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The Darwin unification project is pursued. A meta-model encompassing an important class
of population genetic models is formed by adding an abstract model of the number of
successful gametes to the Price equation under uncertainty. A class of optimization programs
are defined to represent the ‘‘individual-as-maximizing-agent analogy’’ in a general way. It is
then shown that for each population genetic model there is a corresponding optimization
program with which formal links can be established. These links provide a secure logical
foundation for the commonplace biological principle that natural selection leads organisms
to act as if maximizing their ‘‘fitness’’, provides a definition of ‘‘fitness’’, and clarifies the
limitations of that principle. The situations covered do not include frequency dependence or
social behaviour, but the approach is capable of extension. r 2002 Elsevier Science Ltd. All
rights reserved.
1. Introduction

Population genetics is the part of biology in
which the operations of natural selection should
be studied, and their consequences worked out.
Most biologists who study adaptiveness in the
field hold the view, following Darwin (1859),
that natural selection leads organisms to act as
if they are maximizing their fitness. This view is
not supported by the current state of population
genetics, despite recent exegesis and develop-
ments, discussed in Section 2.2, of the first
candidate supporting theory, the Fundamental
Theorem of Natural Selection of Fisher (1930).

The discrepancy has many consequences for
the current status of biology. Lacking a for-
malized version of Darwin’s theory, biologists
have a collection of theories based on optimiza-
tion which has no common root in basic theory.
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Thus, widely used and taught ideas in many
biology courses, optimal foraging, ESSs and
inclusive fitness, have no single underlying
theory to match the single underlying intuition.
There are arguments about what kind of average
of fitness is maximized by natural selection,
arithmetic or geometric. Challenges to ortho-
doxy have to be met with ad hoc arguments,
rather than a simple application of a general
Darwinian result. Finally, the central concept
of Darwinian fitness remains ill defined, and a
source of conceptual difficulty.

There is valuable work establishing the
foundations of ESS theory (Hammerstein,
1996) and inclusive fitness (Taylor, 1996), which
reveal the nature of the ideas and their logical
bases. However, these are not unifying founda-
tions, and do not attempt to justify the
optimization view as a whole.

Darwins original argument has been success-
fully expounded and advanced in words e.g.
r 2002 Elsevier Science Ltd. All rights reserved.
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Williams (1966), Dawkins (1976), but there is no
accepted mathematical representation of these
advances. Grafen (1999) proposed a project to
construct one, effectively finding a replacement
for the fundamental theorem that would justify
the general biological view that natural selection
leads organisms to act as if maximizing their
fitness. Grafen (2000) made progress in develop-
ing the covariance selection mathematics of Price
(1970, 1972a) to include arbitrary uncertainty.
The present paper now fulfils a further step in
the project by establishing the first formal link
between the Price equation and optimization
programs.

Section 2 first discusses why this link is
important, and in particular why establishing
the nature of the ‘‘target of selection’’ in an
appropriately elaborated Price equation, as
Grafen (2000) did, is not enough. Sections 3–7
introduce and use a highly technical mathema-
tical apparatus, and will not be found easy to
read. Accordingly, Section 2 also contains an
overview of the technical arguments, and an
explanation for why such an apparatus is
required. Later, Section 8 reviews the argument
in non-technical terms. Thus, it should be
possible for a reader to jump straight from
Section 2 to Section 8 and retain a sense of the
argument of the paper.

A curious parallelism in later sections is
worthy of note. The population genetic devel-
opment of Sections 3 and 4 will treat organisms
as machines whose morphology and behaviour
can be studied, but are taken as given. The
approach here uses Price’s covariance selection
mathematics (Price 1970, 1972a) as developed by
Grafen (2000), but is general enough to include a
wide range of simple population genetic models.
See Grafen (2000) for a discussion of the
dynamic insufficiency of Price’s method in this
context: it does not compromise the exactness of
the results obtained here.

The optimization development in Section 5
will treat organisms as designed solutions to
problems. The approach will use the formal
structures of optimization programs, and will be
motivated by examples from behavioural ecol-
ogy, for the sake of concreteness. However, the
ideas are very general to the adaptationist
approach in biology.
The parallelism is that these sections develop
two very different kinds of formal structures,
which have both been used extensively by
biologists, and are often used to discuss the
same phenomena. Indeed, biologists have fre-
quently employed ideas from both types of
structure simultaneously, in a productive pro-
miscuity. Here, similar ideas have to be treated
with different words and separate notations,
because a formal justification for adaptationism
requires us to distinguish sharply between
dynamics and optimization. The formal links
established in Section 5, and discussed in Section
8, will seem at first like weak truisms to readers
who take the validity of the optimization
analogy for granted. Their whole point, how-
ever, is precisely to justify, to as large an extent
as can be logically defended, the validity of that
analogy.

This paper develops a formal link between
population genetics and optimization programs
in a special case. The apparatus required is so
elaborate that it seemed right to pause there,
which more or less attains the level of represent-
ing the adaptationist arguments of Darwin
(1859). The last remaining technical restriction
at that level is to discrete generations. However,
a major purpose is to prepare for extensions that
will encompass the 20th century additions to
adaptationist theory, and so bring to fulfilment
the ‘‘formal Darwinism unification project’’ of
Grafen (1999).

2. Motivation

This section’s first aim is to clarify the
importance of employing optimization pro-
grams, and constructing a formal link between
them and population genetic models. Second a
comparison is made between the present exercise
and Fisher’s fundamental theorem of natural
selection. The final subsections provide an over-
view of the technical arguments and make the
case that the abstraction gained by the sophis-
ticated mathematics employed is important.

2.1. THE INADEQUACY OF ‘TARGETS OF SELECTION’

The Price equation in its simplest form states
that the change in a p-score equals the covar-
iance across individuals between the p-score and
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relative fitness, formally, using notation of
Grafen (2000) but ignoring uncertainty for the
purposes of illustration,

Dp ¼ Ci½pi; vi�: ð1Þ

Following Grafen (2000), we assume perfect
transmission, that is, no mutation, no gametic
selection, fair meiosis, and that all contributing
loci have the same mode of inheritance.

It is tempting to conclude that selection leads
individuals to act as maximizing vi; their relative
fitness, and if this were so there would be no
need to introduce optimization programs. The
term with which pi appears in the covariance
was called the ‘‘target of selection’’ by Grafen
(2000). However, by considering social beha-
viour as an example, we can see that natural
selection need not lead to maximization by
individuals of the target of selection. The
technical arguments of this paper will not
include social behaviour, but the purpose is to
develop an approach that will be ready to
include it.

The arguments that lead to eqn (1) still apply
when there are social interactions of the kind
envisaged by (Hamilton 1964), and for which he
showed that natural selection caused individuals
to act as if maximizing their inclusive fitness.

It is instructive to examine just where the
difficulty arises. An individual’s vi may depend
on her own actions, and also on those of other
individuals. The Price equation acts as an after-
the-fact accounting scheme, which is exactly true
in a diverse set of circumstances, but does not
recognize issues of control. In the case of
interacting with sibs, suppose that an individual
increased her own vi and provided a positive
element to the sum that constitutes the covar-
iance in eqn (1); if she also reduced the vi of her
relatives, she would contribute negative elements
to that same sum. Thus, whether a trait spreads
would not be revealed solely by the effect of an
action on an individual’s own vi: Put in another
way, the individual could increase her vi by
altering the genotypes of her relatives, so that
they were altruistic to her. These genotypes are
not under her direct control, and yet she should
receive some benefit for having altruistic genes
because these are likely to be shared with
relatives and so indirectly she does increase her
vi: The target of selection in the Price equation
therefore does not reveal how selection will act
on individual behaviour when interactions with
relatives is concerned. In view of the absence of
the concepts of control or of the set of possible
phenotypes, this is, at least on reflection, only to
be expected.

In order, then, to uncover an optimization
principle in the workings of natural selection, we
will link the Price equation to optimization
programs that leave no room for doubt as to
what it is to establish that an individual is acting
to maximize a given quantity. In the present
paper, this doubt will be removed for uncertainty
and for varying ploidy levels.

The Price equation combines great generality
with great subtlety of interpretation, because it
leaves completely unspecified the links between
genotype and phenotype, and between pheno-
type and fitness. Our aim is to leave the
genotype–phenotype link completely arbitrary,
as this allows the equation to hold over more or
less arbitrary genetic architectures. But we will
elaborate a model of phenotypes and their link
to fitness, to be incorporated into the Price
equation, in order to specify whose genotype
causes which effects on fitness. This model in
combination with the Price equation will allow
links to be made with optimization models.

The Price equation, then, will play a central
part in the thesis of this paper, but needs to be
combined with a model of phenotypes and how
they link to fitness. In order to maintain the
same generality as is found on the genotypic
side, this phenotypic model will be very general
and abstract.

2.2. THE FUNDAMENTAL THEOREM OF

NATURAL SELECTION

Fisher (1930) believed that his fundamental
theorem demonstrated a maximization principle
in the workings of natural selection, and the
current exercise is necessary because that prin-
ciple is not sufficiently elaborated and is not
established sufficiently generally. Before discuss-
ing those deficits, the exegetical literature on the
fundamental theorem is briefly reviewed. Price
(1972b) explained the meaning and derivation of
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the fundamental theorem, but doubted its
biological significance. [He did so in Fisher’s
own terms, and did not employ the covariance
selection mathematics he was developing at the
same time (Price 1970, 1972a) and which forms a
basic element of the theory of the current paper.]
Ewens (1989) expanded Price’s argument, and
the subject is reviewed by Edwards (1994).
Lessard (1997) claims a more authentic inter-
pretation of Fisher’s argument, while Frank
(1997, 1998) presents his own exposition and
development of the fundamental theorem.

Deriving the fundamental theorem is very easy
using covariance selection mathematics, as
shown by Frank (1997, 1998). Relative number
of successful gametes is a trait like any other,
and so must have an additive genetic component
Falconer (1981), which will equal some weighted
sum of allelic values, and therefore specifies
some particular p-score. With that p-score,
Ci½pi; vi� ¼ Ci½pi;pi�; leading through an applica-
tion of the Price equation in eqn (1), ignoring
uncertainty, and assuming perfect transmission,
to Dp ¼ Ci½pi;pi� ¼ Vi½pi�: Hence, the change in
the mean additive genetic value of fitness equals
the additive genetic variance in fitness.

The important conclusion for our purposes
follows from the next step. As variances are
by definition nonnegative, and will usually
be positive, it follows that the additive genetic
value of mean fitness never decreases, and will
usually increase. By ignoring the distinction
between the additive genetic value of fitness
and fitness itself, we could conclude that the
mean population fitness must increase. This
erroneous conclusion, hotly contested by Fisher,
formed the basis of Wright’s adaptive landscape
(see Ewens 1989).

Price distinguishes, following what can be seen
in retrospect as clear indications from Fisher, the
partial change in fitness due to changes in allele
frequencies, which the fundamental theorem
shows must be positive, from the remainder of
the change in fitness, which is attributed to
environmental change. This extended sense of
‘‘environmental change’’, including changes in
genotype frequencies, as the effect of an allele on
phenotype can be altered by its genic environ-
ment. Lessard (1997) proposes a revision of the
exact nature of this distinction.
The primary complicating effect of these
environmental factors is to alter the weightings
of alleles in the additive genetic value of fitness
from one generation to the next. The additive
genetic values that increase from generation t to
generation t þ 1; and from t þ 1 to t þ 2; may
then be different characters, and so neither is
guaranteed to increase between generations t and
t þ 2: So the fundamental theorem does not
guarantee that there is a character that increases
over more than one generation.

Price found the fundamental theorem disap-
pointing because it discussed only a partial
change in fitness, and ignored environmental
change. Ewens (1992), Frank (1997, 1998)
and Lessard (1997) have extended Fisher’s
result to incorporate all of gene frequency
change. The approach in the current paper
focusses solely on the partial fitness with which
Fisher’s original version dealt. One defence is
that the natural selection part of evolution
tends to improve design, while the environmen-
tal change part is essentially non-constructive.
The results of this paper, like Fisher’s, hold true
even when those environmental changes are
present. The limitations arise in the interpreta-
tions of the results, and will be made explicit in
Section 8.

Thus, the current paper is a formal explora-
tion of Fisher’s sense that the partial result is the
important one for the link between natural
selection and design. The completeness sought
by Price (1972b), and pursued by Ewens (1992),
Frank (1997, 1998) and Lessard (1997) will be
important for providing a complete account of
gene and genotype frequency changes.

Let us return to the deficits in the fundamental
theorem. The optimization side is insufficiently
elaborated for modern purposes, which operate
with sophisticated use of information, and
averaging over uncertainty. The current paper
makes that good by establishing formal links
with optimization programs. Frequency depen-
dence and social behaviour are further complica-
tions which the current paper does not consider,
but the elaboration of optimization programs is
a preparation for them.

The second deficit is that the fundamental
theorem is insufficiently general. It does
not explicitly consider uncertainty in fitness,
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differing ploidies, or multiple loci. These restric-
tions are mainly important because a general
version should not need to concern itself with
these details any more than Darwin did. Another
specificity, not generalized in this paper, but for
which the apparatus developed is a preparation,
is that Fisher’s derivation assumes there is only
one type of offspring.

One aspect of difference is that Fisher’s
derivation is in continuous time. Ewens (1989)
showed that the original derivation in contin-
uous time is easily extended to discrete time. The
current paper’s approach may be capable of
generalization to include continuous and discrete
time in one formulation.

Fisher’s approach looked to physics and
statistical mechanics, and Fisher emphasized
the formal similarity of his maximization prin-
ciple to that of entropy. The approach of the
present paper looks to economics and the
mathematics of optimization.

The two approaches are, however, similar
in their ambition to produce a ‘‘constitutive
model’’ of the order-creating capacity of natural
selection, that is, a model that is not merely an
example of natural selection at work, but rather
aims to contain the whole argument that natural
selection leads to the appearance of design. This
aspiration led to Fisher’s naming of the funda-
mental theorem, and the goal of the ‘‘formal
Darwinism unification project’’ is to make
good that aspiration under very general con-
ditions, employing more modern mathematical
techniques.

2.3. OVERVIEW OF THE TECHNICAL ARGUMENTS

The aim of the following sections is to link two
formalisms, population genetics and optimiza-
tion programs, in order to establish that a wide
class of population genetic models admit an
interpretation of their equilibria in terms of
individual optimization. Here the argument is
sketched, its technical complexity is justified, and
attention is drawn to notable parts.

The first stage is the development of the
population genetic formalism in Sections 3 and
4. The essence is adding a model of phenotypes
and their link to fitness in the presence of
uncertainty. The number of successful gametes is
modelled as a function with three arguments:

1. the realized phenotype. This in turn depends
on the whole phenotype (viewed as a norm of
reaction) and the local environment of individual i;

2. chance factors specific to individual i;
3. population-wide chance factors.

The local environment of individual i and
the chance factors specific to individual i are
i-specific functions of the state of nature. The
population-wide chance factors are represented
by an i-independent function of the state of
nature. It is vital that the function of the three
arguments is the same function for all i:

The omissions from the list of arguments are
also important. The phenotype of individuals
other than i does not appear and so cannot
influence the number of successful gametes. Nor
can they appear ‘‘through the back door’’ in
second or third arguments, because the state of
nature is assumed not to contain information
about the genotypes of individuals, and so is
unable to contain information about pheno-
types. (This point is discussed in more depth in
the more technical sections.)

The absence of the phenotypes of others
renders the model incapable of representing
various important biological topics, including
the evolution of social actions and parental care.
Extending the list of arguments is one way to
elaborate the model to incorporate these topics.

A vital assumption is then introduced about
the population genetic model, to be called
pairwise exchangeability. This effectively decou-
ples the individual genotype from the local
environments and individual-specific chance
effects, imposing an assumption that while
individuals may differ in phenotypes, ‘‘time
and chance happeneth to them all’’. One
relevance of this is to ensure that we do not
have on average an association between, for
example, one allele and particularly favourable
environments. The major reason is to ensure that
all individuals face the same environmental
challenges, and so are having to solve the same
problems.

The second stage is the development of the
optimality framework in Section 5. Here, ideas
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that are already commonplace in biology are
given an unusually formal presentation, borrow-
ing optimization programs from economics and
game theory. A series of optimization programs
sees the biological model becoming more so-
phisticated. The first is suitable for a simple
optimal foraging example with deterministic
gain functions and a simple optimum. By the
end, the organism is allowed to observe a
random variable, and she maximizes an expected
payoff function conditional on the observation,
updating her information in an optimally
Bayesian way in light of the cues available to
her. It is characteristic of the strategic approach
that concern focusses on information, and on
constraints on action.

The third stage shows how to construct, for
any population genetic model belonging to the
framework established in Section 4, a corre-
sponding optimization model belonging to the
framework established in Section 5. Some
concepts are simply identified, such as the two
regimes of uncertainty. The key point in the
construction is the reduction from a population
of individuals in the population genetic frame-
work to a single decision-taker in the optimiza-
tion framework. First, each individual is
provided with a maximand in Section 5. Then
it is shown what needs to be assumed to ensure
that all the maximands are the same, and it turns
out that ‘‘pairwise exchangeability’’ will suffice
provided one or other of a pair of additional
conditions holds. Equation (5) derives the
maximand from the population genetic frame-
work. Its technical interest, however, is not so
much its form, but rather that we can prove
conditions under which the maximand is the
same for each individual. It is therefore the
subscripts, rather than the variables, that hold
the key to the technical significance of the
formula, and in some crucial places (such as
the function f ) it is the absence of a subscript.

Finally, links are established between the
population genetic model and its corresponding
optimization model. These links justify the
identification of the maximand with Darwinian
fitness, and provide a logical foundation for the
use of optimality ideas in discussing the opera-
tion of natural selection, while placing strong
limits on them.
The next subsection discusses the technical
complexity of the argument, and briefly intro-
duces the states of nature approach and measure
theory. Readers happy to proceed non-technically
are invited to take in as much of the next
subsection as possible, and then skip to Section 8.

2.4. TECHNICAL COMPLEXITY AND GENERALITY

The argument unfortunately involves some
measure theory, and potentially infinite-dimen-
sional spaces (Schechter, 1997, contains all the
relevant mathematics, though it cannot be
recommended as introductory). The justification
is that the argument is very general, which itself
has three main purposes. After discussing these
purposes, a brief introduction is made to the
representation of uncertainty by the ‘‘states of
nature’’ approach, and to measure theory.

The first reason to be general is to show that
the optimization link with natural selection is
not just a coincidence in a special case, but a
fundamental fact about a class of selection
processes. Furthermore, the formal Darwinism
unification project aims to provide a technical
representation of the commonsense, informal,
arguments first proposed by Darwin (1859), and
accepted by generations of biologists since. The
formal argument should work in the same way
for finite and infinite populations; for haploid
populations, diploid populations and mixtures;
for one-, two- and multi-locus traits; and for
cases with and without environmental stochasti-
city, with finite or infinite sets of possible
environments. Darwin did not take these cases
separately, and neither should we. It is worth
noting that, although the apparatus is complex,
the argument is simple, reflecting the persuasive
nature of the original verbal argument.

Another advantage of generality is that the
theoretical developments here can be viewed as
‘‘meta-models’’, that is, as models of models.
The aim is to show that a wide class of existing
population genetic models admit of an optimiza-
tion interpretation, and to show how to con-
struct the corresponding optimization model.
This purpose is fulfilled in proportion to the
generality of the model.

Finally, the model is not yet general enough.
A general argument provides a better source for
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further development than a special case. For
example, inclusive fitness and ESS theory could
be incorporated with careful extensions of the
model, and ideally both would be incorporated
simultaneously.

The main technical complexity is the use
of measure theory. In its application to the
population, this allows finite and infinite popula-
tions to be handled at the same time. The
conceptual foundation of all probability is
measure theory, which is therefore implicit in
many biological models already.

Measure theory is also applied to the states of
nature, which are themselves perhaps unfamiliar
to many biologists. The state of nature approach
to handling uncertainty is to define a variable, in
this case o; to represent all the uncertainty. If the
only uncertainty is the average temperature, then
o can be a real number denoting the tempera-
ture. If each individual in the population has its
own micro-climate, then o could contain a
specification of the temperature of each indivi-
dual. In an infinite population, that would be an
infinite number of temperatures. Having defined
o; we can then allow functions to have o as an
argument, to represent how uncertainty affects
certain features. We also need to specify the
probability distribution of o; and this is done
here using measure theory.

The basics of measure theory will be super-
ficially reviewed, using the state of nature o as
an example. First we require the set in which o
takes its values, and we will call it O: If this were
a finite set, we could specify the probability of
each possible value separately. But in an infinite
set (consider the example of a Normal Distribu-
tion on the real line) it is common that the
probability of any particular value is zero. To
circumvent this difficulty, we decide to attach
probabilities to subsets of O rather than to
individual points. For example, the probability
that a Normal variable lies between two values is
given by the area under the curve between them.
Under certain conditions this allows the defini-
tion of a probability density, but we remain
general and stay with the idea of assigning
probabilities to subsets of O: For technical
reasons, we cannot assign probabilities to all
subsets of O (unless O is a very small set), as this
generates paradoxes in which probabilities of
events do not add up as they should. In measure
theory, therefore, we specify a set of subsets of
O; called a s-algebra, over which we will define
probabilities. In the present paper, that set will
usually be indicated with a bar over the original
set name, so the set of subsets of O over which
we will define probabilities will be written %O:
Finally, the specification of the probabilities
must give a probability for each element of %O;
and this is a function from %O into the real line.
For states of nature, we call this function m: The
triple ðO; %O;mÞ is known as a measure space.

The essence of defining this measure space is
that we have assumed no more than that a
variable taking values in the set O is capable of
having probabilities defined on it. If O does not
have this property, then it is unlikely to make
biological sense to say that the state of nature
takes values in O: Thus, we have retained
complete generality in working with the measure
space.

The level at which this model engages with
uncertainty in fitness is more abstract than that
of the illuminating exegesis by Frank & Slatkin
(1990) of the nature of uncertainty in fitness, but
is entirely compatible with it. The treatment here
simply does not grapple with the same issues
because those important levels of biological
detail are not germane to the methodological
task in hand.

The complex mathematical apparatus has its
purpose, then, in allowing the argument to be
simultaneously general and simple. This simpli-
city resides not in its ease of comprehension,
which will admittedly be hindered by the
complexity of the apparatus, but in the logical
structure of the argument once the apparatus is
set up.

3. Price’s Equation and Measure Spaces

The starting point for the population genetic
modelling will be Grafen’s (2000) development
of the Price equation (Price 1970, 1972a), but
more formally expressed. Needed mathematical
results will be cited in the textbook of Schechter
(1997) as ‘‘Sch’’ followed by a chapter and
section number. The population I of individuals
is indexed by i: The expectation over this
population Ei used by (Grafen, 2000) implicitly
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assumes the existence of a ‘‘measure space’’
ðI ; %I; mÞ; which consists of the set of individuals I ;
a set %I of subsets of I with special properties
(called a ‘‘s-algebra’’), and a measure function m
that assigns a probability to each member of %I
(Sch 11.39). The Price equation applies to mixed
ploidies (Grafen, 2000), and we assume that the
ploidy of individuals is represented by a function
d : I-f1; 2; 3;yg: There is a probability mea-
sure *m over the measurable space ðI ; %IÞ that is a
ploidy-weighting of m itself [Sch 21.38(i)], and it
is with respect to *m that our expectations will be
taken. Assume a function p : I-R denoting the
p-score of individual i: A p-score can represent
the frequency of a particular allele, or an
arbitrary weighted sum of such frequencies, so
that the additive genetic value of each character
can be represented as a p-score (see Grafen,
1985, for further details). Another measure space
ðO; %O;mÞ is defined conditional on ðI ; %I;mÞ to
contain the states of nature indexed by o: A
function w : I 	 O-Rþ denotes the number of
successful gametes per haploid set of individual i
in state of nature o: Arguments of functions that
are members of I will be written as subscripts,
and those that are states of nature will be written
as superscripts, and the same convention will be
used for expectations. Thus, we write di; pi; and
wo
i : The average number of successful gametes

per haploid set in state of nature o will be
written as wo ¼ Ei½wo

i �; and the relative number
for individual i as voi ¼ wo

i =w
o:

All sets are assumed to have a s-algebra
associated with them, forming a measurable
space. All functions are assumed to be measur-
able on the spaces over which they are defined.
Functions over product spaces are assumed
measurable with respect to the product s-algebra
(Sch 21.6). The measure on I 	 O is assumed
to be the natural product measure of *m and m
(Sch 21.40).

The form of the Price equation to be employed
shows Eo½Dpo�; the expected change in mean
p-score from this generation to the next, in terms
of a covariance over individuals, as follows:

Eo½Dpo� ¼ Ci½pi;E
o½voi ��: ð2Þ

Grafen (2000) shows that this equation holds
under the assumption of perfect transmission,
that is, no mutation, no gametic selection, fair
meiosis and that all the loci contributing to the
p-score have the same mode of inheritance.

The measure space approach allows our
notation to apply equally to finite and infinite
sets I and O; making the assumption only that
those sets are capable of having probabilities
defined over them. It is often easier to write and
read statements about probabilities of sets than
integrals or sums.

The state-of-nature structure allows indivi-
duals in the population not only to be subject to
the occurrence of chance events, but also to be
different from each other. For example, a
population can be geographically dispersed in
one, two or three dimensions, contiguously or
otherwise, location may affect reproductive
success, and the effect of different phenotypes
may be different in different locations. A
population may be a ‘‘metapopulation’’, with
different subpopulations having different prop-
erties of various kinds. This broad generality will
in the present work be strongly constrained by
assumptions made later, but the approach does
make the current models more general, and
prepares the way for future development.

We make a strong assumption about o; which
is that it does not contain information about the
genotypes of individuals. Specifically, it refers
to individuals only by their element in I : In
describing the outcome of meiosis (for more
detailed discussion of the significance of this
point, see Grafen, 2000) it refers to the alleles of
individual i by a labelling that is independent of
the actual alleles present. One implication is that
the completed state of nature relies both on o
and on the array of genotypes, and to that extent
calling o the state of nature is an abuse of
notation. This separation of genotypes from
other factors (or conceivably some other precise
statement of their interrelation) is essential for
operating with the Price equation at this level of
generality.

One key area of this separation of information
is that when a function has one argument related
to the phenotype and another relating to the state
of nature, we know that phenotypic information
is not ‘‘leaking’’ through the state of nature. An
assumption of ‘‘pairwise exchangeability’’ will be
introduced that effectively randomizes against
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each other the phenotypes and the local environ-
ments. If the local environment contained
information about genotype or phenotype, this
would result in inconsistencies. The assumption
of separation of information is thus of central
importance to the whole argument.

Finally, we make the additional assumption
that for i; jAI ; we have mðfigÞ ¼ mðfjgÞ; and
notate it as m1: This implies that *mðfigÞ=di ¼
*mðfjgÞ=dj; which we will denote *m1: Hence
*mðfigÞ ¼ di *m1: If I is infinite, then m1 ¼ *m1 ¼ 0:

4. Population Genetic Models

The Price equation in eqn (2) can be under-
stood as an accounting statement, without any
view about causation. We now take such a view
by adopting a model of wo

i : The genotype of an
individual is assumed to determine the pheno-
type, but in a completely unspecified way. The
phenotype is a set of potentialities only, and is
assumed to affect wo

i only through the realized
phenotype, which depends on both the pheno-
type and on the local environment. Formally, the
set of possible local environments is R; and a
function r : I 	 O-R represents the local envir-
onment of individual i in state of nature o: A
phenotype ai : R-A then allows the realized
phenotype, which is assumed to lie in some set A;
to be shown as aiðroi Þ: We formally consider there
to be a function a : I 	 R-A: The term local
indicates only that the relevant features of the
environment may be different for each indivi-
dual, and in particular need have no geographical
connotations. Wallace (1990) discusses the his-
tory of the concept of ‘‘norm of reaction’’.

Similar to the realized phenotype, chance
influences will also affect wo

i : Those that apply
to all individuals take a value in some set H and
are represented by h : O-H : Those that apply
separately to individuals lie in some set U ; and
are represented by u : I 	 O-U :

Let there be a function f : A	 U 	
H-f0; 1; 2;yg that models the number of
successful gametes and so leads to

wo
i ¼ f ðaiðroi Þ; u

o
i ; h

oÞ=di;

voi ¼
f ðaiðroi Þ; u

o
i ; h

oÞ=di
Ek½ f ðakðrok Þ; u

o
k ; h

oÞ=dk�
: ð3Þ
The omissions from f are crucial. The genotypes
and phenotypes of individuals in I other than i
are not permitted to influence wo

i ; thus ruling out
the selection of social behaviour from the reach
of the model. (The possibility that we may wish
to define f only over a subset of A	 U 	 H is
ignored here for simplicity.)

The final form of the Price equation for
present purposes is then:

EoDpo ¼ Ci pi; E
o f ðaiðroi Þ; u

o
i ; h

oÞ=di
Ek½ f ðakðrok Þ; u

o
k ; h

oÞ=dk�

� �
: ð4Þ

Summarizing, the target of selection is the
arithmetic average over all uncertainties of the
number of successful gametes of individual i per
haploid set, relative to the average over indivi-
duals in the realized state-of-nature. The realized
phenotype is allowed to depend on local
environment roi ; and the number of successful
gametes is allowed to depend on uncertainties,
both general, ho; and individual, uoi :

A new assumption of pairwise exchangeability
is now introduced. Denote by A the product
s-algebra defined over H 	 ðR	 UÞI (Sch
9.15–9.18), and define f : O-H 	 ðR	 UÞI by

fðoÞ ¼ ðho; ðroi ; u
o
i ÞiAI Þ:

There is a measure a defined on the measurable
space ðH 	 ðR	 UÞI ;AÞ imputed by f from the
measure space ðO; %O;mÞ (Sch 9.16). Now
consider the set of mappings T j;k : H 	 ðR	
UÞI-H 	 ðR	 U ÞI for j; kAI defined by
T j;kðh; ðri; uiÞiAI Þ ¼ ðh0; ðr0i; u

0
iÞiAI Þ and

h0 ¼ h ðr0i; u
0
iÞ ¼

ðrj; ujÞ; i ¼ k;

ðrk ; ukÞ; i ¼ j;

ðri; uiÞ otherwise:

8><
>:

Thus, T j;k simply swaps round the chance events
for individuals j and k: The assumption of
pairwise exchangeability is that all the mappings
T j;k preserve the measure a on ðH 	 ðR	
UÞI ;AÞ: Loosely, each pair of individuals has a
symmetric distribution of chance events, condi-
tional on the outcomes for all others in the
population.

The biological interpretation of exchangeabil-
ity is that offspring at the stage of censussing for
the Price equation are indistinguishable except
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by their genotype and their phenotype and their
consequences. In particular, there are no histor-
ical factors that make individuals different from
each other, thus excluding cultural inheritance
and differential parental care. A more sophisti-
cated mathematical structure will be required to
capture the essential features of these more
sophisticated biological ideas. Restricting the
set of mappings that preserve a; to make weaker
exchangeability assumptions, will be an impor-
tant technical element in further developments.

Pairwise exchangeability is weaker than in-
dependence. For example, it allows individuals
to be allocated to physical locations, and for no
two individuals to be allocated to the same
location. It would also allow individuals to be
paired, and then exactly one from each pair to
die at random.

This section has defined the ‘‘mechanical
processes’’ of Grafen (1999) in an important
class of situations. The range of population
genetic models that are included in the Price
equation framework is very wide (Grafen, 2000),
but the model introduced here has restricted that
range considerably. It has already been pointed
out that one individual’s phenotype cannot
affect the number of successful gametes of
another. Further, although genomic imprinting
is still formally included, the model effectively
precludes any interesting selection taking place
at an imprinted locus. There is no allowance for
mutation. Nevertheless, many simple population
genetic models do fall within the scope outlined
in this section, and the model contains clear
indications of where generalizations need to, and
can, be made.

5. Optimization Programs

It is a long tradition in biology to match form
and function. The mathematical formulation of
purpose is most highly developed in economics
and game theory, and optimization programs
will be borrowed and used here to represent the
logical barebones of the form-and-function
approach. Formal expressions of optimization
programs are used in some parts of economics
(see, for example, the textbook of Mas-Collel
et al., 1995), and occasionally in biology
(Grafen, 1998). A generic program is given
below and named ‘ProgG’. Words consistent
with examples in the literature on optimal
foraging (Stephens & Krebs, 1986) will be used
for concreteness. A strategy x is to be chosen to
maximize a currency g; subject to the constraint
that x belongs to the set X : The function g :
X-R is called more generally the maximand.
ProgG is written as

xmax gðxÞ; ProgG

xAX ;

ProgG is adequate to represent simple situations
in which it is reasonable to assume that each
phenotype always has exactly the same success.
In an early example (Charnov, 1976), a forager
moves from patch to patch with a deterministic
gain function that depends on time in the patch,
and a fixed inter-patch travel time, and is
assumed to choose the stay time to maximize
the rate of gain of energy.

With this simple example, the strategy x
belongs to X ; the set of nonnegative real
numbers, and the function gðxÞ is the gain rate
produced by staying in each patch for time x:
Optimization ideas in biology are almost always
used with natural selection in the near-back-
ground, and there are two relationships that
we might hope will hold between this optimiza-
tion program and the processes of natural
selection. First, if there are various stay-times
present in the population, then they will change
in relative frequency according to their respec-
tive values of gðxÞ: Second, over a longer time-
scale, if there is a set of possible stay times that
occur occasionally by mutation, and if we set X
equal to that set, we may hope that the outcome
of selection at equilibrium will be equal to (or at
least close to) a solution to ProgG. A solution is
defined as a value xn such that gðxnÞXgðxÞ for
xAX : ‘‘On-going selection’’ and ‘‘eventual equi-
librium’’ cover the important areas of evolu-
tionary interpretation of the optimization
program.

We develop ProgG to represent a wider range
of biological arguments about natural selection,
in three steps. Williams (1966) made a distinction
between the effects of design and the effects of
chance in determining ‘‘fitness’’, and used the
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example of two identical twins, one of whom is
struck by lightning and dies. The effects of
chance are generally important in biological
arguments, such as those about how natural
selection acts in the presence of uncertainty. To
incorporate uncertainty, we allow the maximand
to depend on a random variable, say g; defined
over a measure space ðG; %G; nÞ; allowing expecta-
tions Eg to be defined. The distribution of g will
have an important role in determining the
relative successes of different phenotypes. It is
usual to assume in ESS theory and optimization
theory that an individual maximizes the arith-
metic average over uncertainty, and so we now
embody this assumption by making the max-
imand the arithmetic average of a function of x
and g: Now, g : X 	 G-R is assumed measur-
able over g for each x; and the generalization to
include uncertainty is therefore

xmax Eg½gðx; gÞ�; ProgU

xAX :

The interpretation of ProgU is that gðx; gÞ is the
number of offspring of an individual playing
strategy x when the state-of-nature turns out to
be g; and that an individual maximizes the
arithmetic average of g through choice of x:

The next step is to allow ‘‘conditional
strategies’’. The idea is that some aspects of g
may be observable as a cue. Formally, suppose s;
the value of some function s : G-S; is observed,
then the action chosen may depend on s: The
strategy x becomes a function so that xðsÞ
denotes the action taken. The currency of an
individual will depend only on the action taken,
and not on the parts of the strategy that were not
played. We can allow the xðsÞ to be chosen
separately for each s; but we will also allow for
constraints, so that an organism cannot react
completely differently to different cues. It may
be that an organism can make minor behaviour-
al differences according to s; but cannot alter
morphology determined before s was observed.
A stag may not be able to alter its skeletal size in
response to a rainy summer, but may be able to
alter its diurnal feeding patterns.

We will write the complete strategy, with
an action chosen for each s; as x ¼ ðxðsÞÞsAS :
Separate constraints would be represented by
xðsÞAXs for each s: Possibly linked constraints
can be represented in a completely general
way by

ðxðsÞÞsAS ¼ xAXCðXsÞsAS :

This requires a formal revision of our definition
of the maximand. Formally, letting Gs ¼ fgAG :
sg ¼ sg; now g :

S
sðXs 	 GsÞ-R depends only

on the action taken, and not on the whole
strategy.

Cues can also provide information to an
individual, and so it is important to allow the
distribution over uncertainty as it affects an
individual to be different for different cues. The
expectation of gðxðsgÞ; gÞ with respect to g
conditional on sg ¼ s is defined (Sch 29.14),
and we write it as Egjs:

The program for one particular cue s is
therefore

xðsÞmax Egjs½gðxðsÞ; gÞ�; ProgUC

xðsÞAXs:

If we consider two different values of s; then
there are three salient differences between the
two cases, which are more easily presented if we
temporarily agree to write g ¼ ðs; cÞ; a decom-
position into observed and unobserved parts of
g: First, the maximand may be different, in that
gðx; ðs1; cÞÞ and gðx; ðs2; cÞÞ may be different
functions of x; with quite different maxima.
Second, the set of possible actions may be
different, as Xs1 may not equal Xs2 : Finally, the
cue may provide only information, so that
gðx; ðs; cÞÞ may depend on c but not on s: Even
though the values of g do not depend on s; the
expectations Egjs1 and Egjs2 may give different
probability weightings to the different values
of c; and so make Egjs1 ½gðx; ðs; cÞÞ� and
Egjs2 ½gðx; ðs; cÞÞ� quite different functions of x:

If organisms could choose their actions in
response to each s quite separately, or if we
considered just one s in isolation, then we might
hope for the same links to natural selection for
ProgUC as for ProgG or ProgU. In general,
however, it is necessary to balance performance
in response to different cues against each other,
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as in the final program:

ðxðsÞÞsAS max Eg½gðxðsgÞ; gÞ�; ProgUCJ

ðxðsÞÞsASAX ;

This program represents a moderately sophisti-
cated biological situation in some generality.
Cues can determine available strategies but
in an arbitrarily linked way, and can also
provide information about uncertainty. The
value of sg is a random variable over which
expectations can be defined, and the maximand
of ProgUCJ can be written EsEgjs½gðxðsgÞ; gÞ�;
showing that the maximands of ProgUC for
given s are weighted, when combined into
ProgUCJ, according to the probabilities of the
different values of s:

ProgUCJ is a formal version of the working
hypothesis of many empirical and theoretical
biologists when they assume that organisms
‘‘maximize their fitness’’, which Grafen (1999)
called the ‘individual-as-maximizing-agent ana-
logy’. The main purpose of the next section is to
show how to construct an optimization program
in the class outlined in this section from a
population genetic model belonging to the class
described in the previous section.
Table

Identities between the nota

Population genetics

Meaning Notation N

Population measure space ðI ; %I; *mÞ (n
General uncertainty o g
and its measure space ðO; %O;mÞ ðG
Local environment rok s
belongs to the set R S
Phenotype ak x
Realized phenotype akðrok Þ xð
Belongs to the set A

S
Target of selection vok g

Note: The whole population I is reduced to a
in the optimization program.
6. Construction of a Corresponding
Optimization Program

The population genetic assumptions and
quantities of Section 4 are taken as fundamental,
and we construct an optimization program in
those terms. At this stage we construct ProgUCJ
for one particular individual, namely k: The
significance of the construction will become clear
in the following section, when links are proved
between the two models.

Begin by identifying the measure space
ðG; %G; nÞ with ðO; %O;mÞ: Also identify the set of
cues S with the set of local environments R; and
sg with rok for o ¼ g: We assume that XsCA for
all s: Table 1 shows some of the correspondences
of notation.

The next goal is to define g as a function of
x : R-A and g: To emphasize that we are
focussing on individual k; the maximand will
be written gk : Now the kernel of the maximand
can be defined in terms of the kernel of the target
of selection, setting o ¼ g; as
gkðx; gÞ ¼
f ðxðrok Þ; u

o
k ; h

oÞ
*m1ð f ðxðrok Þ; u

o
k ; h

oÞ � f ðakðrok Þ; u
o
k ; h

oÞÞ þ Ei½f ðaiðroi Þ; u
o
i ; hoÞ=di�

: ð5Þ
This is indeed a measurable function of o as
required, because f is a measurable function. We
have expressed gk in a form that makes all
the dependence on k explicit, so that had we
focussed on individual j instead, we need only
substitute j for k throughtout the right-hand side.
1
tions of Sections 4 and 5

Optimization theory

otation Meaning

one) Implicit single decision-taker
General uncertainty

; %G; nÞ and its measure space
¼ sg Cue

belongs to the set
Strategy

sgÞ Action

s Xs Belongs to the set
Maximand

single implicit individual, the decision-taker,
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The distributions of gkðx;oÞ and gjðx;oÞ will
be the same if the distributions in R3 of the
vectors

f ðxðrok Þ; u
o
k ; h

oÞ

*m1ð f ðxðrok Þ; u
o
k ; h

oÞ � f ðakðrok Þ; u
o
k ; h

oÞÞ

Ei½f ðaiðroi Þ; u
o
i ; h

oÞ=di�

0
BB@

1
CCA

and

f ðxðroj Þ; u
o
j ; h

oÞ

*m1ð f ðxðroj Þ; u
o
j ; h

oÞ � f ðajðroj Þ; u
o
j ; h

oÞÞ

Ei½f ðaiðroi Þ; u
o
i ; h

oÞ=di�

0
BBBB@

1
CCCCA

are the same. The mapping T j;k is measure-
preserving by the assumption of pairwise ex-
changeability, and it will therefore suffice to
show that T j;k carries one vector into the other.
This will be so under two alternative sets of
conditions. First, that I is infinite. For then *m1 ¼
0; so the middle term is always zero, and both j
and k have zero weight in the expectation. Then
the first term has indices swapped, and the other
terms are unaltered. The alternative condition is
that the ai are all equal. For the first two terms it
is then simply a matter of swapping indices. The
ploidy-weighting in the expectation cancels with
the division by ploidy to show that the expecta-
tion is unchanged, for it equals the number (or
density) of successful gametes divided by the
number (or density) of haploid sets in I :
Swapping the number of successful gametes of
individuals j and k changes neither of these
quantities.

This is the point at which the exchangeability
assumption reduces the population in one
framework to the single implicit decision-taker
in the other.

Turning to the expectations, the equality of
distributions implies immediately that
Eg½gkðxðsgÞ; gÞ� ¼ Eo
f ðxðrok Þ; u

o
k ; h

oÞ
*m1ð f ðxðrok Þ; u

o
k ; h

oÞ � f ðakðrok Þ; u
o
k ; h

oÞÞ þ Ei½ f ðaiðroi Þ; u
o
i ; hoÞ=di�

� �
: ð6Þ
Agree to denote this expectation as *gkðxÞ:
Thus, we may write gkðakðrok Þ;oÞ for the value

of the maximand realized by individual k in state
of nature o; and the expected value as *gkðakÞ:
The ‘‘what-if’’ question of what the realized
maximand and expected maximand would have
been had x been played instead are answered by
gkðxðrok Þ;oÞ and *gkðxÞ; respectively. These expres-
sions are values of the maximand in the
optimization framework, but this section has
defined them in population genetic terms. They
will allow formal links to be established between
the two frameworks.

7. Formal Links

For any population genetics model included in
the framework of Section 4, we have now
constructed an optimization program. In this
section, we prove links that justify the applica-
tion of concepts of optimization to the popula-
tion genetics model.

The concepts in terms of which the formal
links are constructed must first be introduced.
On the population genetic side, ‘‘there is no
scope for selection’’ will mean that EoDpo ¼ 0
for all possible p-scores. This implies in turn that
Eo½voi � is equal for all i (technically, for almost all
i). ‘‘There is no potential for positive selection in
relation to a set X ’’ will mean that there is no
phenotype xAX which would have been fa-
voured by selection had it been present. More
formally, suppose that individuals in the set JA %I

with mðJ Þ > 0 had their phenotypes ai substituted
with x; and also define a function qJ to equal 1
for iAJ and 0 otherwise. Then define %voi as the
values of voi that would result from eqn (3) with
that substitution. The absence of potential for
positive selection is indicated by the following
condition holding for all xAX and J :

Ci½qJi ;E
o½%voi �p0:

These two concepts are framed entirely in
terms of the dynamics of gene frequency change.
Now we turn to a concept on the optimization
side. ‘‘ai solves ProgUCJ for individual i in
relation to a set X ’’ means *giðaiÞX *giðxÞ for all
xAX :
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Some of the results to be obtained will depend
on the ‘‘same-program’’ assumption that either I
is infinite or the ai are all equal, in line with the
discussion in Section 6. This assumption has the
crucial implication that the solution set and
value of ProgUCJ will be same for all indivi-
duals. If xn is a solution, then we may write
formally that *giðx

nÞX *giðaiÞ with equality if ai
is also a solution. If ai and aj are both solutions
to their respective programs, then the equiva-
lence of the programs provides the central
equality to imply that

*giðaiÞ ¼ *giðx
nÞ ¼ *gjðx

nÞ ¼ *gjðajÞ:

Note that these equalities hold in cases in which
ai and aj are not the unique solutions to their
respective programs.

With these concepts, and using the fact that by
the definitions of the optimization concepts,
Eo½voi � ¼ *giðaiÞ; we straightforwardly obtain the
following results. The first and fourth result, and
the second part of the second result, depend on
the ‘‘same-program’’ assumption.

1. If each ai solves ProgUCJ in relation to a set
X ; then there is no scope for selection, and no
potential for positive selection in relation to the
set X :

2. If all ai attain the same value of the
maximand in ProgUCJ, but do not solve it in
relation to a set X ; then there is no scope for
selection, but there is potential for positive
selection in relation to the set X :

3. If the ai attain different values of the
maximand in ProgUCJ, then there is scope for
selection, and the expected change in every allele
frequency and in the additive genetic value of
every character equals its covariance across
individuals with the attained value of the
maximand *giðaiÞ:

4. Suppose there is no scope for selection, and
no potential for positive selection in relation to a
set X : Then each individual acts rationally in the
sense that each ai solves ProgUCJ in relation to
the set X :

These properties justify identifying the rea-
lized attained maximand and expected attained
maximand, giðai; gÞ and *giðaÞ; with realized and
expected Darwinian fitness. The first three
results derive population genetic conclusions
from statements about maximizing Darwinian
fitness. The fourth shows that absence of
selective forces in the entirely mechanical pro-
cesses of population genetics correspond to
behaviour that is consistent with a standard
formulation of rationality.

Some readers may also find that the results
seem ‘obviously true’. However, they are likely
to reach this conclusion by taking for granted
optimization ideas about the effect of natural
selection. The whole purpose of the argument of
this paper is to justify optimization ideas about
natural selection, without assuming them in the
first place. The results are in some ways weak,
and it will be shown in the next section that some
obvious stronger results are not available simply
because they are not true. It is only by justifying
optimization ideas without assuming them that
their limitations can be established.

It is important to remember that the links
established in this section are true for arbitrary
genetic architecture, including arbitrary linkage,
under the assumption of perfect transmission.
The links aim to represent the strongest results
that do hold with that degree of generality.

8. Interpretation of the Results

The four linking results found in the previous
section establish that certain kinds of optimality
ideas apply to the population genetics model.
The aim of this section is to consider in a non-
technical way what these results mean.

The main result is that each population
genetic model satisfying the conditions of Sec-
tion 4 has a corresponding optimality model of
the kind described in Section 5. The particular
optimality model is exactly defined from the
population genetic model according to the
conversions of Section 6. The importance of
the existence of this corresponding optimality
model lies in the links that it has with the
original model. Essentially, it provides an inter-
pretation of some aspects of the population
genetic model in optimality terms.

The precise links that permit these interpreta-
tions are given directly. To readers who take for
granted that population genetic models have
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optimality interpretations, these links will seem
like weak truisms, but it is precisely the intuition
of these optimality interpretations that we are in
the process of justifying. Interest lies in the fact
that the links can be made formally, and also
in the limitations of the links that the formal
version makes clear.

The first result in informal terms is that ‘‘If
each individual acts optimally, then no selection
occurs and no potential selection would occur’’.
Technical points are that if there is more than
one global optimum, then the individuals may be
playing different optima, and that the lack of
selection applies to every locus (more strictly, to
every locus that shares the inheritance pattern of
the loci in the p-score).

The sense in which no selection occurs is
somewhat weak, however. Although the ex-
pected changes in gene frequency are all zero,
it is quite possible for genotype frequencies to
change. One simple example of the exception
involves a population which is a mixture of AA
and BB homozygotes, where both genotypes
produce an optimal phenotype, but where the
absent heterozygote does not. Next generation,
the result tells us that the gene frequencies of A
and B have not changed. However, mating
between the two homozygotes would produce
suboptimal heterozygotes, and the population
would no longer consist of optimal phenotypes.
Thus, although the result establishes a positive
linking result in very general terms, it does not
show that once all phenotypes are optimal, the
population remains that way.

The second result in informal terms is that ‘‘If
each individual acts sub-optimally, but equally
so, then no selection occurs but potential
selection would occur’’. The significance is that
the link between the optimization program and
the population genetics model do not hold only
at solutions to the optimization. There are also
out-of-equilibrium links.

The third result in informal terms states that
‘‘If individuals vary in the value of the max-
imand they attain, then the expected change in
every gene frequency and in the additive genetic
value of every character equals its covariance
across individuals with the value of the max-
imand’’. Hence all gene frequencies change in
line with the value of the maximand attained.
This shows that the optimization program
captures important aspects of the course of
evolution in completely non-equilibrium situa-
tions. By now, the justification for agreeing to
call the maximand ‘Darwinian fitness’ is very
strong.

The first three results have argued from an
assumption about the optimization program to a
conclusion about gene frequencies. The final
result does the opposite, and in informal terms
is ‘‘If there is no selection and no potential for
selection, then each individual in the population
acts optimally’’. This final result gives a result
that follows from the mechanics of inheritance
and reproduction, and draws a conclusion that
each individual acts rationally in the quite
sophisticated sense of the final optimization
program of Section 5. Specifically, the individuals
must follow the rules for ‘‘Decision problems
with observations’’ set out in Section 8.8 of
de Groot’s (1970) text on ‘‘Optimal Statistical
Decisions’’. The organisms behave as if following
advice for statisticians taking decisions in the
presence of uncertainty. Further, the quantity to
be maximized is the arithmetic average over all
uncertainties of the relative number of successful
gametes transmitted to the next generation.

The optimization program is tightly specified,
with the instrument, maximand and constraint
set strictly determined by the population genetics
model it is based on. Only some of the
optimization analogies made for natural
selection, therefore, can be founded on the
results of this paper.

This fourth conclusion, too, is subject to the
example of the population of AA and BB
optimally behaving homozygotes. The condition
is satisfied and the conclusion holds, but the
population nevertheless evolves away from
optimality when heterozygotes appear in the
next generation.

It is interesting to consider another contrary
case, that of sickle-cell anaemia (Allison, 1954).
At the equilibrium with over-dominance, the
hypotheses of the first two results do not hold.
The third hypothesis holds, but the conclusion is
that the covariance of each gene frequency with
the maximand equals zero, and so there is no
change in gene frequencies. The hypothesis of
the final conclusion does not hold, because there
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is a potential for selection. An allele specifying
the same phenotype as the heterozygote would
indeed spread in the population. Hence, we
rightly fail to conclude that each individual in
the population has an optimal phenotype.

The two exceptional cases confirm that the
linking results are true, for they hold even then,
but they also illustrate that the results do not
imply that the outcome of natural selection is
inevitably that each individual in the population
has an optimal phenotype. These cases incorpo-
rate some of the aspects of ‘‘environmental
change’’ as discussed in Section 2.2 in relation
to Fisher’s fundamental theorem. The results
do provide in a very precise way a general
background of optimality to the operations of
natural selection, and justify the use of inten-
tional terms in relation to the outcome of natural
selection. The optimization program exists and
the links hold in the presence of arbitrary
ploidies, epistasis, multiple loci and alleles,
arbitrary linkage maps, finite or infinite popula-
tion size, and arbitrary forms of uncertainty.
Because the same argument holds across all these
cases, it demonstrates that the optimizing
tendencies are inherent in selection in general,
and are not accidental occurrences in special
cases.

The sense of the general background is that
changes in gene frequencies (though not neces-
sarily in genotype frequencies) change in line
with the optimization framework. It is a
plausible view that the designing capacity of
natural selection operates through gene fre-
quency changes. The extra factors that contri-
bute to genotype frequencies, including
segregation and mating systems, do not con-
tribute to design, and need not therefore enter
into an expression of the basic Darwinian
argument, however, important they may be to
a full account of the genetics of a population.

The technical argument as a whole has
extended the Price equation approach, and
added concepts of phenotype and of how
phenotypes determine fitness, but retains the
Price equation’s complete agnosticism about the
link between genotype and phenotype. This has
allowed very general but somewhat weak results
to be derived about a wide class of population
genetic models.
9. Discussion

The most direct use of the theory of this paper
is that a population genetic model satisfying the
requirements of Section 4 can be used to
generate an optimization program using the
equivalences of Section 6. Also, the reason-
ableness of an optimization model can be tested
by asking whether a corresponding population
genetic model can be constructed that would give
rise to it. Two obvious possible difficulties are
the relative nature of the maximand, and the
arithmetic averaging required. Ascending the
scale of abstractness, it provides a general
population genetic justification for modelling
approaches that assume optimization with a
specific maximand claimed as ‘‘natural’’, such as
optimal foraging theory (Stephens & Krebs,
1986), and can provide guidance for selection
of a maximand in difficult cases.

More abstractly, the meta-models show what
is meant by the claim that natural selection leads
to individuals maximizing their fitness, even if
the extent of the validity of that claim is still in
question. They will also help identify and
understand the distinctive features of biological
evolution, compared to cultural evolution and
other analogues.

This paper has defined an optimization
program that has tight formal links with a
reasonably general population genetic model,
and allows a definition of Darwinian fitness in
certain cases. This represents a validation of the
‘‘individual-as-maximizing-agent’’ analogy. The
key point is that aspects of the population
genetic model have been interpreted, formally
and rigorously, in terms of optimization. There
is still, however, a considerable way to go to
fulfil the ‘formal Darwinism unification project’’
(Grafen, 1999).

With the exception of the restriction to
discrete generations, the theory in this paper
encompasses Darwin’s arguments about the
design brought about by natural selection, apart
from his hints about family selection in the social
insects. Extending the analysis should allow the
20th century additions to the theory to be
incorporated formally, essentially providing a
mathematical version of the conceptual and
verbal synthesis of Dawkins (1976).
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