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The paper describes three previously undetected effects, due to biases and non-independence, that can
arise in statistical tests for associations between character states in cross-species data. One kind, which
we call the family problem, is general to all known methods. In phylogenetic data, the ancestral
character state from which changes occur, or below which variation is found, is likely to be the same
for many regions of the tree. The family problem interacts with two kinds of non-independence that
arise because of the methods of reconstruction of character states that existing tests use. Different kinds
of non-independence arise in methods that reconstruct joint, or single, character states, respectively.
Methods, like Ridley’s (1983), that work with joint character states suffer from the problem that a
character state cannot change to itself with parsimony. Other methods that work with single character
states suffer from the problem that within a locally variable region of the tree it is more likely with
null data that there will be two single changes in the two characters in separate branches than one double
change in both; associations opposite to the locally ancestral state are therefore likely to be found in
more than 50% of the variable regions. In real data sets, the family problem acts to spotlight the other
kinds of bias: if the family problem is large the bias in tests due to the way they reconstruct characters
will be large, whereas if it is small, the local biases tend to cancel and disappear in the aggregate.
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1. Introduction

Adaptation is often studied by looking for associ-
ations between characters in cross-species data: that
is, by the comparative method. The chapters in
Martins (1996) contain recent discussions of the topic.
Cross-species data is well known to suffer from
non-independence because of its phylogenetic struc-
ture: related species share characters states for
phylogenetic reasons. Read & Nee (1995) and Grafen
& Ridley (1997a) are recent discussions of the
problem; Grafen & Ridley (1997a) also describe a
model of character evolution that can be used to
assess whether a proposed statistical method for
discrete characters has successfully dealt with the
non-independence due to phylogenetic structure in
the data. We are not concerned with that problem
here, and have nothing to say about ‘‘phylogenetic
inertia’’ either in its original (Wilson, 1975) or
subsequent (Ridley, 1983, p. 17–18) meanings. We are
concerned with some other kinds of non-indepen-

dence, which we believe have not been noticed before.
These kinds of non-independence arise because of the
way the methods of reconstructing character states
treat the data; they are more imposed by the methods
themselves than generated by the evolutionary
process. The problems arise in existing methods as a
combination of two factors, one that is common to all
methods, and a second the nature of which depends
on the kind of reconstruction used. We shall look at
the common factor first and then move on to those
that are peculiar to particular methods. We
concentrate on tests for characters that have discrete
character states (such as states A and a for character
A/a).

2. The ‘‘Family Problem’’

Tests for associations between character states look
for regions of the tree where changes occur, or the
character states are variable; they then see whether all
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the regions show a similar pattern of change, or
association. The ‘‘family problem’’ arises when
many of the regions share the same initial ancestral
character states. At this stage in our argument the
shared ancestral states are a phenomenon rather
than a problem; the next section will reveal how it
can become problematic. The reason why, as a
matter of fact, many regions of the tree are likely to
share the same ancestral states will usually be the
rarity of evolutionary change. Several separate
regions of the tree, within each of which there
has been change, will all share the same initial
ancestral states if there has been no character change
between the deep ancestor at the root of the tree
and those variable regions. The family problem
could also arise if there is some other character state,
which differs from the state at the deep root, that is
shared in the ancestry of several variable regions of
the tree.

The family problem arose in the simulations of
Grafen & Ridley (1996) when the similarity of higher
reconstructed states is due to common ancestry and
fairly low rates of evolution. A referee has suggested
that the family problem may also occur with
extremely high rates of evolution, when each of two
independent characters has a common and a rare
state. Then, the methods of reconstruction of states
might tend to create similarity of states at higher
nodes. We do not know if this is true or not, but if
it is similar arguments to those given below here will
probably apply; it would also raise serious doubts
about all methods like that of Burt (1989).

3. Single or Joint Character Reconstruction

All the methods that have so far been proposed to
test for discrete character associations in cross-species
data reconstruct by parsimony at least some character
states in the phylogenetic tree. The methods start with
a phylogenetic tree for the species, and the character
states of the species at the tips of the tree. A
parsimonious reconstruction can then be performed
in either of two ways, using either joint character
states or single character states. As we shall see, the
kind of non-independence that arises differs in the two
cases.

The method of Ridley (1983), formalized by
Grafen & Ridley (1997b) as the ‘‘independent
character evolution’’ (or ICE) test, works with joint
character states. In the simplest case there will be two
characters with two states each (A/a and B/b); a
species can then have one of four character states
(AB, Ab, aB, or ab), and they are treated as four
unordered states of a single character. Working back

from the terminal species, each higher node is
assigned a joint character state by parsimonious
reconstruction.

Other methods, in particular those of Burt (1989)
and a new method described by Grafen & Ridley
(1997c), work with the single character states. The
methods take each character in turn and work back
from the terminal species until they find a higher node
below which the character varies; the methods
concentrate on nodes below which both characters
vary. Burt (1989) and Grafen & Ridley (1997c) make
no further reconstructions in the higher regions of
the tree beyond these nodes. Pagel (1994) proposes
still another kind of method, which does not easily fit
our distinction between single- and joint-character
reconstruction; we comment on it in Ridley & Grafen
(1996).

We should clarify the meaning of the word
‘‘reconstruction’’. It can have what might be called a
broad and a narrow meaning. A test relies on
reconstruction in the narrow sense if it assigns
character states to ancestral species and then makes
inferences on the assumption that the assignments are
correct. A test relies on reconstruction in the broad
sense if it assigns character states to ancestral species
but its inferences do not assume that the assignments
are correct. Statements about reconstruction in this
paper require no more than the broad sense, and
all methods (except species counting) use some
kind of reconstruction in this broad sense. Methods
such as Burt’s (1989) and Grafen & Ridley’s (1997c),
like the phylogenetic regression (Grafen, 1989,
p. 148), work by conditioning on pattern rather than
inferring ancestral states; they do not reconstruct
ancestral states in the narrow sense. It can be seen
that they do reconstruct character states in some
sense; there is implicit reconstruction even in the
recognition of uniform nodes. Ridley’s (1983) test
uses reconstruction in the narrow sense. The
distinction is important because statistical tests
need to take account of the uncertainty in ancestral
assignments and therefore should not assume those
assignments to be true. Methods can also be
distinguished according to how far back in the
tree they carry their reconstructions. Some methods
(such as the phylogenetic regression and the ICE
test) reconstruct all the way back to the root;
others [such as the method’s of Burt and Grafen
& Ridley (1997c)] stop as soon as possible.
‘‘Reconstruction’’ therefore need not mean a com-
plete reconstruction all the way back to the root.
However, these distinctions are not the topic of this
paper and this paragraph is included only to prevent
misunderstanding.
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4. A Character State Cannot Change to Itself With
Parsimonious Reconstruction

We shall discuss the problem in terms of the ICE
test; the problem is more general, however. Compara-
tive methods for discrete characters that are proposed
in the future may need to consider it.

The ICE test, in Grafen & Ridley’s (1997b) version,
contracts each reconstruction of the joint character
states into a ‘‘character change tree’’ (illustrated in
Ridley & Grafen, 1996, fig. 1). A region of the tree in
which the joint character state does not change is
collapsed into a single node. When all the uniform
taxa have been collapsed in this way, the result is a
tree (the ‘‘character change tree’’) in which the only

branches are ones in which a character changed. The
numbers of nodes with each character state are then
entered in a contingency table and a test performed.

The events in the branches of the character change
tree were, as Ridley (1983) argued, evolutionarily
independent—in the sense that they were separate
events in time or space—but they may not be
statistically independent. Imagine any one node in the
character change tree. It has some character state,
such as AB. The method of parsimonious reconstruc-
tion then forces all the neighbouring nodes to be
either Ab, aB, or ab; it is a parsimonious
impossibility, even absurdity, for a neighbouring node
to be AB. If a neighbouring node in the original
phylogeny were AB it would have been collapsed, in
the reconstruction, into the node in question. The
only way an AB node in the character change tree can
be joined to another AB node is via one of the other
three kinds of node. The changes away from a node
are ‘‘forced’’ into the three states other than the one
at the node. The character changes through the tree
are therefore statistically non-independent. Any
method that assumes the changes are independent will
be liable to find a spurious association in null data.
Ridley (1983) and the ICE test (Grafen & Ridley,
1997b), for instance, enter the frequencies of the four
character states in a contingency table and then apply
a test, such as Fisher’s exact test or the chi-squared
test, that assumes independence.

The non-independence we have just described is for
any one node. The magnitude of the problem in a real
case depends on how many of the character changes
in the whole data set occur from the same node in the
character change tree. If the data set has a large
family problem, most of the changes will be away
from the same node—the node containing the
ancestral state for the tree. (The character change tree
is then star shaped: see Ridley & Grafen, 1996; Fig. 1).
Then most of the changes in the tree have, because of
parsimony not biology, to be to the other three
non-ancestral states. Alternatively, it may be that
there are a number of changes, one above the other,
through the tree from the deep ancestor to the
terminal species; the family problem is reduced. Now
the changes will occur from a number of different
nodes. (The character change tree looks like more of
a string than a star.) Still, for any one node, the
changes are forced into some set of three states, but
the set differs between nodes and the biases cancel one
another out. We no longer expect to find such severe
invalidity in null data. Grafen & Ridley (1996)
investigated the influence of tree shape on the Type
I error rate of the ICE test and found that the test was
reasonably valid for a realistically shaped phylogeny,

F. 1. Elemental depiction of character change. (a) The raw
data. (b) Uniform branches collapsed. (c) A line indicates a change
in character A/a and a flat circle a change in character B/b. In this
case the state AB is ancestral at the top of the tree.
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F. 2. Three kinds of variable node. Let an ‘‘A-node’’ be a node each of whose daughters is uniform for either ‘‘A’’ or ‘‘a’’, but not
all of the daughters are uniform for the same state. Similarly for B-node and B/b. A variable node is the most recent common ancestor
of an A-node and a B-node, with three logical possibilities. (i) A doubly variable node is itself an A-node and a B-node. (ii) A staggered
node is itself an A-node, with a B-node somewhere in the subtree below it (or vice versa). (iii) A scattered node, which is itself neither
an A-node nor a B-node. For conventions see Fig. 1.

but biased in the manner explained here (too many
changes found away from the ancestral state in null
data), when the phylogeny was symmetrical.

5. Two Separate Single Changes are More Likely than
One Double Change

We now turn to tests that trace each single
character back from the terminal species until they
reach a node below which both characters vary. The
general principle of the tests is that a number of these
nodes may be found in a data set, and a comparative
test can look to see whether the character association
is consistent between them. The associations among
the characters must have evolved independently in the
different nodes, and the tests assume that they are
statistically independent too.

At this point we should introduce a kind of figure.
Figure 1 shows how the pattern of character changes
can be expressed in elemental form: the uniform
branches are all collapsed and the changes in the two
characters indicated by symbols. The elemental
diagrams can therefore represent any number of real
species and branches. In these terms, when we trace
back from the terminal species to find nodes below

which both characters vary, it is possible for the
variable nodes to be of three kinds (Fig. 2): both
characters may vary below the same node (a doubly
variable node); or one character may vary at a node
below the node the other character is variable at
(staggered variable node); or the two characters may
vary below separate nodes that are not hierarchically
arranged in the tree (scattered variable nodes). The
comparative tests that have been proposed differ in
which of these kinds of nodes they decide to admit as
evidence: the decision matters, as we shall see.

We are going to discuss non-independence in terms
of contingency tables, and it will help to have a
conventional form. The species (or uniform blocks of
species in Figs 1 and 2) can have any of four character
states, giving a 2×2 contingency table. For a
Fig. 2-type variable node, let the frequencies of
species with states AB, aB, Ab, ab be nAB, naB, nAb, nab.
For consistency we shall suppose that the ancestral
state for the node is AB. The contingency table gives
the numbers of species (or uniform blocks of
species—it does not matter which here) at the bottom
of the subtree; we assume for simplicity of exposition
that there has been a single change in each character.
If both changes are in the same branch, the node will
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have species with ab and species with AB (those that
retain the ancestral state). The values of nAB and nab

will be positive; naB and nAb equal zero. The sign of
nABnab − naBnAb is positive. We shall call this a
‘‘positive’’ or ‘‘ancestral diagonal’’ contingency table.
Alternatively, the changes may have been in separate
branches: there will then be positive values for naB and
nAb, and usually for nAB, but nab =0. The sign of
nABnab − naBnAb is negative, and we call it a negative,
or non-ancestral diagonal, contingency table.

The comparative tests working with single charac-
ter states assume that with null data, in which the
chances of change in A/a and B/b are independent,
negative and positive contingency tables are
equiprobable. But they are not: there is a bias in
favour of the negative, non-ancestral diagonal,
association.

The bias can be seen by working through all the
shapes of tree below a variable node, with null data.
We shall use the simplest trees to illustrate the
problem, one for three species in any asymmetric tree

(Fig. 3) and another for four species in a symmetric
tree (Fig. 4); each tree has a single change in each
character. The reader may like to translate the node
shapes in these figures into the three kinds of variable
node in Fig. 2. There is more than one way of
obtaining some of the tree shapes, given the single
change in each character, and their probabilities are
given in the figures. What are the frequencies of
negative and positive contingency tables? It is
convenient to treat the asymmetric and symmetric
trees separately. We assume that exactly one event
takes place for each character, and that the
probabilities of an event taking place in a given
branch segment is proportional to its length. Suppose
first that the height of the tall branch in the
asymmetric tree has a height of 2 units relative to a
unit length of the short branches. Now look at Fig. 3.
If we count the frequency of contingency tables with
positive and with negative signs, we find

chance positive contingency table=11/25
chance negative contingency table=14/25.

F. 3. The family problem. The figure illustrates all possible asymmetric three species trees, in which each character changes once. For
conventions see Fig. 1. The chances of change for the rows and columns suppose that change is random and the height of the higher node
is twice the height of the lower node. The contingency table and its sign are given below each tree. The fractions at the tops of columns
and left of rows are the appropriate multiples, due to the number of ways each tree shape can arise by chance.
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F. 4. The family problem. The figure illustrates all possible symmetric four species trees, in which each character changes once. For
conventions see Fig. 1. The chances of change for the rows and columns suppose that change is random and the height of the higher node
is twice the height of the lower node. The contingency table and its sign are given below each tree. The fractions at the tops of columns
and left of rows are the appropriate multiples, due to the number of ways each tree shape can arise by chance.

Figure 4 shows all the possibilities for symmetric
trees. Now

chance positive contingency table=14/36
chance negative contingency table=22/36.

Again the bias is in favour of negative results. The
important fact is that the probabilities are not 50:50
in the null case. The reason is that, in these nodes, it
is more likely that the changes in the two characters
will be in separate branches than one above the other.
Two single changes are more likely than one double
change.

These fractions are for the special case in which the
relative height of the three or four species tree is 2
units; but the result is general. If the height of the long
branch is h units relative to 1 unit in the short
branches, then in the asymmetric three species case
(Fig. 3),

chance of positive contingency table=
2h2 +2h−1

(2h+1)2

chance of negative contingency table=
2h2 +2h+2

(2h+1)2

The limit of these fractions, as h goes to 1, are 1/3
and 2/3, and as h becomes very large, 1/2 and 1/2. The
bias is always towards too many negative contingency
tables. Likewise, in the asymmetric four species
case (Fig. 4), if the height of the whole four
species clade is h units relative to 1 unit in the lower
branches,

chance of positive contingency table=
h2 +2h−1
2(h+1)2

chance of negative contingency table=
h2 +2h+3
2(h+1)2 .

The limit of these fractions, as h goes to 1, are 1/4
and 3/4, and as h becomes very large, 1/2 and 1/2
again. The bias is slightly stronger than in the
asymmetric trees, and still always towards too many
negative contingency tables. In any particular case,
there might be any mix of symmetric and asymmetric
trees and the exact bias will depend on the proportion
of each.

The fraction of positive and negative associations
found by a method in null data will often differ from
the exact fractions given here. One reason is that the
frequencies of different node shapes are influenced by
the rate of evolution: the frequency of doubly variable
types [Fig. 2(a)], for instance, increases relative to the
frequency of scattered types [Fig. 2(c)] as the rate of
evolution increases. The exact bias, therefore,
depends on the evolutionary rate. However, the bias
always remains toward negative associations, as our
analysis for general heights reveals. Another reason is
that methods differ in how they select the kinds of
variable nodes for analysis. Burt’s (1989) method uses
all three types in Fig. 2. The ICDE method of Grafen
& Ridley (1997c) uses the doubly [Fig. 2(a)], and
staggered [Fig. 2(b)] nodes, but ignores the nodes with
scattered variation [Fig. 2(c)]. This matters because
the scattered variable nodes always generate negative
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contingency tables and are a powerful source of bias.
In the symmetrical trees of Fig. 4, all the bias is
attributable to the node (in the middle of the top row)
with the scattered variation pattern: if it is excluded
the frequencies of positive and negative contingency
tables is equal. That does not save the ICDE test from
bias, however, because the symmetric trees of Fig. 3
are biased and contain no scattered variable nodes. In
the simulations of Grafen & Ridley (1996) Burt’s test
mainly worked on scattered nodes and was vulnerable
to severe bias in consequence, Grafen & Ridley
(1997c) discuss further the relation between the ICDE
and Burt tests.

So the methods differ in how they select nodes, and
the nodes they exclude may tend to have positive or
negative results. This is the key to understanding the
statistical biases of the methods, and will probably be
the key to improving them. One way to improve them
would be to seek a method that selected nodes such
that they had an equal chance of finding positive and
negative contingency tables with null data, under all
biologically reasonable shapes of phylogeny; perhaps
no such method exists. Another way would be to seek
to formulate better null expectations for methods of
the existing form, which appear to find too many
nodes with negative, non-ancestral associations.
Consideration of the non-independence described
here may assist either way.

The magnitude of the total bias in a real data set
caused by the bias towards non-ancestral associations
within each variable node depends on the extent of
the family problem. If most of the nodes start with the
same ancestral state, they are all biased in the same
way, and the total bias is large. If, however, there are
a number of changes between the deep root of the tree
and the locally variable nodes that are used in the test,
then although the changes within each node are still
biased, they will be biased towards different character
states and the aggregate bias of them all may cancel
to zero. The simulations of Grafen & Ridley (1996)
looked at two null data sets, in one of which there was
a large, and the other a small, family problem (as
measured by the proportion of variable nodes that
began with the same, deep ancestral root, character
states). Burt’s test showed the strong bias predicted
here in the data set with the strong family problem,
but was better behaved in the other data set. Grafen
& Ridley (1996) provide results and Grafen & Ridley
(1997c) analysis of the behaviour of the ICDE test
with the two data sets. Readers of Ridley & Grafen
(1996) may note that we have slightly altered the
meaning of the expression ‘‘family problem’’ here, to
provide a more systematic analysis.

6. Discussion

What is the relation between the kinds of
non-independence described in this paper? The bias in
a test is a compound of two effects; the first (the
family problem) acts to draw attention to the second.
For example, Grafen & Ridley (1996) showed that
tests like those of Burt (1989) and Ridley (1983) have
reasonably valid Type I error rates for null data sets
that have little family problem. That does not mean
non-independence, or bias, is absent, however. In
both tests a number of character changes, or nodes,
contribute to the total result and within each of them
changes will be biased in the manner described in
sections 3–5. The bias disappeared because the biases
of the local nodes pointed in varying directions. When
there was a strong family effect the biases of the local
nodes added up instead of cancelling and the tests
proved strongly biased. Thus, the family problem
acted to spotlight, or alternatively to blur, the biases
of sections 3–5. The sections 3–5 biases are present
whether or not there is a family problem. The family
problem itself, however, is inevitable in phylogenetic
data, and it is a challenge of the comparative method
for discrete characters to devise a way of looking at
the data such that the test is unbiased whether the
family problem is strong or weak.

What is the relation between the kinds of
non-independence described here and the well-known
kind of non-independence due to the sharing of
character states between phylogenetically related
species? The answer is, it is an additional problem, at
least for discrete characters. The tendency of related
species to share character states is an inherent
property of phylogenetic data. The problems
identified here are not so much properties of the data
as of the way the methods analyse it. The problem of
phylogenetic structure itself was solved by what
Grafen [1989, p. 125, following Ridley (1983)] called
the radiation principle: that each non-uniform higher
node contributes one datapoint. The problems that
arise because of the way character states are
reconstructed may also be soluble, by appropriate
adjustments to the methods. But they have not been
solved yet.
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