is, at least on reflection, only to be expected.

In order, then, to uncover an optimisation principle in the workings of natural
selection, we will link the Price equation to optimisation programs that leave no
room for doubt what it is to establish that an individual is acting to maximise a
given quantity. In the present paper, this doubt will be removed for uncertainty
and for varying ploidy levels.

The Price equation combines great generality with great subtlety of interpre-
tation, because it leaves completely unspecified the links between genotype and
phenotype, and between phenotype and fitness. Our aim is leave the genotype-
phenotype link completely arbitrary, as this allows the equation to hold over
more or less arbitrary genetic architectures. But we will elaborate a model of
phenotypes and their link to fitness, to be incorporated into the Price equa-
tion, in order to specify whose genotype causes which effects on fitness. This

model in combination with the Price equation will allow links to be made with
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optimisation models.

The Price equation, then, will play a central part in the thesis of this paper,
but needs to be combined with a model of phenotypes and how they link to
fitness. In order to maintain the same generality as is found on the genotypic

side, this phenotypic model will be very general and abstract.

2.2 The Fundamental Theorem of Natural Selection

Fisher (1930) believed that his fundamental theorem demonstrated a maximi-
sation principle in the workings of natural selection, and the current exercise
is necessary because that principle is not sufficiently elaborated and is not es-
tablished sufficiently generally. Before discussing those deficits, the exegetical
literature on the fundamental theorem is briefly reviewed. Price (1972b) ex-
plained the meaning and derivation of the fundamental theorem, but doubted
its biological significance. (He did so in Fisher’s own terms, and did not em-
ploy the covariance selection mathematics he was developing at the same time
(Price, 1970, 1972a) and which forms a basic element of the theory of the current
paper.) Ewens (1989) expanded Price’s argument, and the subject is reviewed
by Edwards (1994). Lessard (1997) claims a more authentic interpretation of
Fisher’s argument, while Frank (1997, 1998) presents his own exposition and
development of the fundamental theorem.

Deriving the fundamental theorem is very easy using covariance selection
mathematics, as shown by Frank (1997, 1998). Relative number of successful
gametes is a trait like any other, and so must have an additive genetic component
(Falconer, 1981), which will equal some weighted sum of allelic values, and there-
fore specifies some particular p-score. With that p-score, C; [ps, v:] = C; [ps, pi,
leading through an application of the Price equation in Equation (1), ignoring
uncertainty, and assuming perfect transmission, to Ap = G [p;,p:] = Vi [pi].
Hence, the change in the mean additive genetic value of fitness equals the addi-
tive genetic variance in fitness.

The important conclusion for our purposes follows from the next step. As
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variances are by definition non-negative, and will usually be positive, it follows
that the additive genetic value of mean fitness never decreases, and will usually
increase. By ignoring the distinction between the additive genetic value of
fitness and fitness itself, we could conclude that mean population fitness must
increase. This erroneous conclusion, hotly contested by Fisher, formed the basis
of Wright’s adaptive landscape (see Ewens, 1989).

Price distinguishes, following what can be seen in retrospect as clear in-
dications from Fisher, the partial change in fitness due to changes in allele
frequencies, which the fundamental theorem shows must be positive, from the
remainder of the change in fitness, which is attributed to environmental change.
This extended sense of ‘environmental change’, including changes in genotype
frequencies, as the effect of an allele on phenotype can be altered by its genic
environment. Lessard (1997) proposes a revision of the exact nature of this
distinction.

The primary complicating effect of these environmental factors is to alter the
weightings of alleles in the additive genetic value of fitness from one generation
to the next. The additive genetic values that increase from generation ¢ to
generation t + 1, and from ¢ + 1 to ¢ + 2, may then be different characters, and
so neither is guaranteed to increase between generations ¢ and t + 2. So the
fundamental theorem doesn’t guarantee that there is a character that increases
over more than one generation.

Price found the fundamental theorem disappointing because it discussed
only a partial change in fitness, and ignored environmental change. Ewens
(1992), Frank (1997, 1998) and Lessard (1997) have extended Fisher’s result to
incorporate all of gene frequency change. The approach in the current paper
focusses solely on the partial fitness with which Fisher’s original version dealt.
One defence is that the natural selection part of evolution tends to improve
design, while the environmental change part is essentially non-constructive. The
results of this paper, like Fisher’s, hold true even when those environmental

changes are present. The limitations arise in the interpretations of the results,
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and will be made explicit in Section 8.

Thus the current paper is a formal exploration of Fisher’s sense that the
partial result is the important one for the link between natural selection and
design. The completeness sought by Price (1972b), and pursued by Ewens
(1992), Frank (1997, 1998) and Lessard (1997) will be important for providing
a complete account of gene and genotype frequency changes.

Let us return to the deficits in the fundamental theorem. The optimisa-
tion side is insufficiently elaborated for modern purposes, which operate with
sophisticated use of information, and averaging over uncertainty. The current
paper makes that good by establishing formal links with optimisation programs.
Frequency dependence and social behaviour are further complications which the
current paper does not consider, but the elaboration of optimisation programs
is a preparation for them.

The second deficit is that the fundamental theorem is insufficiently general.
It does not explicitly consider uncertainty in fitness, differing ploidies, or mul-
tiple loci. These restrictions are mainly important because a general version
should not need to concern itself with these details any more than Darwin did.
Another specificity, not generalised in this paper, but for which the apparatus
developed is a preparation, is that Fisher’s derivation assumes there is only one
type of offspring.

One aspect of difference is that Fisher’s derivation is in continuous time.
Ewens (1989) showed that the original derivation in continuous time is easily
extended to discrete time. The current paper’s approach may be capable of
generalisation to include continuous and discrete time in one formulation.

Fisher’s approach looked to physics and statistical mechanics, and Fisher
emphasised the formal similarity of his maximisation principle to that of entropy.
The approach of the present paper looks to economics and the mathematics of
optimisation.

The two approaches are, however, similar in their ambition to produce a

‘constitutive model” of the order-creating capacity of natural selection, that
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is, a model that is not merely an example of natural selection at work, but
rather aims to contain the whole argument that natural selection leads to the
appearance of design. This aspiration led to Fisher’s naming of the fundamental
theorem, and the goal of the ‘formal Darwinism unification project’ is to make
good that aspiration under very general conditions, employing more modern

mathematical techniques.

2.3 Overview of the technical arguments

The aim of the following sections is to link two formalisms, population genetics
and optimisation programs, in order to establish that a wide class of population
genetic models admit an interpretation of their equilibria in terms of individual
optimisation. Here the argument is sketched, its technical complexity is justified,
and attention is drawn to notable parts.

The first stage is the development of the population genetic formalism in
Sections 3 and 4. The essence is adding a model of phenotypes and their link
to fitness in the presence of uncertainty. The number of successful gametes is

modelled as a function with three arguments:

1. the realised-phenotype. This in turn depends on the whole phenotype

(viewed as a norm of reaction) and the local environment of individual .
2. chance factors specific to individual 4
3. population-wide chance factors

The local environment of individual ¢ and the chance factors specific to individ-
ual i are i-specific functions of the state of nature. The population-wide chance
factors are represented by an i-independent function of the state of nature. It
is vital that the function of the three arguments is the same function for all 4.
The omissions from the list of arguments are also important. The phenotype
of individuals other than ¢ does not appear and so cannot influence the number

of successful gametes. Nor can they appear ‘through the back door’ in second or
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third arguments, because the state of nature is assumed not to contain informa-
tion about the genotypes of individuals, and so is unable to contain information
about phenotypes. (This point is discussed in more depth in the more technical
sections.)

The absence of the phenotypes of others renders the model incapable of
representing various important biological topics, including the evolution of so-
cial actions and parental care. Extending the list of arguments is one way to
elaborate the model to incorporate these topics.

A vital assumption is then introduced about the population genetic model,
to be called pairwise exchangeability. This effectively decouples the individual
genotype from the local environments and individual-specific chance effects,
imposing an assumption that while individuals may differ in phenotypes, “time
and chance happeneth to them all”. One relevance of this is to ensure that
we do not have on average an association between, for example, one allele and
particularly favourable environments. The major reason is to ensure that all
individuals face the same environmental challenges, and so are having to solve
the same problems.

The second stage is the development of the optimality framework in Sec-
tion 5. Here, ideas that are already commonplace in biology are given an un-
usually formal presentation, borrowing optimisation programs from economics
and game theory. A series of optimisation programs sees the biological model
becoming more sophisticated. The first is suitable for a simple optimal foraging
example with deterministic gain functions and a simple optimum. By the end,
the organism is allowed to observe a random variable, and she maximises an
expected payoff function conditional on the observation, updating her informa-
tion in an optimally Bayesian way in light of the cues available to her. It is
characteristic of the strategic approach that concern focusses on information,
and on constraints on action.

The third stage shows how to construct, for any population genetic model

belonging to the framework established in Section 4, a corresponding optimisa-
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tion model belonging the framework established in Section 5. Some concepts
are simply identified, such as the two regimes of uncertainty. The key point in
the construction is the reduction from a population of individuals in the pop-
ulation genetic framework to a single decision-taker in the optimisation frame-
work. First, each individual is provided with a maximand in Section 5. Then it
is shown what needs to be assumed to ensure that all the maximands are the
same, and it turns out that ‘pairwise exchangeability’ will suffice provided one
or other of a pair of additional conditions holds. Equation 5 derives the max-
imand from the population genetic framework. Its technical interest, however,
is not so much its form, but rather that we can prove conditions under which
the maximand is the same for each individual. It is therefore the subscripts,
rather than the variables, that hold the key to the technical significance of the
formula, and in some crucial places (such as the function f) it is the absence of
a subscript.

Finally, links are established between the population genetic model and its
corresponding optimisation model. These links justify the identification of the
maximand with Darwinian fitness, and provide a logical foundation for the use
of optimality ideas in discussing the operation of natural selection, while placing
strong limits on them.

The next subsection discusses the technical complexity of the argument, and
briefly introduces the states of nature approach and measure theory. Readers
happy to proceed non-technically are invited to take in as much of the next

subsection as possible, and then skip to Section 8.

2.4 Technical complexity and generality

The argument unfortunately involves some measure theory, and potentially
infinite-dimensional spaces (Schechter, 1997, contains all the relevant math-
ematics, though it cannot be recommended as introductory). The justification
is that the argument is very general, which itself has three main purposes. After

discussing these purposes, a brief introduction is made to the representation of
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uncertainty by the ‘states of nature’ approach, and to measure theory.

The first reason to be general is to show that the optimisation link with nat-
ural selection is not just a coincidence in a special case, but a fundamental fact
about a class of selection processes. Furthermore, the formal Darwinism unifi-
cation project aims to provide a technical representation of the commonsense,
informal, arguments first proposed by Darwin (1859), and accepted by gener-
ations of biologists since. The formal argument should work in the same way
for finite and infinite populations; for haploid populations, diploid populations
and mixtures; for one-locus, two-locus and multi-locus traits; and for cases with
and without environmental stochasticity, with finite or infinite sets of possible
environments. Darwin did not take these cases separately, and neither should
we. It is worth noting that, although the apparatus is complex, the argument
is simple, reflecting the persuasive nature of the original verbal argument.

Another advantage of generality is that the theoretical developments here
can be viewed as ‘meta-models’, that is, as models of models. The aim is to show
that a wide class of existing population genetic models admit of an optimisation
interpretation, and to show how to construct the corresponding optimisation
model. This purpose is fulfilled in proportion to the generality of the model.

Finally, the model is not yet general enough. A general argument provides a
better source for further development than a special case. For example, inclusive
fitness and ESS theory could be incorporated with careful extensions of the
model, and ideally both would be incorporated simultaneously.

The main technical complexity is the use of measure theory. In its application
to the population, this allows finite and infinite populations to be handled at
the same time. The conceptual foundation of all probability is measure theory,
which is therefore implicit in many biological models already.

Measure theory is also applied to the states of nature, which are themselves
perhaps unfamiliar to many biologists. The state of nature approach to han-
dling uncertainty is to define a variable, in this case w, to represent all the

uncertainty. If the only uncertainty is the average temperature, then w can be a
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real number denoting the temperature. If each individual in the population has
its own micro-climate, then w could contain a specification of the temperature
of each individual. In an infinite population, that would be an infinite number
of temperatures. Having defined w, we can then allow functions to have w as an
argument, to represent how uncertainty affects certain features. We also need
to specify the probability distribution of w, and this is done here using measure
theory.

The basics of measure theory will be superficially reviewed, using the state
of nature w as an example. First we require the set in which w takes its values,
and we will call it Q. If this were a finite set, we could specify the probability
of each possible value separately. But in an infinite set (consider the example
of a Normal Distribution on the real line) it is common that the probability of
any particular value is zero. To circumvent this difficulty, we decide to attach
probabilities to subsets of Q rather than to individual points. For example,
the probability that a Normal variable lies between two values is given by the
area under the curve between them. Under certain conditions this allows the
definition of a probability density, but we remain general and stay with the
idea of assigning probabilities to subsets of 2. For technical reasons, we cannot
assign probabilities to all subsets of  (unless Q is a very small set), as this
generates paradoxes in which probabilities of events do not add up as they
should. In measure theory, therefore, we specify a set of subsets of 2, called a
o-algebra, over which we will define probabilities. In the present paper, that
set will usually be indicated with a bar over the original set name, so the set of
subsets of © over which we will define probabilities will be written . Finally,
the specification of the probabilities must give a probability for each element of
Q, and this is a function from Q into the real line. For states of nature, we call
this function m. The triple (2, Q, m) is known as a measure space.

The essence of defining this measure space is that we have assumed no more
than that a variable taking values in the set ) is capable of having probabilities

defined on it. If  does not have this property, then it is unlikely to make
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biological sense to say that the state of nature takes values in Q. Thus we have
retained complete generality in working with the measure space.

The level at which this model engages with uncertainy in fitness is more
abstract than that of the illuminating exegesis by Frank and Slatkin (1990) of
the nature of uncertainty in fitness, but is entirely compatible with it. The
treatment here simply does not grapple with the same issues because those
important levels of biological detail are not germane to the methodological task
in hand.

The complex mathematical apparatus has its purpose, then, in allowing the
argument to be simultaneously general and simple. This simplicity resides not in
its ease of comprehension, which will admittedly be hindered by the complexity
of the apparatus, but in the logical structure of the argument once the apparatus

is set up.

3 Price’s Equation and Measure Spaces

The starting point for the population genetic modelling will be Grafen (2000)’s
development of Price’s equation (Price, 1970, 1972a), but more formally ex-
pressed. Needed mathematical results will be cited in the textbook of Schechter
(1997) as ‘Sch’ followed by a chapter and section number. The population I
of individuals is indexed by i. The expectation over this population E; used
by Grafen (2000) implicitly assumes the existence of a ‘measure space’ (I, I, 1),
which consists of the set of individuals I, a set I of subsets of I with special prop-
erties (called a ‘o-algebra’), and a measure function p that assigns a probability
to each member of I (Sch 11.39). Price’s equation applies to mixed ploidies
(Grafen, 2000), and we assume that the ploidy of individuals is represented by a
function d: I — {1,2,3...}. There is a probability measure i over the measur-
able space (I, I) that is a ploidy-weighting of y itself (Sch 21.38(i)), and it is with
respect to i that our expectations will be taken. Assume a function p: I — R

denoting the p-score of individual i. A p-score can represent the frequency of
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a particular allele, or an arbitrary weighted sum of such frequencies, so that
the additive genetic value of each character can be represented as a p-score (see
Grafen, 1985, for further details). Another measure space (€, Q,m) is defined
conditional on (I, I, 1) to contain the states of nature indexed by w. A function
w: I x Q — RT denotes the number of successful gametes per haploid set of
individual 7 in state of nature w. Arguments of functions that are members of [
will be written as subscripts, and those that are states of nature will be written
as superscripts, and the same convention will be used for expectations. Thus we
write d;, p;, and w;*. The average number of successful gametes per haploid set
in state of nature w will be written as w* = F; [w;*], and the relative number
for individual ¢ as v;¥ = w;* /w*.

All sets are assumed to have a o-algebra associated with them, forming a
measurable space. All functions are assumed to be measurable on the spaces over
which they are defined. Functions over product spaces are assumed measurable
with respect to the product o-algebra (Sch 21.6). The measure on I x § is
assumed to be the natural product measure of i and m (Sch 21.40).

The form of the Price equation to be employed shows E* [Ap®“], the expected
change in mean p-score from this generation to the next, in terms of a covariance

over individuals, as follows:
E* [Ap¥] = G [pi, E* [v:”]] 2)

Grafen (2000) shows that this equation holds under the assumption of perfect
transmission, that is, no mutation, no gametic selection, fair meiosis and that
all the loci contributing to the p-score have the same mode of inheritance.

The measure space approach allows our notation to apply equally to finite
and infinite sets I and {2, making the assumption only that those sets are capable
of having probabilities defined over them. It is often easier to write and read
statements about probabilities of sets than integrals or sums.

The state-of-nature structure allows individuals in the population not only to

be subject to the occurrence of chance events, but also to be different from each
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other. For example, a population can be geographically dispersed in one, two
or three dimensions, contiguously or otherwise, location may affect reproduc-
tive success, and the effect of different phenotypes may be different in different
locations. A population may be a ‘metapopulation’, with different subpopula-
tions having different properties of various kinds. This broad generality will in
the present work be strongly constrained by assumptions made later, but the
approach does make the current models more general, and prepares the way for
future development.

We make a strong assumption about w, which is that it does not contain
information about the genotypes of individuals. Specifically, it refers to individ-
uals only by their element in I. In describing the outcome of meiosis (for more
detailed discussion of the significance of this point, see Grafen, 2000) it refers to
the alleles of individual ¢ by a labelling that is independent of the actual alleles
present. One implication is that the completed state of nature relies both on w
and on the array of genotypes, and to that extent calling w the state of nature
is an abuse of notation. This separation of genotypes from other factors (or
conceivably some other precise statement of their interrelation) is essential for
operating with the Price equation at this level of generality.

One key area of this separation of information is that when a function has one
argument related to the phenotype and another relating to the state of nature,
we know that phenotypic information is not ‘leaking’ through the state of nature.
An assumption of ‘pairwise exchangeability’ will be introduced that effectively
randomises against each other the phenotypes and the local environments. If
the local environment contained information about genotype or phenotype, this
would result in inconsistencies. The assumption of separation of information is
thus of central importance to the whole argument.

Finally, we make the additional assumption that for i,j € I, we have
p({i}) = p({j}), and notate it as py. This implies that p({i})/d; = p({5})/d;,

which we will denote fi;. Hence fi({i}) = d;fi1. If I is infinite, then py = iy = 0.



Price equation and optimisation, February 26, 2002. 18

4 Population genetic models

The Price equation in Equation (2) can be understood as an accounting state-
ment, without any view about causation. We now take such a view by adopting
a model of w;*. The genotype of an individual is assumed to determine the phe-
notype, but in a completely unspecified way. The phenotype is a set of poten-
tialities only, and is assumed to affect w;* only through the realised-phenotype,
which depends on both the phenotype and on the local environment. Formally,
the set of possible local environments is R, and a function r: I x Q@ — R rep-
resents the local environment of individual ¢ in state of nature w. A phenotype
a;: R — A then allows the realised-phenotype, which is assumed to lie in some
set A, to be shown as a;(r;*). We formally consider there to be a function
a: I x R — A. The term local indicates only that the relevant features of the
environment may be different for each individual, and in particular need have no
geographical connotations. Wallace (1990) discusses the history of the concept
of ‘norm of reaction’.

As well as the realised-phenotype, chance influences will also affect w;“.
Those that apply to all individuals take a value in some set H and are repre-
sented by h: Q@ — H. Those that apply separately to individuals lie in some set
U, and are represented by u: I x Q — U.

Let there be a function f: AxU x H — {0,1,2...} that models the number

of successful gametes and so leads to
w; = f(ai(ﬁw)7 (T hw)/di

_ flag(ri®),w®, h¥)/d; 3)
Fy, [f(ar(re®), up®, he)/di]

’in

The omissions from f are crucial. The genotypes and phenotypes of individuals
in I other than 7 are not permitted to influence w;“, thus ruling out the selection
of social behaviour from the reach of the model. (The possibility that we may

wish to define f only over a subset of A x U x H is ignored here for simplicity.)
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The final form of the Price equation for present purposes is then:

f(ai(m“), ’U,iw, hw)/dl

B Ap® = C, | py B
= G P B g ), e 1) ]

(4)

Summarising, the target of selection is the arithmetic average over all uncertain-
ties of the number of successful gametes of individual ¢ per haploid set, relative
to the average over individuals in the realised state-of-nature. The realised-
phenotype is allowed to depend on local environment r;*, and the number of
successful gametes is allowed to depend on uncertainties, both general, h*, and
individual, u;“.

A new assumption of pairwise exchangeability is now introduced. Denote
by A the product o-algebra defined over H x (R x U)! (Sch 9.15 to 9.18), and
define ¢: Q — H x (R x U)! by

d(w) = (h, (rs*, u” )ser)

There is a measure o defined on the measurable space (H x (R x U)!, A) im-
puted by ¢ from the measure space (Q,Q,m) (Sch 9.16). Now consider the
set of mappings T9F: H x (R x U)! — H x (R x U)! for j,k € I defined by
Tk (hy (14, ui)ier) = (W, (7}, ul)ier) and

(rj uz) i=k
h/ =h (T;, u;) = (Tk, uk) ) :]
(riyu;)  otherwise

Thus 77* simply swaps round the chance events for individuals j and k. The
assumption of pairwise exchangeability is that all the mappings T7* preserve
the measure o on (H x (R x U)!, A). Loosely, each pair of individuals has a
symmetric distribution of chance events, conditional on the outcomes for all
others in the population.

The biological interpretation of exchangeability is that offspring at the stage
of censussing for the Price equation are indistinguishable except by their geno-

type and their phenotype and their consequences. In particular, there are no
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historical factors that make individuals different from each other, thus excluding
cultural inheritance and differential parental care. A more sophisticated mathe-
matical structure will be required to capture the essential features of these more
sophisticated biological ideas. Restricting the set of mappings that preserve «,
to make weaker exchangeability assumptions, will be an important technical
element in further developments.

Pairwise exchangeability is weaker than independence. For example, it al-
lows individuals to be allocated to physical locations, and for no two individuals
to be allocated to the same location. It would also allow individuals to be paired,
and then exactly one from each pair to die at random.

This section has defined the ‘mechanical processes’ of Grafen (1999) in an
important class of situations. The range of population genetic models that are
included in the Price equation framework is very wide (Grafen, 2000), but the
model introduced here has restricted that range considerably. It has already
been pointed out that one individual’s phenotype cannot affect the number of
successful gametes of another. Further, although genomic imprinting is still for-
mally included, the model effectively precludes any interesting selection taking
place at an imprinted locus. There is no allowance for mutation. Nevertheless,
many simple population genetic models do fall within the scope outlined in this
section, and the model contains clear indications of where generalisations need

to, and can, be made.

5 Optimisation programs

It is a long tradition in biology to match form and function. The mathematical
formulation of purpose is most highly developed in economics and game theory,
and optimisation programs will be borrowed and used here to represent the
logical barebones of the form-and-function approach. Formal expressions of
optimisation programs are used in some parts of economics (see for example the

textbook of Mas-Colell et al., 1995), and occasionally in biology (Grafen, 1998).
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A generic program is given below and named ‘ProgG’. Words consistent with
examples in the literature on optimal foraging (Stephens and Krebs, 1986) will
be used for concreteness. A strategy x is to be chosen to maximise a currency g,
subject to the constraint that x belongs to the set X. The function g: X — R

is called more generally the maximand. ProgG is written as

x max g(z), ProgG

reX

ProgG is adequate to represent simple situations in which it is reasonable to
assume that each phenotype always has exactly the same success. In an early
example (Charnov, 1976), a forager moves from patch to patch with a determin-
istic gain function that depends on time in the patch, and a fixed inter-patch
travel time, and is assumed to choose the stay time to maximise the rate of gain
of energy.

With this simple example, the strategy = belongs to X, the set of non-
negative real numbers, and the function g(z) is the gain rate produced by stay-
ing in each patch for time z. Optimisation ideas in biology are almost always
used with natural selection in the near-background, and there are two relation-
ships that we might hope will hold between this optimisation program and the
processes of natural selection. First, if there are various stay-times present in
the population, then they will change in relative frequency according to their
respective values of g(z). Second, over a longer timescale, if there is a set of
possible stay times that occur occasionally by mutation, and if we set X equal
to that set, we may hope that the outcome of selection at equilibrium will be
equal to (or at least close to) a solution to ProgG. A solution is defined as a
value z* such that g(z*) > g(x) for x € X. ‘On-going selection’ and ‘even-
tual equilibrium’ cover the important areas of evolutionary interpretation of the
optimisation program.

We develop ProgG to represent a wider range of biological arguments about

natural selection, in three steps. Williams (1966) made a distinction between the
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effects of design and the effects of chance in determining ‘fitness’, and used the
example of two identical twins, one of whom is struck by lightning and dies. The
effects of chance are generally important in biological arguments, such as those
about how natural selection acts in the presence of uncertainty. To incorporate
uncertainty, we allow the maximand to depend on a random variable, say 7,
defined over a measure space (I', T, n), allowing expectations E? to be defined.
The distribution of + will have an important role in determining the relative
successes of different phenotypes. It is usual to assume in ESS theory and
optimisation theory that an individual maximises the arithmetic average over
uncertainty, and so we now embody this assumption by making the maximand
the arithmetic average of a function of  and . Now, g: X xI' — R is assumed
measurable over v for each x, and the generalisation to include uncertainty is

therefore

z max EY [g(z,7)], ProgU

reX

The interpretation of ProgU is that g(x,7) is the number of offspring of an
individual playing strategy x when the state-of-nature turns out to be ~y, and
that an individual maximises the arithmetic average of g through choice of x.
The next step is to allow ‘conditional strategies’. The idea is that some
aspects of v may be observable as a cue. Formally, suppose s, the value of
some function o: I' — S, is observed, then the action chosen may depend on
s. The strategy = becomes a function so that x(s) denotes the action taken.
The currency of an individual will depend only on the action taken, and not
on the parts of the strategy that were not played. We can allow the z(s) to be
chosen separately for each s, but we will also allow for constraints, so that an
organism cannot react completely differently to different cues. It may be that
an organism can make minor behavioural differences according to s, but cannot
alter morphology determined before s was observed. A stag may not be able to

alter its skeletal size in response to a rainy summer, but may be able to alter
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its diurnal feeding patterns.

We will write the complete strategy, with an action chosen for each s, as
x = (z(s))ses. Separate constraints would be represented by z(s) € X, for
each s. Possibly linked constraints can be represented in a completely general

way by
(I(S))SGS =rxeXC (XS)SGS

This requires a formal revision of our definition of the maximand. Formally,
letting I's = {y € T': ¢” = s}, now g: J,(Xs x T's) = R depends only on the
action taken, and not on the whole strategy.

Cues can also provide information to an individual, and so it is important to
allow the distribution over uncertainty as it affects an individual to be different
for different cues. The expectation of g(z(c7),~) with respect to v conditional
on 07 = s is defined (Sch 29.14), and we write it as Fl*.

The program for one particular cue s is therefore

x(s) max B [g(z(s),7)], ProgUC

x(s) € X,

If we consider two different values of s, then there are three salient differences
between the two cases, which are more easily presented if we temporarily agree
to write v = (s,¢), a decomposition into observed and unobserved parts of ~.
First, the maximand may be different, in that g(x, (s1,¢)) and g(z, (s2,¢)) may
be different functions of z, with quite different maxima. Second, the set of
possible actions may be different, as X,, may not equal X,,. Finally, the cue
may provide only information, so that g(z, (s,¢)) may depend on ¢ but not on
s. Even though the values of g do not depend on s, the expectations EY*1 and
EYl*2 may give different probability weightings to the different values of ¢, and
so make EI*t [g(z, (s, ¢))] and EI*2 [g(x, (s, ¢))] quite different functions of .
If organisms could choose their actions in response to each s quite separately,

or if we considered just one s in isolation, then we might hope for the same links
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to natural selection for ProgUC as for ProgG or ProgU. In general, however, it
is necessary to balance performance in response to different cues against each

other, as in the final program:

(z(s))ses max EY [g(x(a™),7)], ProgUCJ

(z(s))ses € X

This program represents a moderately sophisticated biological situation in some
generality. Cues can determine available strategies but in an arbitrarily linked
way, and can also provide information about uncertainty. The value of o7 is a
random variable over which expectations can be defined, and the maximand of
ProgUCJ can be written E*EY!® [g(z(07),7)], showing that the maximands of
ProgUC for given s are weighted, when combined into ProgUCJ, according to
the probabilities of the different values of s.

ProgUCJ is a formal version of the working hypothesis of many empirical and
theoretical biologists when they assume that organisms ‘maximise their fitness’,
which Grafen (1999) called the ‘individual-as-maximising-agent analogy’. The
main purpose of the next section is to show how to construct an optimisation
program in the class outlined in this section from a population genetic model

belonging to the class described in the previous section.

6 Construction of a corresponding optimisation
program

The population genetic assumptions and quantities of Section 4 are taken as
fundamental, and we construct an optimisation program in those terms. At
this stage we construct ProgUCJ for one particular individual, namely k. The
significance of the construction will become clear in the following section, when
links are proved between the two models.

Begin by identifying the measure space (I', T, n) with (2, 2, m). Also identify

the set of cues S with the set of local environments R, and o7 with r,“ for w = 7.
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We assume that X; C A for all s. Table 1 shows some of the correspondences
of notation.

The next goal is to define g as a function of z: R — A and «. To emphasise
that we are focussing on individual k, the maximand will be written gx. Now
the kernel of the maximand can be defined in terms of the kernel of the target
of selection, setting w =, as

gr(r,7) =

F((rs®), ug, 1) ®
ﬂl(f(x(rkw)v UR®, hw) - f(ak(rkw)v ug®, hw)) +E [f(ai(riw)v U, hw)/di]

This is indeed a measurable function of w as required, because f is a measurable

function. We have expressed g in a form that makes all the dependence on k
explicit, so that had we focussed on individual j instead, we need only substitute
j for k in the right hand side.

The distributions of gi(z,w) and g, (x, w) will be the same if the distributions

in B3 of the vectors

f(I(?”kw), ukwv hw)
fr(f(x(r?), ur®, he) = flag(rr®), ur®, h*))
E; [f(ai(r:®), u;”, h*)/d;]

and

fla(r®), ui®, h)
i (f ((r @), uss b)) = flag (r;®), u®, he))
s [f (ai(ri®), wi®, b))/ di]
are the same. The mapping T7* is measure-preserving by the assumption of
pairwise exchangeability, and it will therefore suffice to show that T7* carries
one vector into the other. This will be so under two alternative sets of conditions.
First, that [ is infinite. For then fi; = 0, so the middle term is always zero,
and both j and k have zero weight in the expectation. Then the first term has
indices swapped, and the other terms are unaltered. The alternative condition
is that the a; are all equal. For the first two terms it is then simply a matter

of swapping indices. The ploidy-weighting in the expectation cancels with the
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division by ploidy to show that the expectation is unchanged, for it equals the
number (or density) of successful gametes divided by the number (or density)
of haploid sets in I. Swapping the number of successful gametes of individuals
j and k changes neither of these quantities.
This is the point at which the exchangeability assumption reduces the pop-
ulation in one framework to the single implicit decision-taker in the other.
Turning to the expectations, the equality of distributions implies immedi-

ately that

EY [gk(z(a™), )] =

@ f(l‘(rkw)vukwvhw)

ﬂl(f(x(rkw)v Up®, hw) - f(ak(rkw)v ug®, hw)) +E [f(ai(riw)v U, hw)/di]
(6)

Agree to denote this expectation as ().

Thus we may write gi(ax(rr®),w) for the value of the maximand realised
by individual k in state of nature w, and the expected value as §i(ax). The
‘what-if” question of what the realised maximand and expected maximand would
have been had z been played instead are answered by gi(x (1), w) and gg(z),
respectively. These expressions are values of the maximand in the optimisation
framework, but this section has defined them in population genetic terms. They

will allow formal links to be established between the two frameworks.

7 Formal links

For any population genetics model included in the framework of Section 4, we
have now constructed an optimisation program. In this section, we prove links
that justify the application of concepts of optimisation to the population genetics
model.

The concepts in terms of which the formal links are constructed must first
be introduced. On the population genetic side, ‘there is no scope for selection’

will mean that E¥ [Ap“] = 0 for all possible p-scores. This implies in turn that
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E¥ [v;“] is equal for all ¢ (technically, for almost all ¢). ‘There is no potential for
positive selection in relation to a set X’ will mean that there is no phenotype
z € X which would have been favoured by selection had it been present. More
formally, suppose that individuals in the set J € I with u(J) > 0 had their
phenotypes a; substituted with z, and also define a function ¢’ to equal 1 for
i € J and 0 otherwise. Then define v as the values of v;* that would result
from Equation 3 with that substitution. The absence of potential for positive

selection is indicated by the following condition holding for all x € X and J:

C; ¢ B [0]] <0

3

These two concepts are framed entirely in terms of the dynamics of gene fre-
quency change. Now we turn to a concept on the optimisation side. ‘a; solves
ProgUCJ for individual ¢ in relation to a set X’ means g;(a;) > g;(x) for all
r e X.

Some of the results to be obtained will depend on the ‘same-program’ as-
sumption that either I is infinite or the a; are all equal, in line with the discussion
in Section 6. This assumption has the crucial implication that the solution set
and value of ProgUCJ will be same for all individuals. If z* is a solution, then
we may write formally that §;(x*) > g;(a;) with equality if a; is also a solution.
If a; and a; are both solutions to their respective programs, then the equivalence

of the programs provides the central equality to imply that
gi(ai) = gi(x*) = g;(x%) = g;(a;)

Note that these equalities hold in cases in which a; and a; are not the unique
solutions to their respective programs.

With these concepts, and using the fact that by the definitions of the opti-
misation concepts, E¥ [v;*] = §;(a;), we straightforwardly obtain the following
results. The first and fourth result, and the second part of the second result,

depend on the ‘same-program’ assumption.

1. If each a; solves ProgUCJ in relation to a set X, then there is no scope
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for selection, and no potential for positive selection in relation to the set

X.

2. If all a; attain the same value of the maximand in ProgUCJ, but do not
solve it in relation to a set X, then there is no scope for selection, but

there is potential for positive selection in relation to the set X.

3. If the a; attain different values of the maximand in ProgUCJ, then there
is scope for selection, and the expected change in every allele frequency
and in the additive genetic value of every character equals its covariance

across individuals with the attained value of the maximand g;(a;).

4. Suppose there is no scope for selection, and no potential for positive se-
lection in relation to a set X. Then each individual acts rationally in the

sense that each a; solves ProgUCJ in relation to the set X.

These properties justify identifying the realised attained maximand and ex-
pected attained maximand, g;(a;,7) and §;(a), with realised and expected Dar-
winian fitness. The first three results derive population genetic conclusions
from statements about maximising Darwinian fitness. The fourth shows that
absence of selective forces in the entirely mechanical processes of population
genetics correspond to behaviour that is consistent with a standard formulation
of rationality.

Some readers may also find that the results seem ‘obviously true’. However,
they are likely to reach this conclusion by taking for granted optimisation ideas
about the effect of natural selection. The whole purpose of the argument of this
paper is to justify optimisation ideas about natural selection, without assuming
them in the first place. The results are in some ways weak, and it will be shown
in the next section that some obvious stronger results are not available simply
because they are not true. It is only by justifying optimisation ideas without
assuming them that their limitations can be established.

It is important to remember that the links established in this section are

true for arbitrary genetic architecture, including arbitrary linkage, under the
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assumption of perfect transmission. The links aim to represent the strongest

results that do hold with that degree of generality.

8 Interpretation of the results

The four linking results found in the previous section establish that certain
kinds of optimality ideas apply to the population genetics model. The aim of
this section is to consider in a non-technical way what these results mean.

The main result is that each population genetic model satisfying the condi-
tions of Section 4 has a corresponding optimality model of the kind described
in Section 5. The particular optimality model is exactly defined from the popu-
lation genetic model according to the conversions of Section 6. The importance
of the existence of this corresponding optimality model lies in the links that it
has with the original model. Essentially, it provides an intepretation of some
aspects of the population genetic model in optimality terms.

The precise links that permit these interpretations are given directly. To
readers who take for granted that population genetic models have optimality
interpretations, these links will seem like weak truisms, but it is precisely the
intuition of these optimality interpretations that we are in the process of justi-
fying. Interest lies in the fact that the links can be made formally, and also in
the limitations of the links that the formal version makes clear.

The first result in informal terms is that ‘If each individual acts optimally,
then no selection occurs and no potential selection would occur’. Technical
points are that if there is more than one global optimum, then the individuals
may be playing different optima, and that the lack of selection applies to every
locus (more strictly, to every locus that shares the inheritance pattern of the
loci in the p-score).

The sense in which no selection occurs is somewhat weak, however. Al-
though the expected changes in gene frequency are all zero, it is quite possible

for genotype frequencies to change. One simple example of the exception in-
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volves a population which is a mixture of AA and BB homozygotes, where both
genotypes produce an optimal phenotype, but where the absent heterozygote
does not. Next generation, the result tells us that the gene frequencies of A
and B have not changed. However, mating between the two homozygotes would
produce suboptimal heterozygotes, and the population would no longer consist
of optimal phenotypes. Thus although the result establishes a positive link-
ing result in very general terms, it does not show that once all phenotypes are
optimal, the population remains that way.

The second result in informal terms is that ‘If each individual acts sub-
optimally, but equally so, then no selection occurs but potential selection would
occur’. The significance is that the link between the optimisation program and
the population genetics model do not hold only at solutions to the optimisation.
There are also out-of-equilibrium links.

The third result in informal terms states that ‘If individuals vary in the
value of the maximand they attain, then the expected change in every gene fre-
quency and in the additive genetic value of every character equals its covariance
across individuals with the value of the maximand’. Hence all gene frequencies
change in line with the value of the maximand attained. This shows that the
optimisation program captures important aspects of the course of evolution in
completely non-equilibrium situations. By now, the justification for agreeing to
call the maximand ‘Darwinian fitness’ is very strong.

The first three results have argued from an assumption about the optimisa-
tion program to a conclusion about gene frequencies. The final result does the
opposite, and in informal terms is ‘If there is no selection and no potential se-
lection, then each individual in the population acts optimally’. This final result
gives a result that follows from the mechanics of inheritance and reproduction,
and draws a conclusion that each individual acts rationally in the quite sophis-
ticated sense of the final optimisation program of Section 5. Specifically, the
individuals must follow the rules for ‘Decision problems with observations’ set

out in section 8.8 of de Groot (1970)’s text on ‘Optimal Statistical Decisions’.
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The organisms behave as if following advice for statisticians taking decisions in
the presence of uncertainty. Further, the quantity to be maximised is the arith-
metic average over all uncertainties of the relative number of successful gametes
transmitted to the next generation.

The optimisation program is tightly specified, with the instrument, maxi-
mand and constraint set strictly determined by the population genetics model it
is based on. Only some of the optimisation analogies made for natural selection,
therefore, can be founded on the results of this paper.

This fourth conclusion, too, is subject to the example of the population of
AA and BB optimally behaving homozygotes. The condition is satisfied and the
conclusion holds, but the population nevertheless evolves away from optimality
when heterozygotes appear in the next generation.

It is interesting to consider another contrary case, that of sickle-cell anaemia
(Allison, 1954). At the equilibrium with over-dominance, the hypotheses of the
first two results do not hold. The third hypothesis holds, but the conclusion is
that the covariance of each gene frequency with the maximand equals zero, and
so there is no change in gene frequencies. The hypothesis of the final conclusion
does not hold, because there is a potential for selection. An allele specifying
the same phenotype as the heterozygote would indeed spread in the population.
Hence, we rightly fail to conclude that each individual in the population has an
optimal phenotype.

The two exceptional cases confirm that the linking results are true, for they
hold even then, but they also illustrate that the results do not imply that the
outcome of natural selection is inevitably that each individual in the popula-
tion has an optimal phenotype. These cases incorporate some of the aspects
of ‘environmental change’ as discussed in Section 2.2 in relation to Fisher’s
fundamental theorem. The results do provide in a very precise way a general
background of optimality to the operations of natural selection, and justify the
use of intentional terms in relation to the outcome of natural selection. The

optimisation program exists and the links hold in the presence of arbitrary ploi-
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dies, epistasis, multiple loci and alleles, arbitrary linkage maps, finite or infinite
population size, and arbitrary forms of uncertainty. Because the same argument
holds across all these cases, it demonstrates that the optimising tendencies are
inherent in selection in general, and are not accidental occurrences in special
cases.

The sense of the general background is that changes in gene frequencies
(though not necessarily in genotype frequencies) change in line with the optimi-
sation framework. It is a plausible view that the designing capacity of natural
selection operates through gene frequency changes. The extra factors that con-
tribute to genotype frequencies, including segregation and mating systems, do
not contribute to design, and need not therefore enter into an expression of the
basic Darwinian argument, however important they may be to a full account of
the genetics of a population.

The technical argument as a whole has extended the Price equation ap-
proach, and added concepts of phenotype and of how phenotypes determine
fitness, but retains the Price equation’s complete agnosticism about the link
between genotype and phenotype. This has allowed very general but somewhat

weak results to be derived about a wide class of population genetic models.

9 Discussion

The most direct use of the theory of this paper is that a population genetic
model satisfying the requirements of Section 4 can be used to generate an opti-
misation program using the equivalences of Section 6. Also, the reasonableness
of an optimisation model can be tested by asking whether a corresponding pop-
ulation genetic model can be constructed that would give rise to it. Two obvious
possible difficulties are the relative nature of the maximand, and the arithmetic
averaging required. Ascending the scale of abstractness, it provides a general
population genetic justification for modelling approaches that assume optimi-

sation with a specific maximand claimed as ‘natural’, such as optimal foraging
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theory (Stephens and Krebs, 1986), and can provide guidance for selection of a
maximand in difficult cases.

More abstractly, the meta-models show what is meant by the claim that
natural selection leads to individuals maximising their fitness, even if the extent
of the validity of that claim is still in question. They will also help identify and
understand the distinctive features of biological evolution, compared to cultural
evolution and other analogues.

This paper has defined an optimisation program that has tight formal links
with a reasonably general population genetic model, and allows a definition of
Darwinian fitness in certain cases. This represents a validaton of the ‘individual-
as-maximising-agent’ analogy. The key point is that aspects of the population
genetic model have been interpreted, formally and rigorously, in terms of opti-
misation. There is still, however, a considerable way to go to fulfil the ‘formal
Darwinism unification project’ (Grafen, 1999).

With the exception of the restriction to discrete generations, the theory in
this paper encompasses Darwin’s arguments about the design brought about
by natural selection, apart from his hints about family selection in the social
insects. Extending the analysis should allow the twentieth century additions
to the theory to be incorporated formally, essentially providing a mathematical

version of the conceptual and verbal synthesis of Dawkins (1976).
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Population Genetics
Meaning Notation
Population measure space (I, I, i)
General Uncertainty w

and its Measure Space (©2,Q,m)

Local Environment ri”
belongs to the set R
Phenotype ak
Realised Phenotype ap(ry”)
belongs to the set A
Target of Selection v

Notation

(none)

z(o7)
U, X

g

Optimisation Theory
Meaning
Implicit single decision-taker
General Uncertainty
and its Measure Space
Cue
belongs to the set
Strategy
Action
belongs to the set

Maximand

Table 1: Identities between the notations of Sections 4 and 5. The whole pop-

ulation I is reduced to a single implicit individual, the decision-taker, in the

optimisation program.



