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THE HAWK-DOVE GAME PLAYED BETWEEN RELATIVES

By ALAN GRAFEN
Wolfson College, Oxford

Abstract. Maynard Smith (1978) has raised the problem of the hawk-dove game played between
relatives. Here, the evolutionarily stable state of the population is found as a function of the average
relatedness of a player to his opponents. Surprisingly, the continuous or ‘mixed’ strategy case and the
discrete or ‘pure’ strategy case must be treated separately. It is claimed that previous published analyses
of the evolutionarily stable state are invalid. The errors committed are discussed, and ascribed to the
use of the concept of “fitness’, rather than the less confusing notion of gene frequency.

The Hawk-Dove Game Played Between
Relatives

The two-strategy linear ESS game has been
used to shed light on some interesting problems
in recent biological theory, including intra-
specific aggression and mating sytems (Maynard
Smith & Price 1973; Maynard Smith 1977).
Maynard Smith (1978) has raised the problem
of the outcome of such games when they are
played between relatives. Here 1 present the
solution to this problem in both the continuous
or ‘mixed’ strategy case and the discrete or
‘pure’ strategy case. That these cases have
different solutions shows that Maynard Smith’s
(1978) original analysis is invalid, and this can
be attributed to his use of a fitness approach,
rather than a gene frequency approach. This
strengthens Dawkins’s (1978) case in favour of
the latter. Although the arguments are general,
I will refer to the two-strategy linear ESS game
as the hawk-dove game for the rest of the paper.

In the simple hawk-dove game, the popula-
tion consists of a very large number of unrelated
‘hawks’ and ‘doves’, each of whom plays an
indefinitely large number of bouts against
opponents drawn randomly from the popula-
tion. The game payoff is the sum of the payoffs
from each bout. These depend on the strategy
played, and that of the opponent. Let us use H
for hawk and D for dove, and let E(Z, J) be the
payoff to I in a bout against an opponent
playing J. For brevity we define a, b, c, d as
follows:

E(H,H)=a EH,D)=1b )
E(D,H)=c ED,D)=d
This is the game matrix. If a proportion ‘#’

of the population play H, and the rest D, then
the average payoff in each bout to H is given by

E(H,tH + (1 — t)D) = tE(H ,H) +
(1 — t)E(H, D)
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An individual playing H a proportion s of the
time, and D the rest, against a population
playing J, will have average payoff

EGH + (1—)D, J) = sE(H,J) + (1—)E(D, J)

The crucial point about the hawk-dove game,
simple or between relatives, is that we can yvoyk
out the proportions of the various strategies in
the next generation if we know the proportions
in this generation. Each individual supplies
offspring to the next generation in proportion to
his average payoff, and offspring play the same
strategy as their parents. For this to make sense,
all payoffs must be non-negative. Considering the
case where there are only two strategies,  and J,
let G(I,J) be the average payoff to I against J,
let p be the proportion of I in this generation
and p’ the proportion in the next. The number of
I in the next generation is proportional to
pG(I, pI + (1—p)J), since there are p of them
in this generation, and the population plays
'pI + (1—p)J'. The number of J in the next
generation is likewise proportional to
(1—p)GW, pI + (1—p)J), and so

, pG(, pI + (1—p)J)

P G ol + (=) + (1—p)GU,pT + (1=))
This simplifies at equilibrium, where p' must
equal p, to
G(I, pI + (1—p))) = GU,pI + (1—p))) ()

In the simple hawk-dove game G(I,J)=
E(I,J) so (3) becomes

pa + (1—p)b = pc + (1—p)d
This is solved for p to give the standard solution
for the hawk-dove game:
b—d

R @
a—b—c+d

p:
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Equation (4) gives the ESS only if it is sensible,
that is if p lies between 0 and 1, and the solution
is stable. It is stable if a—b—c+d < 0. If (4)
does not give the ESS, then the ESS may be all
hawks or all doves or both may be ESSs,
depending on the circumstances. The same
remarks and the same stability condition apply
to both the other game solutions in this paper.

Maynard Smith (1978) raised the problem of
the game when it 1s played between relatives.
This could be of interest if the game was played
between parents and offspring, or between
neighbours in a species with low dispersal. If
the average relatedness was ‘r’, then with chance
‘r’ an individual plays someone who plays the
same strategy as he does because they are
related, and with chance ‘1—r’ he plays against
the strategies in their population proportions.
Thus the average payoff to I in a population
playing J can be denoted F(I,J) where

K1,J) = rE(I, 1) + (1—r)E, J) &)

In the simple hawk-dove game, a population
where all individuals play a mixture of H and D
need not be distinguished from a population
polymorphic for H and Din the same proportion.
In the hawk-dove game between relatives it is
necessary to make this distinction, and to treat
the continuous strategy case separately from the
discrete strategy case. This is because the
following is not true, as can easily be shown:
F(pH + (1—p)D,J) = pF(H,J) + (1—p)F(D,J)

In this discrete case, each individual plays
either always hawk or always dove. The equili-
brium proportion p of hawks must occur, by
(3), where

F(H, pH + (1—p)D) = F(D, pH + (1—p)D)
Using (1) and (5), we can write this as
ra + (1—r)(pa + (1—p)b) = rd + (1—r)(pc +
(1—p)d)
Solving for p we obtain

b—d + r(a—b)
(1= a—b—c+d)

This is the solution to the discrete strategy case.

In the continuous strategy case, where each
individual can play any proportion of hawk and
dove, we wish to find that strategy which once
established cannot be invaded by any rival
strategy. Let us use for brevity

F(q,p) = F(gH + (1—q)D, pH + (1—p)D) (7)

p= ©)

F(g, p) is the average payoff to an individual
playing hawk ‘¢’ of the time in a population
which overall plays hawk ‘p’ of the time.
Equations (2) and (3) are easily adapted to give
us the condition that any rival strategy g will
decrease in the next generation in a population
playing p:
F(g, p) < F(p, p) for all g except g = p.

Since F (q, p) = F(p, p) wheng = p, it isclear
that provided 0 <p <1, F(q,p) reaches a
maximum at ¢ = p. This means that

oFg,p)
8q N
By (7), (5) and (1) we see that
Fq, p) = rE(4H + (1—q)D, gH + (1—¢)D) +
(1—r)E(gH + (1—q)D, pH + (1—p)D)
= r{q2a + q(1—q)(b+c) + (1—q)2d} +

(1—r){pga + p(1—q)c + (1—p)gb +
(I—q@)(1—p)d;

Differentiating with respect to g, according to
(8), gives

Oatg=p ®)

2rg(a—b—c+d) + r(b+c—2d) +
(I—=r)(pa—pc + (1—p)b — (1—p)d) =0

When g = p, this solves for p to give
b—d + r(c—d)
(1+r)(a—b—c+d)

This is the solution to the continuous strategy
case. At this value of p, any rival strategy will
decrease in numbers each generation.

There is a less mathematical argument which
leads to the same conclusion. Consider a popula-
tion all playing hawk a proportion ‘p’ of the
time. For brevity, let us call this strategy, not
necessarily the ESS, simply ‘»’. We now con-
sider the success of a variant strategy present
in very small numbers in the population. The
variant strategy is identical to p except that in
one bout, chosen randomly, where the in-
dividual would have played D, he plays H
instead. We consider the two ways in which this
change makes the success of the variant strategy
different from that of the population strategy.
The individual who plays it has his payoff in
that bout changed from E(D, pH + (1—p)D)
to E(H,pH + (1—p)D). The other way the
variant strategy’s success is altered is that, with
chance ‘r’, the individual’s opponent also plays

p= (€)
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the variant strategy and so the variant strategy’s
success changes additionally by the difference
between E(pH + (1—p)D, H) and E(pH +
(1—p)D, D). So on average the effect will be

E(H,pH + (1—p)D) — E(D, pH +
(1—p)D) + r{E(pH + (1—p)D, H) — (10)
E(pH + (1—p) D, D)}

We have assumed that all opponents play H
with probability ‘p’ in this bout. This is because
the chance that this is also the bout in which an
opponent playing the variant strategy plays H
instead of D is very small.

Now if (10) is positive the variant strategy
does better than ‘p> and so ‘p’ is not an ESS.
Another variant strategy is to play ‘p’, except
in one bout to play D instead of H, and the
difference between the success of p and its
success is easily seen to be minus (10). So if (10)
is negative, then this other variant strategy does
better than p, and so p is not an ESS. Therefore,
if p is an ESS, (10) equals zero. Using (1), this
becomes

pa + (1—p)b — pc —O(l—p)d + r{pa + (1—p)c

— pb — (1—p)d} =
which solves for p to give
b—d + r(c—d)
p=— as before.

(+r)(@a—b—c+d)

This argument applies only for p between 0 and
1, since otherwise the two variant strategies used
will not both exist.

Let us now turn to the solution proposed by
Maynard Smith (1978) for both the continuous
and discrete cases. His argument ran: in a game
between relatives, it is inclusive fitness which
should be equal for hawk and dove. So he
suggested solving as in (4), except that a, b, ¢, d
should be replaced by a+ra, b-+rc, c+rb,
d-+rd. Each of these is the sum of an individual’s
payoff and ‘r’ times that of his opponent, the
idea being that these represent the inclusive
fitness gained from a bout.

But inclusive fitness involves the weighted sum
of all relatives’ fitnesses, not just those relatives
you happen to play against, and so this method
does not give us the inclusive fitness of an in-
dividual. By using (4), no account is taken of
the fact that an individual is more likely to play
against his own strategy than he would if he

played the population at random. The use of
(4) also assumed implicitly and, as we have seen,
erroneously, that the following is true:

that the payoff to playing H ‘p’ of the time and
D the rest, is equal to ‘p’ times the payoff to
playing H plus ‘1—p’ times the payoff to
playing D. Treisman (1977), and Mirmirani &
Oster (in press), independently used the same
erroneous argument as Maynard Smith in
analyses of games between relatives.

This argument amazingly happens to give the
correct answer in the continuous strategy case.
Hines and Maynard Smith (in preparation),
while accepting that the argument is invalid,
generalize the equivalence of the results of the
invalid argument and the correct argument,
arguing that it provides a convenient method of
solution.

The results of this paper have been based
largely on (3), which is a condition about when
the next generation is the same as this one.
Arguments using ‘fitness’ are much more likely
to mislead the unwary. Treisman (op. cit.)
and Mirmirani & Oster (op. cit.) have been
saved from serious error by the algebraic
curiosity that an invalid argument happened
to give the correct answer for the case they were
interested in. Not everyone using fitness argu-
ments can expect to be so fortunate.
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