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An inclusive fitness analysis of altruism on a cyclical network
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Abstract

A recent model studies the evolution of cooperation on a network, and
concludes with a result connecting the benefits and costs of interactions and
the number of neighbours. Here, an inclusive fitness analysis is conducted of
the only case solved analytically, of a cycle, and the identical result is obtained.
This brings the result within a biologically familiar framework. It is notable
that the benefits and costs in the inclusive fitness framework need to be
derived, and are not the benefits and costs that are the parameters in the
original model. The relatedness is a quadratic function of position in a cycle of
size N: an individual is related by 1 to itself, by (N - 5)/(N+ 1) to an
immediate neighbour, and by very close to —1/2 to the most distant
individuals. The inclusive fitness analysis explains hitherto puzzling features

of the results.

Introduction

The evolution of cooperation remains an active topic in
biological research, but the power and scope of inclusive
fitness theory (Hamilton, 1964, 1970) remain largely
unappreciated. Ohtsuki et al. (2006) have recently shown
how cooperation can evolve on a network. They end by
drawing attention to the work of Hamilton (1964):

Finally, we note the beautiful similarity of our finding with

Hamilton’s rule, which states that kin selection can favour

cooperation when b/c > 1/r, where r is the coefficient of

genetic relatedness between individuals. The similarity

makes sense. In our framework, the average degree of a

graph is an inverse measure of social relatedness (or social

viscosity). The fewer friends I have the more strongly my
fate is bound to theirs.

The thrust of the current paper is that the results of
Ohtsuki et al. (2006) have a much closer connection to
Hamilton’s work: their results fall into the scope of
inclusive fitness theory because the social interactions
are additive (at least in the weak selection limit) and so
can be derived as a special case of Hamilton’s rule itself.
Genetic relatedness can be defined for their model. The
benefits and costs need to be calculated for use in the
inclusive fitness framework, and are not equal to the
b and c of their model. The analogy between relatedness
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and the inverse of the degree of a graph is called into
question.

The present paper integrates the results exactly into
inclusive fitness theory for the cycle, the only analytically
studied case of Ohtsuki et al. (2006). Lehmann et al. (2007)
integrate the general results of Ohtsuki ef al. (2006) into
inclusive fitness theory using sophisticated population
genetic techniques, notably those of Rousset (2004). In
one sense, therefore, this paper is a special case of theirs.
However, their results donot cover one of the two halves of
the analysis here (the Birth-Death process, explained
below), and the more simple-minded approach of the
current paper reveals some very enlightening details.

Two steps required for inclusive fitness
analysis

Natural selection of social behaviour falls within the
scope of inclusive fitness theory provided the fitness
effects combine additively, as shown explicitly by Grafen
(2006). Here, we pursue the special case of the cycle of
length N of Ohtsuki et al. (2006), and we assume weak
selection and so obtain additivity. Once a model falls
within inclusive fitness theory, there are two steps that
we take in turn. First, to calculate the costs and benefits
of the possible actions. Second, to calculate the related-
nesses. It is worth noting that although weak selection
produces additivity in this case, it does not always do so,
for example in the games of Ohtsuki & Nowak (2006).
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The theory of inclusive fitness is a strong theory, in the
sense that it dictates how its variables are to be measured.
Ohtsuki efr al. (2006) discuss benefits and costs that,
adding together the effects of the cooperative acts
towards both of an individual’s neighbours, give a benefit
of b to each neighbour and —2c¢ to the individual itself.
But inclusive fitness theory requires that the benefits and
costs be measured in reproduction, namely the effect on
the number of descendants (including a surviving self).
Thus, we need to see how these ‘scores” affect the chance
of survival of individuals and the chance of their
reproducing, and how these combine to affect the total
expected number of descendants, which for the purposes
of this paper we will call fitness: these all depend strongly
on the demographic scheme. Ohtsuki ef al. (2006) con-
sider a Death-Birth scheme and a Birth-Death scheme
which have very different results, and the explanation
lies precisely in the process of converting scores into
reproduction. It is helpful to agree to call the immediate
neighbours ‘1-neighbours’, those two positions away
‘2-neighbours’, and so on.

Table 1 shows the benefits and costs as the effects on
scores, and the effects on fitness under both demographic
schemes. We now proceed to explain the biological
significance of the benefits and costs. Consider the
Death-Birth scheme first, in which each individual has
an equal chance of being the one individual to die, and
then one of the immediate neighbours of the vacated slot
place an offspring in that slot, with probabilities propor-
tional to their scores. An individual’s own score is
reduced by —2¢, but the details of the pairwise compe-
tition mean that a given fitness effect has only a quarter
of its effect in reproduction in a given competition (this
calculation is in Appendix A). Thus, the —2¢ gives an
expected advantage of —c/2 for the case where the right-
hand neighbour dies, and a further expected advantage
of —c/2 when the left-hand neighbour dies.

There is always exactly one dead individual to replace,
so the fitness effect on self of —c/2 to one side must be
exactly counter-balanced by the effect on the fitness of
the rival in that competition to fill the 1-neighbour slot.
The fitness effect on the 2-neighbour on that side is
therefore +c/2. The b given directly to the score of a
1-neighbour has a fitness effect of b/4 to each side, by the
same ‘quartering principle’. And the zero-sum property

Table 1 Effects of actor on neighbours.

shows that the 3-neighbour must therefore lose out, with
a fitness effect of —b/4. However, if j herself dies, both the
competing neighbours have gained b for their score, and
so the chances of them winning are unaltered by the
altruism. These are all the fitness effects for the Death—
Birth scheme, shown in Table 1, and the arguments just
given show that they make perfect biological sense.

One of the unexplained aspects of the results of
Ohtsuki et al. (2006) is the difference between the
demographic schemes, so consider now the Birth-Death
scheme, in which one individual is chosen at random to
reproduce, with probabilities proportional to scores, and
then the reproducing individual’s offspring is placed in
the slot of a neighbour chosen at random with equal
probabilities. The impact of score in this case is very
different. In contrast to the ‘quartering’ of the Death—
Birth scheme, here an individual suffers the full —2¢ loss
in fitness from her own score reduction, as it directly
reduces her chance of being selected as the individual to
reproduce. Further, she also suffers a —b/2 loss from each
neighbour, for the simple reason that increasing your
neighbour’s score by b/ increases the chance she is
selected to reproduce by b, and then with half a chance
it is you who are selected to be replaced. The —b/2 for
each neighbour gives the total effect on the individual’s
fitness as —b — 2¢. Just as in the previous scheme, these
effects have their equal and opposite reactions in the zero
sum game in reproduction, leading to gains of b + ¢ for
each immediate neighbour, and losses of —-b/2 for
2-neighbours.

The more biological approach of inclusive fitness
theory therefore readily provides an explanation of the
difference caused by the demographic scheme. To
complete the analysis, the relatednesses to neighbours
at varying distances are required. Using a method
closely modelled on those of Taylor et al. (2007b) and
Rousset (2004), it is shown in Appendix B that the
relatedness on a cycle of size N to a neighbour at
distance k is

6k(N — k)

N2 -1 (1)

Ne=1-—
Table 1 shows these relatednesses, and the costs and
benefits, itemized by neighbour. By multiplying and
summing, we can calculate the inclusive fitness effect of a

Individual j-3 j-2 j-1 I j+1 j+2 j+3
Relatedness N 18N163 N 12N 23 s 1 N-s N 1N +23 NP BN +53
Score 0 0 b -2c b 0 0

Fitness (Death—Birth) —b/4 c/2 b/4 —-C b/4 c/2 —-b/4
Fitness (Birth-Death) 0 -b/2 b+c -b - 2c b+c -b/2 0

The effect of j being a cooperator on neighbouring individuals. The effect on score is the immediate consequence of the interaction. The effects
on fitness (the expected number of descendants, including the surviving individual as a descendant) are different, however, in the Death-Birth
and Birth-Death demographic schemes. The values are calculated in Appendix A.
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cooperator in the Death-Birth and Birth-Death schemes,
respectively, as

(b - 20N +4(c- b)),

(2)

The benefits and costs do not depend on N, but the
formula for the relatednesses shows that relatedness to
close neighbours approaches one as N increases. For
large N, eqn (2) gives the same answers as Ohtsuki
et al. (2006), that cooperation spreads when b/2 — ¢ > 0
in the Death-Birth scheme, and when c¢< 0 in the
Birth-Death scheme. Ohtsuki & Nowak (2006) give
exact results for the more general case of games on the
cycle, whereas here we consider only cooperation so
the effects of different individual’s actions add up. But
their exact results for N, under weak selection, are
given in their equation (2.4), and they agree exactly
with the results just given when additivity is indeed
assumed. Thus, the analytic result of Grafen (2006)
that the inclusive fitness approach gives exact results is
confirmed here, and in addition it provides a bio-
logically meaningful explanation of selection of coop-
eration on a cycle.

The biological interpretation can now be pressed
further, to explain why the effect of the benefit is halved,
compared with the cost, in the Death-Birth scheme —
that is, why is the condition for the spread of altruism
b/2 — ¢ > 0? We will assume large N, so that according to
eqn (1) the relatednesses of the focal individual j to her
neighbours can be taken to be decreasing linearly from
one in both directions. Whatever is given in fitness to
j herself has an equal and opposite reaction on the
2-neighbours, and the net effect is the product of the
effect on self with the two steps” worth of relatedness
difference. Whatever is given to a 1-neighbour, sayj — 1,
has to be considered in two halves. On half of the
occasions when it matters, the dead individual is j herself,
and the loser is j+ 1. But j— 1 and j+ 1 are equally
related to j, and so the net effect on her inclusive fitness is
zero. On the other half of occasions, it is j — 2 who dies,
and j — 3 who suffers the balancing loss. The difference
in relatedness to j between j — 1 and j — 3 is equal to the
difference in relatedness to j between j and her 2-
neighbours, owing to the linearity of relatedness. Thus,
the only difference in the impact on the inclusive fitness
of j between helping herself and helping her 1-neighbour
is the fact that with the 1-neighbour, half of the occasions
have a zero effect. This is the precise source of the factor
of two by which » must be discounted in evaluating the
inclusive fitness effect of j’s action.

Moving on to interpret the Birth-Death process, the
disadvantage to j herself results in advantages of equal
summed magnitude to her 1-neighbours. Thus, the net
effect on inclusive fitness is the disadvantage to herself
multiplied by one step’s worth of relatedness difference.
Next, we consider the effect of giving b to a 1-neighbour,

6
N2 -1

Altruism on acycle 3

say j — 1. This has an equal and opposite effect shared
equally between j — 2 and j herself. But the linearity of
relatedness means that the net effect of the disadvantages
to j — 2 and j therefore exactly equals in magnitude the
net effect of the advantage to j — 1, so far as j’s inclusive
fitness is concerned, leaving a net effect of zero. This is
the precise source of the irrelevance of b to the effect of
natural selection.

These explanations for the extent to which the value of
b affects the spread of altruism show that it does not
derive from genetic or other kind of similarity or extent
of dependence between the actor and her neighbour. The
inclusive fitness analysis, therefore, does not support the
quotation from Ohtsuki et al. (2006) earlier in this paper,
which analogizes their result to Hamilton’s rule. It is also
worth noting that despite its very general rhetorical
appeal, the quotation focusses on the Death-Birth
demographic scheme and ignores the Birth-Death case.

It is worth remarking that the total inclusive fitness
effects in eqn (2) are of order 1/N because only one
individual of the N dies each generation, and this
dependency is therefore an artefact of the schemes.
There would be merit in presenting the results as the
cumulative effect over N periods, to make one ‘genera-
tion’.

Finally, the biological significance of these models may
be considered in the context of the explanation of their
results. As presented by Ohtsuki et al. (2006), the factor
of b in the Death-Birth scheme condition »/2 — ¢ > 0 is
presented as analogous to relatedness, but we have
rejected this interpretation here. Further, the value of
two is seen as a rather particular consequence of the
details of the model, and it is clear that if j interacted so
far as scores were concerned with her 2-neighbours in
the Birth-Death scheme, b would again be irrelevant to
selection. Thus, it is a fair conclusion that the model is
too special and particular to be taken as having great
biological significance in itself, but this is not to detract
from the value of the model in assisting exploration of
the complex subject of cooperation in geographically
structured populations.

Conclusions

Network models have a great potential for exploring the
evolution of social behaviour. Applying systematically
the inclusive fitness methodology of Hamilton (1964,
1970) will lead to the most productive use of that
resource. Indeed, after submission of the current paper, a
breakthrough by Taylor et al. (2007a) has provided very
general results about selection in viscous populations,
which are further developed by Grafen & Archetti
(unpublished work).

In the case considered here, the biological understand-
ing of Ohtsuki et al.’s (2006) model is greatly enhanced
by calculating the fitness effects on neighbours at varying
distances, and the relatedness of neighbours at varying
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distances, and putting these together to calculate the
inclusive fitness effect. The difference between the two
demographic schemes is then easily understood.

The cycle is the only analytically considered case of
Ohtsuki et al. (2006), who deal with the general case
with approximate methods. The link of inclusive fitness
to that general case, and to other results in social graph
theory, is established in great generality by Lehmann
et al. (2007). The present paper emphasizes the interpre-
tative advantages and rigour of an inclusive fitness
analysis in a special and simple case. By contrast,
Lehmann et al. (2007) establish much more general
results, through the use of inclusive fitness methodology,
and show that all of the results of social theory on graphs
can be derived that way. They therefore express their
main results using the notation and concepts of graph
theory.

One interesting aspect of the current analyses is how in
viscous populations the effects of relatedness and com-
petition can combine in many ways (Grafen, 1984;
Taylor, 1992; Wilson et al., 1992). Overlapping genera-
tions seem to play a significant role (Taylor & Irwin,
2000; Irwin & Taylor, 2001; Lehmann et al., 2007). There
is a need for a fuller biological explanation of these
results.

Another interesting aspect is that an individual has,
approximately, positive relatednesses to the closest 43 %
of the population, and negative relatednesses to the most
distant 57%. The most positive relatedness is of course
one to itself, and the most negative is very close to —=1/2,
for all population sizes. The structure of the population
thus allows some individuals to have a considerable
negative relatedness. On other hand, the premiss of the
current model is that those individuals do not interact,
so here there is no scope for spiteful behaviour.

The most important conclusion is that inclusive fitness
theory is a very general and powerful theory, with great
explanatory force. Models of social evolution should
either be presented in terms of inclusive fitness or, if
there are reasons for adopting an alternative approach,
reconciled to it explicitly. Mathematical frameworks for
easing this process are increasingly available (Taylor
et al., 2000; Rousset, 2004; Grafen, 2006; Lehmann &
Keller, 2006), and are currently being used to establish
retrospectively the consistency of published work with
inclusive fitness theory (e.g. Grafen, 2007; Lehmann
et al., 2007).
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Appendix A: Calculating the fitness
effects

The method of calculating fitness effects is straightfor-
ward once it is clear that we need to take the demo-
graphic scheme (called the ‘updating scheme’ by Ohtsuki
et al. (2006), but this term does not reflect the full
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biological significance of the aspects covered) as well as
the score into account to calculate the expected number
of descendants, and in essence we follow Taylor & Frank
(1996). Let x; denote the genotype of individual j, and
equal 1 for a cooperator and 0 for a noncooperator.
Following the notation of Ohtsuki et al. (2006), we also
prepare for the assumption of weak selection by suppos-
ing b = 6B and ¢ = 6C, where § is a parameter we will
tune towards zero. The score s; is given by

§j=1=206+b(x1 +x11) =1+ 0(=2Cx; + B(xj1 +x11))

where the subscripts are understood to be modulo N, the
number of individuals in the ring.

We study first the Death-Birth process, in which an
individual is chosen at random, and is replaced by the
asexual offspring of an immediate neighbour, with
probabilities proportional to their scores. The fitness is
the expected number of descendants in the next gener-
ation, counting the surviving adult as one descendant.
Survival of an individual occurs with probability (N — 1)/
N. If a neighbour dies (with probability 1/N), j reproduces
in competition with the individual on the far side of that
neighbour. Thus

N—-1 1 Sj 1 Sj

wj = ~ ~
N NSJ' =+ Sj—2 NSj =+ Sj+2

The fitness effect b;; is given on the assumption of weak
selection by

by = { % (ax,- 7 60%0) t=li-Jl (3)

otherwise

The role t has been allotted one of four values: 0, for
the effect on self, and 1, 2 and 3 for the effect on
neighbours that number of positions away. This choice
will make the calculations of relatedness cleaner. Use of
eqn (3) provides

—c, t=0,j=1
b/4 t=1,j=ix1

Nbjr = 1 ¢/2 t=2,j=i+2 whenx;=1
—b/4 t=3,j=i+3
0 otherwise

Nbj =0 when x; = 0

and these are the values in Table 1.

The scores are the same for the Birth-Death process,
but the link to fitness is different. A random individual
is chosen to reproduce, with the probability of being
chosen proportional to their score s, Then a random
1-neighbour of the reproducer is killed to make a space
for the offspring. In this case, we need to consider the
cases in which a distant individual reproduces, a
neighbour reproduces and j herself reproduces, to
write w; as

Altruismonacycle 5

w= 3 T+ > %G)%(Z)

i)i—j|>2 i|i—j|=1

where S = ) ; s;. Applying eqn (3) provides

—b—-2c t=0,j=1i
b t=1,j=i+1 h =1
Nbij[ _ +c ] 1' when Xx;
—b/2 t=2,j=i+2
0 otherwise
Nbj; =0 when x; = 0

This completes the derivation of the values shown in
Table 1.

Appendix B: Relatednesses

It remains to calculate the relatedness to the different
kinds of neighbour. A calculation of relatedness based on
common ancestry can be derived following the principles
of Rousset (2004) and Taylor et al. (2007b), as follows,
providing a long-run average appropriate to the case of
weak selection.

We first establish a recursion for the probability 4}, that
individuals k slots apart are identical-by-descent in period
t, in the absence of selection, and the result is the same in
both the Death-Birth and Birth-Death processes. A
mutation rate of u per reproductive event is assumed.
With probability (N — 2)/N neither individual is killed,
and each is killed with probability 1/N. In that eventu-
ality, there is half a chance the new individuals have the
same identity-by-descent probability as a pair k-1
individuals apart in period ¢, and half a chance the same
as a pair k+ 1 apart. Hence g = gy = 1 and for
1<k<N-1,

N u

-2 2(1—u 1-—
i N q§<+ﬁ( 5 ‘124*745@1) (4)

de =

and the solution to this recursion can be found by matrix
inversion and is easily confirmed to be

Gy = C—l(zk—(N/Z) + Z(N/Z)—k)
where

1+ vV2u — u?

1—u
C=7N2 4 N2

=

The relatedness to an individual at distance k in an
N-cycle is
rz _ q;< - Zit
N,k 1— ét

where g' is the average identity by descent to all
individuals in the population (including self). The values
of interest are the asymptotic values of r§ ,. These are
functions of the mutation rate #, and our aim is to find
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the limiting values of relatedness, say ryx as u — 0.
The calculation is complicated by the fact that g, — 1,
and so g — 1, as u > 0. We proceed by defining Qx =
27 W2 INI2) =k and Q as the average of Qg to obtain

ryx(u>0) = Qck__éQ

The numerator and denominator equal zero in the
limit. We apply L’'Hoépital’s rule twice. Using primes to
denote derivatives with respect to u, it is useful to define
Qu = ZKk"N/2 _ ZN/2=k and C = z7N/2 — zN/2) and 1o
record the following results

Q= (k=5)E)& Q= (k-5

¢ =®E° &= ®E)C

B — 5 = . N-1
=3B X k-5 =3O T k-5 e

The successive applications of L'Hopital’s rule each
involve cancelling Z/z after the differentiation, as follows:

(k=97 — 1300 (59 @
=0 (NP — Ly () Qe

which using the limits Q; — 2, C — 2 yields

(e

2
N2 _ N2+42

4 12

k(N k)

T =
Nk N1

and this formula conveniently holds also for k = 0 and N.
Thus relatedness is a quadratic function of k, which takes
value 1 at k = 0 and N, and reaches, approximately for
even N and exactly for odd N, a minimum value of —1/2
at the furthest point(s) of the cycle. As n grows large, the
relatedness between individuals separated by a fraction x
of the cycle is given by 1 — 6y + 6y2.
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