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Many approaches to the study of adaptation, following Darwin, centre on the number of o¡spring of indi-
viduals. Population genetics theory makes clear that predicting gene frequency changes requires more
detailed knowledge, for example of linkage and linkage disequilibrium and mating systems. Because gene
frequency changes underly adaptation, this can lead to a suspicion that approaches ignoring these sophis-
tications are approximate or tentative or wrong. Stochastic environments and sexual selection are two
topics in which there are widespread views that focusing on number of o¡spring of individuals is not
enough, and that proper treatments require the introduction of further details, namely variability in
o¡spring number and linkage disequilibrium, respectively. However, the bulk of empirical research on
adaptation and a great deal of theoretical work continue to employ these approaches. Here, a new theore-
tical development arising from the Price equation provides a formal justi¢cation in very general
circumstances for focusing on the arithmetic average of the relative number of o¡spring of individuals.
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1. INTRODUCTION

Grafen (1999) proposed a project to unify a wide class of
optimization approaches used in biology that centre on
individual reproductive success, following Darwin (1859).
Here, this project is pursued by developing the Price
equation, ¢rst in a minor way by expressing it in terms of
relative reproductive success in ½ 2, then extending it to
cover uncertainty in ½ 3, and ¢nally exhibiting multi-
generational forms in ½ 4. These forms are identities
linking the arithmetic average of relative o¡spring
number to gene frequency changes over arbitrary
numbers of generations, and their signi¢cance is discussed
in ½ 5. A simple model with stochastic environments is
shown in ½ 6, to show how arithmetic averages apply in
that case.

2. PRICE AND RELATIVE REPRODUCTIVE

SUCCESS

The selection mathematics of Price (1970, 1972)
provides identities, that is, equations that are true by de¢-
nition, about the operation of selective processes. It
begins by indexing each individual in a parental popula-
tion by i 2 I. We denote the p̀-score’ (Grafen 1985) of an
individual by pi. A p-score is a weighted sum of arbitrary
allelic values, and interpretations will be discussed
shortly. The number of successful gametes of an indivi-
dual, per haploid set, is indicated by wi, and the di¡er-
ence between the average p-score of the successful
gametes and the parent’s p-score is ¢pi. A successful
gamete is one that contributes to an organism in the next
generation and whose genes will therefore be counted in the
gene frequencies of the next generation. Averages over the
individuals in a population are notated by dropping the
subscript, thus p is the average p-score in the population
and w is the average number of successful gametes. In
both of these averages, as in all future averages, indivi-
duals are weighted by their ploidy (see Grafen (1985) for

details). The fundamental equation of Price (1970, 1972)
(which was foreshadowed by the s̀econdary theorem of
natural selection’ of Robertson (1966, 1968)) is

w¢p ˆ Ci‰ pi,wiŠ ‡ Ei‰wi¢piŠ, (1)

where Ei and C i are the expectation and covariance
across individuals in the population. Ei can be regarded
as a population average. It can equivalently be regarded
as an expectation with regard to the random drawing of
an individual from the population (with relative chances
weighted by ploidies). Formal results on expectation
operators are more directly applied using the second
interpretation.

Because w does not depend on i, and expectations and
covariances are linear, we can let vi ˆ wi=w and rewrite
the Price equation as

¢p ˆ Ci‰ pi,viŠ ‡ Ei‰vi¢piŠ. (2)

Hence, the change in the mean p-score is equal to the
sum of two terms. The ¢rst is the covariance over indivi-
duals between p-score and number of successful gametes
relative to the population average. The second is a
measure of the extent to which segregation deviates from
the Mendelian expectation of fairness. When the devia-
tion is systematic, this term can represent meiotic drive ;
when it results only from sampling error, this term repre-
sents the e¡ects of drift. The equation is an identity and
so holds exactly.

The term vi is a property of an individual, and can
fairly be called the t̀arget of selection’. Note that by de¢-
nition v, the average of vi, is Ei‰wi=wŠ ˆ 1. The Price iden-
tity holds for all p-scores. The frequency of an allele is a
p-score in which that allele has a weight of unity, and all
others have a weight of zero. Thus any allele whose
presence in individuals is positively correlated with vi will
increase in frequency. The additive genetic value of a trait
is also a p-score (Falconer 1981) whatever the genetic
architecture of the trait. The additive genetic component
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of a character will therefore increase or decrease
according to whether it is positively or negatively corre-
lated with vi. This makes vi a good candidate for an initial
measure of `biological ¢tness’ or `reproductive value’.

The role of individual ¢tness can be brought out in a
di¡erent way in the following reformulation:

¢p ˆ C i‰ pi, viŠ ‡ Ei‰vi¢piŠ ˆ Ei‰pi(vi ¡ v)Š ‡ Ei‰vi¢piŠ.
(3)

Thus the systematic part of the change in p-score equals
the expected product of the p-score with the `reproductive
success discrepancy’, that is, the di¡erence between the
reproductive success of an individual and the average
reproductive success in the population.

3. PRICE AND UNCERTAINTY

We now elaborate the covariance identity (2) to cover
stochastic e¡ects and succeeding generations. This will
provide a generalization of the Price covariance identity.
It will also be revealing to substitute using equation (3) at
that stage.

Therefore, let there be di¡erent states of nature ! 2 O,
with a probability distribution de¢ned over them. We
denote the expectation with regard to the states of nature
as E!. Denote the number of successful gametes per
haploid set of individual i in state of nature ! as wi(!).
Then the Price equation holds in each state of nature, but
now the average p-score in the o¡spring generation may
depend on !, so we write ¢p(!) as the change in mean p-
score. We also write the average of wi(!) as w(!), and the
relative values of wi(!) as vi(!) ˆ wi(!)/w(!). Hence in state
of nature !,

¢p! ˆ Ci‰ pi, vi(!)Š ‡ Ei‰vi(!)¢pi(!)Š.

The expected change over states of nature is E!‰¢p!Š.
We now make assumptions to ensure that the second

term in this equation becomes zero once expectations are
taken with respect to states of nature. It is worthwhile to
elaborate the argument formally in view of the abstract
and general nature of the results. We suppose the state of
nature ! can be rewritten as ! ˆ (¼,t), where ¼ repre-
sents all the uncertain events except those associated with
the segregation of alleles at meiosis, in a form that
denotes successful alleles as ik for the kth successful allele
of individual i. t contains information only about segrega-
tion at meiosis, and states, conditional on ¼, for each
successful allele ik what alleles it obtained at meiosis. The
assumptions must both hold conditional on ¼, and are
that meiosis is fair and there is no selection on gametic
genotypes. Fairness ensures that, averaging over t, the
population of all gametes of an individual is representa-
tive of that individual’s genome. Absence of gametic selec-
tion ensures that the population of successful gametes is
similarly representative. Representativeness means that
the p-score of the successful gametes, averaged over t,
equals the p-score of the adult. With these assumptions,
we can write vi(¼) instead of vi(!), and, bearing in mind
that the term is conditional on ¼, ¢pi(t) instead of ¢pi(!).
Then the assumptions can be formally represented as
Et ‰¢pi(t)Š ˆ 0 for each i, for all ¼.

We now apply for the ¢rst time, and will use again
directly, a standard result (see, for example, Weir 1973)
that allows the order of expectation operators to be
exchanged when the random variable takes non-negative
values, and by extension when the random variable is
bounded. With the notations just established, and exchan-
ging Et and Ei at the crucial point, we obtain

E!‰Ei‰vi(!)¢pi(!)ŠŠ
ˆ E¼Et ‰Ei‰vi(¼)¢pi(t)ŠŠ
ˆ E¼‰Ei‰vi(¼)Et ‰¢pi(t)ŠŠŠ ˆ 0.

The simple forms obtained justify proceeding on the basis
of these assumptions which, though not universally made,
are widely useful.

We now return to the main development and apply
these assumptions to the expectation over ! of equation
(3). Exchanging expectation operators as above, we derive

E!‰¢p!Š ˆ E!C i‰ pi, vi(!)Š ˆ Ci‰ pi, E!‰vi(!)ŠŠ
E!‰¢p!Š ˆ E!Ei‰ pi(vi(!) ¡ v(!))Š ˆ Ei‰ piE!‰vi(!) ¡ v(!)ŠŠ.

(4)

The form (4) shows that the target of selection is gener-
alized from vi to E!‰vi(!)Š, which becomes the natural
measure of reproductive success in the presence of uncer-
tainty. This shows that gene frequencies and additive
genetic components of characters alter on average
according to whether they correlate positively or nega-
tively with the arithmetic mean over uncertainty of an
individual’s relative number of successful gametes.

The types of uncertainty that can be represented by
the states of nature are very general, and in particular
include (i) the randomness of segregation at meiosis; (ii)
the randomness of which action is produced in a mixed
strategy played by the individual itself ; (iii) the random-
ness of which type of opponent is encountered in a
contest or series of contests; and (iv) environmental
stochasticity a¡ecting all members of the population. The
second and third properties are routinely assumed in
biological game theory models, and it is reassuring to
have them con¢rmed so securely and directly in a popu-
lation genetic setting. The fourth property has been
shown, employing more elaborate mathematics, in more
detailed models of life histories (McNamara 1995; Sasaki
& Ellner 1995; Haccou & Iwasa 1995), but stands in
contrast to work on bet-hedging that emphasizes the role
of variability in ¢tness (Seger & Brockmann 1987; Seger
& Stubble¢eld 1996).

4. MULTI-GENERATIONAL FORMS

To extend the identity to succeeding generations it is
necessary to distinguish the di¡erent generations
t ˆ 0, 1 : : : , and let It be the set of individuals in
generation t, and O t be the set of states of nature in
generation t. Clearly, It and O t must depend on the state
of nature in the previous generation, !t¡1. This depen-
dence will not usually need to be made explicit. It is
convenient for this next section to adapt notation, and use
pt,i for the p-score of individual i 2 It in generation t, and
pt for the mean p-score in generation t; and similarly for
wt,i and vt,i. Formally, pt,i is a random variable depending
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on !0 2 O0, !1 2 O1 : : : !t¡1 2 O t¡1. Expectation opera-
tors will be denoted Ei2It

over individuals in generation t
and E!:t over states of nature in generation t. Again the
form of these operators is conditional on !t¡1, and the
arguments of the operators should be regarded as condi-
tional on !t¡1. It will also be convenient to de¢ne a short-
hand notation for compound expectations over a
succession of generations as follows:

E!:(t0 : : : t1) ˆ E!:t0E!:t0‡ 1 : : : E!:t1 .

The generation-speci¢c Price equation for given states
of nature can be given in two forms. Both are conditional
on the states of nature up to and including generation
t ¡ 1. The ¢rst form holds separately for each ! 2 O t,
while in the second expectations have been taken over
! 2 Ot .

pt‡ 1 ¡ pt ˆ C i2It
‰ pt,i,vt,iŠ ‡ Ei2It

‰vt,i¢pt,iŠ

E!:t‰ pt‡ 1 ¡ ptŠ ˆ C i‰ pt,i, E!:t‰vt;iŠŠ.
(5)

Adding over t, we obtain the di¡erence for given states of
nature, and the expected di¡erence, in mean p-score over
T generations as

pT ¡ p0 ˆ
XT¡1

tˆ 0

C i2It
‰ pt,i,vt,iŠ ‡

XT¡1

tˆ0

Ei2It
‰vt,i¢pt,iŠ

E!:(0 : : :T¡1)‰ pT ¡ p0Š ˆ
XT¡1

tˆ 0

E!:(0 : : : t¡1)‰C i2It
‰ pt,i, E!:t‰vt,iŠŠŠ.

(6)

Thus the (expected) di¡erence in mean p-score over T
generations equals the sum of the (expected) covariances
between individual p-scores and the (expected) reproduc-
tive success.

Employing the subsitution (3), we obtain the formula-
tions

pT ¡ p0 ˆ
XT¡1

tˆ 0

Ei2It
‰ pt,i(vt,i ¡ vt)Š ‡

XT¡1

tˆ 0

Ei2It
‰vt,i¢pt,iŠ

E!:(0 : : :T¡1)‰ pT ¡ p0Š ˆ
XT¡1

tˆ 0

E!:(0 : : : t¡1)‰Ei2It
‰ pt,iE!:t‰vt,i ¡ vtŠŠŠ.

(7)

These equations show a direct relationship between the
change in p-score and the individuals’ `reproductive-
success discrepancies’, that is, the di¡erence between an
individual’s reproductive success and the average in that
generation (which is always unity).

A further development is possible for the special case in
which pi is the frequency of a single allele A, but in which
the number of o¡spring wi depends not only on the
frequency of A, but depends in general on the genotype as
a whole. Let G be the set of possible genotypes, which
may include multiple loci with arbitrary linkage patterns,
and may distinguish between maternally and paternally
derived alleles. Let qg for g 2 G be the value of pi for indi-
viduals with genotype g, f g

t be the frequency of indivi-
duals with genotype g, and the mean reproductive success
of individuals with genotype g be vg

t in generation t. As
before, the values of everything in generation t are

random variables that depend on the sequence of states of
nature up to generation t ¡ 1. Then it follows that

pT ¡ p0 ˆ
XT¡1

tˆ 0

X

g2G

q gf g
t (v

g
t ¡ vt)

E!:(0 : : :T¡1)‰ pT ¡ p0Šˆ
XT ¡1

tˆ 0

E!:(0 : : : t¡1)

X

g2G

q gf g
t E!:t‰v

g
t ¡ vtŠ .

(8)

These equations show that the (expected) change in the
frequency of A over T generations equals the (expected)
weighted sum of the di¡erence between the (expected)
average reproductive success of bearers of the gene minus
the average reproductive success of individuals in the
same generation. The weights provide that each indivi-
dual in each generation is weighted according to its own
p-score, in this case, the fraction of A at the relevant
locus.

Further forms look directly at the summed reproductive
successes, as follows:

pT ¡ p0 ˆ
XT¡1

tˆ 0

X

g2G

q gf g
t v g

t ¡
XT ¡1

tˆ 0

X

g2G

q gf g
t vt

E!:(0 : : :T¡1)‰ pT ¡ p0Š ˆ
XT¡1

tˆ 0

E!:(0 : : : t¡1)

X

g2G

q gf g
t E!:t‰v

g
t Š

¡
XT¡1

tˆ 0

E!:(0 : : : t¡1)

X

g2G

q gf g
t E!:t‰vtŠ . (9)

Here the change in the frequency of A equals a weighted
sum of the reproductive successes of the bearers of A
minus the same weighted sum of the average reproductive
successes in corresponding generations.

5. DISCUSSION OF GENERAL RESULTS

In each pair of results of equations (6)̂ (9), the ¢rst
member is an exact equation that relates the change in
p-value during T generations to individual reproductive
successes. The second equation, on the assumption only of
fair meiosis and no gametic selection, relates the expected
change in p-value over T generations to the arithmetic
average over uncertainty of the reproductive success of
individuals. It is important that these equations hold
exactly without needing to include terms that relate to
the mating system, or linkage, or linkage disequilibrium.
Pairs (6) and (7) apply to the frequency of a single allele
as well as to arbitrary weighted sums of alleles, and to
p-values involving one or many loci that may be linked or
unlinked. All the pairs apply to arbitrary and even mixed
ploidies, to asexual and sexual or mixed populations.
They hold in the presence of genomic imprinting.
Nothing has been assumed about frequency dependence
or the nature of interactions, so the formulae apply where
evolutionary games are being played, and where inter-
actions are between relatives and/or within groups.
Additionally, the equations hold for arbitrary forms of
uncertainty (subject to the existence of the relevant
expectations), and it has not been necessary to state
whether the O t (or indeed the It) are ¢nite or in¢nite sets.
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What is impressive about Price’s `covariance selection
mathematics’ is not merely that these cases are all
covered, but that they are all covered by a simple single
notation that precisely abstracts the essentials of selection
and inheritance from the profound variety of other
circumstances.

It is important to stress that although the additive
genetic value for a trait in one generation is a p-value in
which each allele has a certain weight, the set of weights
may change from one generaton to the next. So the multi-
generational forms applying to a p-value will apply
exactly to a character only to the extent that those
weights remain ¢xed over time.

These precise genetic results are therefore close in form
to game theory models in which individual `¢tnesses’ are
modelled and genetic details disregarded. This holds out
hope for a formal link with game theory models, but this
is beyond the scope of the present paper. Two points may
be made now, however. The de¢nition of vi ensures that,
as its average is always unity, the tendency of natural
selection to favour p-scores associated with higher values
of vi cannot be confused with what would clearly be a
nonsensical tendency to maximize the mean reproductive
success. Also, there are reconciliations to be made with
population genetics models, which appear to show that
selection lacks a maximizing tendency.

There are, of course, some assumptions. We have
assumed discrete non-overlapping generations, though
this can be ¢nessed by treating the survival of an indivi-
dual as a special kind of reproduction. We assume discrete
events of population-wide reproduction, though we could
extend the previous ¢nesse and de¢ne the moments t as
occurring at each moment at which any individual repro-
duces. We have more substantively assumed that all the
alleles involved in the p-score have the same mode of
inheritance. Thus the analysis applies to autosomes in
humans, and to the X chromosome in humans and to the
Y chromosome in humans; but not to a p-score that
combines genes from more than one of these locations.
Other substantive assumptions for the `expectation’ forms
are that segregation of alleles is fair in a Mendelian sense
and that there is no gametic selection, which together set
the expectation of the second summand in equation (1) to
zero.

It is well recognized that the Price equation is not
dynamically su¤cient. For example, we need to know
the whole array of genotype frequencies f g

t for all g 2 G
in equation (8), but can calculate only one gene
frequency pt‡ 1 for the next generation. Thus the Price
approach does not su¤ce to deduce the outcome of an
evolutionary process. The primary role of the Price
approach is to provide an interpretation of selective
processes, and this it can do using the exact equations
shown above. It is unfortunate in this respect that the
term èxact’ has been used in population genetics as a
synonym for `dynamically su¤cient’, presumably
re£ecting a historical situation in which dynamically
insu¤cient equations led to approximate and therefore
potentially erroneous results. The Price equation is exact
in the ordinary sense, and the interpretations of selection
in terms of individual reproductive successes given in
equations (6)̂ (9) are in no way prejudiced by the
dynamic insu¤ciency of the approach.

The general results obtained so far may seem unsur-
prising to many biologists, who have assumed that genes
spread or not according to the average ¢tnesses of their
bearers. However, one particular area in which geometric
means have seemed to represent better the workings of
natural selection is that of stochastic environments, to
which we now turn.

6. AN EXAMPLE WITH STOCHASTIC ENVIRONMENTS

Here a very simple model will show how the formula-
tions just derived are consistent with the traditional popu-
lation genetics approach to stochastic environments, but
o¡er a new interpretation.

A haploid population with discrete non-overlapping
generations has two alleles at its one locus, and two types
of environment. Allele A leaves one o¡spring in environ-
ment I, and no o¡spring in environment II . Allele B
leaves k o¡spring in both environments. The environment
in each generation is I with probability 1 ¡ º, indepen-
dently in each generation. The simple population genetic
analysis calculates the weighted geometric mean for A as
11¡º0º, which equals zero if º40 and unity if º ˆ 0. For
B, we have k1¡ºkº ˆ k. Hence A dies out if º4 0. If
º ˆ 0, then A invades, is neutral, and dies out, according
to whether k5 1, k ˆ 1 or k41.

To apply equation (5), we need the covariance in
generation t. This will depend on the mean p-score in that
generation, pt, as follows

pt((1 ¡ k)(1 ¡ pt) ¡ º)
k(1 ¡ pt) ‡ pt

. (10)

It is a straightforward exercise to calculate the prob-
ability distribution of pt to be p0=( p0 ‡ kt(1 ¡ p0)) with
probability (1 ¡ º)t and otherwise zero. Notice that this
calculation does not use the Price equation, and here the
dynamic insu¤ciency comes into view even in an extre-
mely simple case. The sum of the sequence of expected
values of expression (10) up to generation t is readily
found as

p0((1 ¡ º)t‡ 1 ¡ p0 ¡ kt‡ 1(1 ¡ p0))
p0 ‡ kt‡ 1(1 ¡ p0)

. (11)

The limit as t increases when º4 0 is simply ¡p0. The
expected sum of the changes in gene frequency therefore
equals minus the original gene frequency, and so the
expected eventual value of the gene frequency equals
zero, indicating extinction. Note that in the case º ˆ 0,
the limit is 1 ¡ p0 when k5 1, corresponding to the
spread of A, but tends to ¡p0 again when k > 1, and
equals zero indicating no change of gene frequency when
k ˆ 1. Thus the accounting provided by the extended
Price equation is precise and correct even when it is not
the shortest or most natural modelling tool.

The partial sums of the sequence show how the
expected fraction of A changes over the generations. The
expected fraction increases initially if 1 ¡ º4k. At later
stages the expected change is a mixture of the increas-
ingly likely event that A has already gone extinct and so
the covariance is zero, and the event that A has reached
an increasingly high frequency in the population, which
leads to a negative covariance. The real signi¢cance of
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the later frequency dependence, in which the frequency of
A reduces its own reproductive success, is brought out by
this approach.

It is interesting to look at the form of equation (8) in
this simple case in which G ˆ fA,Bg, qA ˆ 1, qB ˆ 0,
f A
t ˆ pt and f B

t ˆ 1 ¡ pt. vA
t depends on pt, and equals

(1 ¡ º)=(pt ‡ k(1 ¡ pt)) until a generation of type II
occurs, and is zero thereafter, but this substitution would
obscure. The formulae become, for exact and expected
values, respectively,

pT ¡ p0 ˆ
XT¡1

tˆ 0

pt(v
A
t ¡ 1)

E!:(0 : : :T¡1)‰ pT ¡ p0Š ˆ
XT¡1

tˆ0

E!:(0 : : : t¡1)‰ pt(E!:t‰vA
t Š ¡ 1)Š.

Even in this simple example in which the geometric mean
analysis is the fastest way to work out whether A spreads,
the Price formulae are exact and correct and have simple
and appealing interpretations of the spread or extinction
of A in terms of arithmetic averages of individual repro-
ductive successes. It is noteworthy that, in a parallel
analysis of whether B would be invaded by A, the weights
for the generations would be di¡erent, depending on the
frequency of B not A. Thus the same sequence of partial
sums (11) can be interpreted as a sum of covariances, a
sum of reproductive success di¡erences for A weighted by
the frequency of A, and a sum of reproductive success
di¡erences for B weighted by the frequency of B.

7. CONCLUSIONS

This paper presents a simple and very general demon-
stration that, on the understanding that reproductive
success is measured relative to the population average,
natural selection acts on the arithmetic average of
reproductive success. It also shows that this principle
continues to hold when the calculation of expected
relative reproductive success becomes complex. These

results bode well for the use of the Price equation to
derive appropriate notions of reproductive value in more
sophisticated and inclusive models, for the construction of
formal links between population genetics and optimizing
methodologies, and for capturing in formal terms the
biologically commonsense notion of an individual’s
Darwinian ¢tness.

I am very grateful to Olof Leimar for careful and constructive
criticism of an earlier and more embryonic form of this paper,
and for a deep and helpful scrutiny of this more adult version.
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