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Abstract

The first fully explicit argument is given that broadly supports a widespread belief among whole-organism biologists that natural

selection tends to lead to organisms acting as if maximizing their inclusive fitness. The use of optimization programs permits a clear

statement of what this belief should be understood to mean, in contradistinction to the common mathematical presumption that it

should be formalized as some kind of Lyapunov or even potential function. The argument reveals new details and uncovers latent

assumptions. A very general genetic architecture is allowed, and there is arbitrary uncertainty. However, frequency dependence of

fitnesses is not permitted. The logic of inclusive fitness immediately draws together various kinds of intra-genomic conflict, and the

concept of ‘p-family’ is introduced. Inclusive fitness is thus incorporated into the formal Darwinism project, which aims to link the

mathematics of motion (difference and differential equations) used to describe gene frequency trajectories with the mathematics of

optimization used to describe purpose and design. Important questions remain to be answered in the fundamental theory of

inclusive fitness.

r 2005 Published by Elsevier Ltd.
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1. Introduction

Inclusive fitness was introduced by Hamilton (1964)
and has become a foundation stone of modern biology.
There is a large literature justifying and explaining
inclusive fitness by Hamilton and others (e.g. Hamilton,
1963, 1964; Grafen, 1984, 1985; Queller, 1992; Taylor,
1990; Frank, 1998), which is often referred to when
inclusive fitness is used. There nevertheless continues to
be uncertainty about its logical standing: the original
derivation has not generally been accepted as rigorous
and convincing, and there have been many further
versions by Hamilton and by others. The aim of this
paper is to advance the justification in a number of
ways, and a central technical device is to be fully explicit
for the first time about the connection between
population genetics and the optimization of inclusive
fitness.
e front matter r 2005 Published by Elsevier Ltd.
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The reasons for the inadequacy of the original papers
should be given at the outset. The uncertainty over the
derivations of Hamilton (1964, 1970) is not mainly
caused by flaws in the arguments contained in those
papers. It is true that the 1964 paper has a difficult
notation, and that the 1970 paper’s specification of a
relatedness between each pair of individuals is proble-
matic. But the chief doubt arises simply because it
postulates a maximization principle for inclusive fitness
in a model that is more complex than the model in which
Fisher (1930) postulated his Fundamental Theorem:
until Fisher’s work was accepted, therefore, Hamilton’s
result would lie in limbo. Following a long-neglected
paper by Price (1972), a more general realization of what
Fisher’s theorem meant, and that it was true, began with
Ewens (1989, 1992) and continues (Lessard, 1997).
I have drawn implications for the optimization principle
in Fisher’s case mathematically (Grafen, 2002) and
verbally (Grafen, 2003). The chief difficulty in accepting
the optimization principles of Fisher and Hamilton has
arisen from misunderstanding of what maximization of

www.elsevier.com/locate/yjtbi


y

y
o
-
s
a
t
n
e
y

s
t
s
.
e
t
s
;

e
-
,
d

-
f
y
o
f
n
s

n
e
e
s

d
e
r
-
e
d
e
r
n

e
n
l
t
n
f
f

s
,

n
y
e
-
e
s
e
o
e
4
-
d
e
n

,
e
n
h
l
y
t
f
f
n
n
s
n
o
n
d
n
y
o
e
o

-
1
d
.
s
s
l
s
l
-
n
n

ARTICLE IN PRESS
A. Grafen / Journal of Theoretical Biology 238 (2006) 541–563542
fitness means, hence the vital importance of being full
explicit on this point.

The position of inclusive fitness as the quantit
organisms are most widely believed to be selected t
maximize makes it important to provide an under
standable argument in this case. The model below i
therefore kept fairly simple: for example it assumes
finite population, so that summation signs are used bu
no integration is required. This leaves some aspects i
need of a more abstract treatment, to remove th
implausibility of some assumptions, but these are clearl
outlined as they occur.

The major restrictions on the derivation are a
follows. Frequency dependence is not permitted, and i
is found necessary to make the assumption that effect
of social actions on numbers of offspring add up
Clearly these are important limitations, as inclusiv
fitness ideas should be useful in frequency dependen
and non-additive situations. There is a literature on thi
case (Grafen, 1979; Hines and Maynard Smith, 1979
Day and Taylor, 1998), but the question even of how
inclusive fitness should be defined in general in th
presence of frequency dependence has not been ade
quately considered. The population, though finite
will be assumed to be large when uncertainty is adde
to the model.

The positive advantages of the derivation are sig
nificant. The first two, very different, derivations o
Hamilton (1964, 1970) are both very general in that the
permit arbitrary numbers and types of social actions t
be performed by each individual, and the recipients o
each action can also be various. The current derivatio
shares this feature, while nearly all other previou
derivations have limited themselves to only one kind
of social action, and the recipient of one action has bee
either one individual with a fixed relationship to th
actor, or alternatively all the other members of th
actor’s group. A major feature of the present paper i
that every effort has been made to be fully explicit. A
third advantage is that uncertainty is allowed, an
conditional behaviour is explicitly articulated, which ar
features taken for granted by biologists but so fa
neglected in theoretical derivations. Finally, the conclu
sion that inclusive fitness is optimized, as opposed to th
commoner conclusion that Hamilton’s Rule is vali
for a given social action, is very significant from th
point of view of the design of the organism’s behaviou
as a whole: this point is taken up in the discussion i
Section 7.

The paper pursues for inclusive fitness the sam
agenda as Grafen (2002) did for Darwinian fitness i
expanding on the Fundamental Theorem of Natura
Selection of Fisher (1930), namely to provide an explici
and mathematically rigorous link between populatio
genetics and fitness optimization. Many groups o
biologists simply accept that organisms act as i
maximizing their fitness, and conduct research project
from that standpoint. This paper aims to articulate
consolidate and improve the basis for that acceptance.
2. Overview

The mathematical arguments to follow have bee
limited in complexity, but it is recognized that man
readers will prefer to omit some of the sections. Th
introduction and this overview, as well as the inter
pretative Section 6 and the final discussion should b
accessible to all. Many of the important technical point
can be grasped by reading Section 3 up to 3.3. Th
notation becomes larger in scope, though in fact n
more mathematically complex, in Section 3.4. Th
interpretive issues also become more subtle. Section
introduces optimization programs as an explicit repre
sentation of biologists’ assumption of optimality, an
although the section becomes quite hard, it may b
of interest to some readers to see how far they ca
tolerate it.

The argument begins with two separate approaches
which are later linked. The connection between inclusiv
fitness and gene frequency change is established first, i
Section 3. The concept of ‘role’ is introduced, whic
formalizes a concept neglected since the origina
argument of Hamilton (1964). Roles allow a full
explicit argument, based on the Price Equation, tha
begins with neighbour-modulated fitness as the target o
selection, and ends with inclusive fitness as the target o
selection. An important quantity called the ‘Hamilto
residual’ appears in the course of the transformatio
and it turns out that the key property of relatednesses i
that they render the Hamilton residual negligible i
magnitude. Section 3.2 discusses a number of ways t
choose relatednesses to bring this about, and a
exceptional case where relatedness cannot be define
to annihilate the Hamilton residual is discussed i
Section 3.3. The model is extended to allow arbitrar
uncertainty in Section 3.4, which is important both t
investigate how fitness should be averaged in th
presence of environmental uncertainty, and also t
permit the formal treatment of conditional behaviour.

The second approach is to construct explicit optimi
zation programs in Section 4, beginning in Section 4.
with a very simple generic program, which is develope
to include uncertainty and conditional behaviour
Biologists take for granted that animal behaviour i
conditional and that it must be average fitness that i
maximized, as there is no such thing as unconditiona
behaviour and the life of no organism possesse
certainty. It is important that to solve the fina
optimization program, an organism must be a sophis
ticated decision-taker, with a (correct) prior distributio
over uncertainty, and an ability to update the prior in a
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optimal Bayesian way in the light of information
received and to find an action that maximizes the
arithmetic average payoff. The simple example in
Section 4.2 illustrates how the optimization program
embodies these sophistications. Finally, Section 4.3
contains a linking model that connects the fitness effects
used to construct the optimization program to those in
the population genetics model. This linking model
requires the assumptions of additivity and actor’s
control. Additivity means that the effects of others on
one individual’s fitness combine by adding up. Actor’s
control means that the nature and quantitative effects of
one individual’s action depend only on the phenotype of
that individual, and not, for example, on some capacity
of the recipient to use the help provided. The payoff
function in the optimization program is defined in terms
of population genetic quantities, and the population of
individuals in the population genetics model is related to
the one single decision-taker of the optimization
program through the important assumption of ‘uni-
versal strategic equivalence’, which essentially says all
individuals face the same set of problems.

The two approaches are brought together in Section 5.
Formal links are proved between the two approaches,
which are quite detailed and technical. A broad
interpretation is that natural selection always changes
gene frequencies in the direction of increasing inclusive
fitness; and that a population genetic equilibrium in
which no feasible mutations can spread implies that the
individuals in the population are each acting so as to
maximize their inclusive fitness. One qualification is that
genetic complications may mean that genotype frequen-
cies do not change to increase inclusive fitness, and so
inclusive fitness may not in fact increase, even though
that is the direction in which gene frequencies have
changed. It is worth noting that the implication that
population mean fitness is maximized, often wrongly
taken to be the meaning of fitness optimization
principles, is rendered meaningless for the fitness that
appears in the optimization programs in the Fisherian
case by the fact that this fitness is measured relative to
the population mean. Although the mean absolute
fitness does happen to be maximized in the Fisherian
case studied by Grafen (2002), it is not in the inclusive
fitness case of the present paper. Further, the structure
of the optimization programs would carry over un-
changed if frequency dependence were introduced in a
further development.

In proving the links in Section 5, and indeed in the
whole of the argument up to that point, we discuss a set
of genes that share the same transmission pattern. On
the way, we pick up an additional restriction that the
genes must also share the same relatednesses. Such a set
of genes we will name a ‘p-family’. The significance of
the optimization result for the behaviour of an organism
is the resultant of selection on all the organism’s
different p-families. The general situation is discussed
in Section 6, which goes on to consider various forms of
intragenomic conflict in the context of the new deriva-
tion of inclusive fitness.

The discussion in Section 7 considers this paper in the
contexts of the Formal Darwinism project and other
foundational work on inclusive fitness, reviews the new
ideas to emerge, and ends by taking a look at the current
status of inclusive fitness.
3. Inclusive fitness and gene frequency change

Mendelian-type genetics will be taken as the known
process underlying evolutionary change, and accepted as
fundamental. Mendelian-type means that there are
haploid sets, each of which contains one copy of each
locus; that the genotype of an individual consists of a
number of haploid sets, but ploidy may vary between
individuals; and that reproduction takes place by
(optional) recombination between an individual’s hap-
loid sets that conserves all alleles but redistributes them,
followed by passing on a number of the new haploid sets
to an offspring, who may also receive haploid sets from
one or more other parents. Thus classical Mendelian
genetics is included, as is asexual reproduction, and a
mixture.

Inclusive fitness is related to gene frequencies in this
section, in three stages. The Price equation is developed
in Section 3.1 in combination with an additive model
of social interactions to provide a version of the
Price equation with inclusive fitness as the ‘target of
selection’. This introduces ‘relatednesses’ as components
of the ‘Hamilton residual’, which itself must be zero
or small for the theory to apply. Section 3.2 considers
how relatednesses have been and can be defined,
and how these render zero or small the Hamilton
residual. An exceptional case is discussed in Section 3.3,
in which one of these approaches fails. In Section 3.4,
the analysis and discussion of relatednesses is extended
to the case of uncertainty, including enviromental
uncertainty and the uncertainty of Mendelian segrega-
tion.

The assumption of additivity is made throughout this
paper, but is not in general a realistic assumption. In
many applications, non-additivity is an important part
of the problem. The assumption is made here for two
reasons. First, the general argument given here about
the maximization of inclusive fitness will hold only with
additivity, and this paper does not consider more
detailed models in which non-additivity requires atten-
tion. Second, one basic technique for non-additive cases
is to linearize fitness relationships so that an assumption
of additivity is reasonable with small fitness effects. The
logic of this approach relies on knowing that inclusive
fitness is maximized once we have additivity, and here
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the work of this paper can provide support in the mor
realistic situation. It has already been mentioned tha
the question of how to define inclusive fitness in th
absence of additivity has not been settled, and s
fundamental theory on the non-additive case can hardl
yet begin.

3.1. The Price Equation with additive social interaction

The altered basic assumption that distinguishe
models of social interactions from non-social models i
that one individual’s number of offspring may depen
on the actions of other individuals. The way thi
assumption is expressed formally is the key to a simpl
derivation. We will assume there is a set T of possibl
‘roles’ which a recipient can occupy in relation to a
actor. In simple cases based on kinship, roles migh
include ‘sib’, ‘cousin’ and ‘unrelated’. Where the actio
is based on proximity, roles might include ‘neighbour
or alternatively ‘close neighbour’ and ‘distant neigh
bour’; and where they are based on groups, they migh
include ‘fellow-group-member’, and ‘neighbouring
group-member’. In general, we will allow all thes
possibilities and simply work with an arbitrary set T o
roles that draws on one or more of these categories. On
role is special, representing the fundamental assumptio
that an action has an individual that is responsible for it
that is, whose genotype determines whether the actio
takes place and its nature. This role will be called ‘actor
and represented by ‘e’ (for ‘ego’) in subscripts. We d
not assume that the actor can always distinguish othe
individuals according to their role, though in simpl
cases this will be so. The logical force of the concept o
role is that in modelling we have no need to discriminat
more finely than between roles, and this does imply tha
the individual cannot discriminate more finely than
them either.

Individuals will be notated as i and j, elements of th
finite set I, and will be allowed to vary in ploidy. Let bi

be the extra reproduction conferred by i on j in role t

The quantity of these donated offspring will depend o
the phenotypes of the individuals and, by the assump
tion of actor’s control, bijt will depend only on th
phenotype of individual i. Let gi represent the phenotyp
of individual i. When we wish to emphasize th
dependence, we will write bijtðgiÞ, and when we conside
what would happen if individual i played a instead, w
will write bijtðaÞ. However for the moment it suffices t
leave the dependence on phenotype implicit, as n
alternative phenotypes are being considered. We there
fore represent an assumption of additivity of fitnes
effects by writing the number of successful gametes, pe
parental haploid set, of individual j as

wj ¼ 1þ
X

i

X
t

bijt.
The notation of the Price equation (Price (1970)—w
do not use the more general formulation of Price (1972)
is now briefly introduced (see Grafen, 1985, 2002, fo
further details). A ‘p-score’ is a single number for eac
individual that reflects the individual’s genotype. Th
frequency of an allele is the simplest p-score, and i
diploids an individual’s gene frequency is either 0, 1

2
or 1

In general a p-score is an average over the individual’
haploid sets of a weighted sum of allele frequencies
where the weights can be arbitrarily assigned. I
particular, this means that the additive genetic valu
(Falconer, 1981) of any given trait in any give
generation is also a p-score. The p-score of individual
is denoted pj , and the average over the populatio
simply by p. The mean p-score in the next generation i
denoted p0, and the change is denoted Dp ¼ p0 � p. Th
notation Dpj refers to the difference in p-score betwee
the successful gametes of individual j and the p-score o
individual j herself. The ploidy-weighted mean value o
wj is denoted w. The Price equation provides a kind o
accounting identity, which acts as a very powerfu
formalism for studying natural selection.

We shall assume for the moment that all the allele
involved in the definition of the Price equation share
common pattern of transmission. The formalism wi
produce true results, though with different interpreta
tions, no matter what that pattern is. In humans, ther
are at least four different patterns. Autosomal loci hav
one pattern, X-linked genes and Y-linked genes eac
have their own pattern, and mitochondrial genes have
fourth. Section 6 considers how to interpret togethe
different Price equations describing the same populatio
and its reproduction, but for p-scores with differen
transmission patterns.

The general form for the Price equation i
wDp ¼ C½wj ; pj � þ E½wjDpj�, where E½�� and C½�; �� denot
the average and covariance over the individuals in th
population, in each case weighting by ploidy. The Pric
equation in this form applies very widely, in the face o
arbitrary linkage, linkage disequilibrium, ploidy levels
non-random mating, a mixture of sexual and asexua
reproduction, and population structure. In order to b
able to translate out of covariances into sums w
introduce the notation nj to represent the ploidy o
individual j, and N ¼

P
j nj as the total ploidy of th

parental population.
The Price equation can now be expanded to

wDp ¼ C pj ;
X

i

X
t

bijt

" #
þ E½wjDpj�. (1

We now embark on a series of rearrangements whos
aim is to replace summing bijt over j, and so addin
up all the fitness effects that are suffered by individua
j; with summing over i, so adding up all th
fitness effects caused by individual i. The equation ca
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be re-written as

NwDp ¼
X

j

njðpj � pÞ
X

i

X
t

bijt þNE½wjDpj�.

The first summand can be rearranged to produceX
j

njðpj � pÞbjje þ
X

j

X
i

X
tae

njðpj � pÞbijt,

where we have separated effects on the actor ‘ego’ from
effects on other roles. Reordering the summations in the
second term, and changing index variable in the first
we findX

i

niðpi � pÞbiie þ
X

i

X
tae

X
j

njðpj � pÞbijt.

Now associate with each role tae a number rt. The
manipulations remain valid whatever the values of the
ðrtÞ, but the interpretation of the end result will depend
crucially on how they are chosen. For the moment we
add to the first term and subtract from the second term
the sum

P
i

P
tae

P
j rtnjðpi � pÞbijt to obtain, gathering

terms in i in each case,

X
i

niðpi � pÞ biie þ
X
tae

X
j

rt nj

ni

bijt

 !

þ
X

i

X
tae

X
j

njððpj � pÞ � rtðpi � pÞÞbijt.

The first term can be expressed using a covariance as

NC pi; biie þ
X
tae

rt
X

j

nj

ni

bijt

 !" #

and Eq. (1) can now be rewritten, with a slight
rearrangement of the summation signs in the third
summand, as

wDp ¼ C pi; biie þ
X
tae

rt
X

j

nj

ni

bijt

 !" #
þ E½wjDpj �

þ
1

N

X
tae

X
i

X
j

njðpj � pÞbijt

 

�rt
X

i

X
j

njðpi � pÞbijt

!
. ð2Þ

This equation shows a target of selection (that is, its
covariance with p-score appears in the Price equation)
which is the per-ploidy value of

nibiie þ
X
tae

X
j

rtnjbijt.

If rt can be chosen so that it is the fraction of j’s
reproduction that in some sense counts for i, then this is
the total equivalent number of successful gametes of
individual i, a very natural quantity to find as a
maximand in an evolutionary model. Anticipating, it
would not be inclusive fitness itself, as it lacks the basic
unit of reproduction, but it would be the inclusive fitness
effect in the sense of Hamilton (1964). The tightness of
the link between this quantity and the change in p-score
will depend on arguments that render the second and
third summands on the right-hand side of Eq. (2) zero,
zero on average, or small on average.

Various kinds of averaging will be relevant in dealing
with the second and third summands. The second term
arises in just the same way without social interactions.
The term Dpj is the difference between the p-score of
individual j and the p-score of the successful gametes of
individual j. If we consider the average over the
Mendelian segregations that create those gametes, and
assume that they are fair, then each Dpj is on average
zero independently of wj, and so the whole term is also
on average zero: any change in the mean p-score due to
this term is down to randomness in meiosis, and is not
systematic. Thus we will ignore the second summand for
the rest of this section, and consider only the expected
change in mean p-score, implicitly taking expectations
over Mendelian segregations in the production of this
generation’s offspring. This term is dealt with more
formally in Section 3.4.

The third summand is particular to models with
social behaviour, and it is convenient to give this and
similar terms the name ‘Hamilton residual’. A key
point about its structure is that there is one term for
each role, apart from ‘ego’, and there is one relatedness
for each term. The arguments that the Hamilton
residual is zero or at least small will apply to each of
these terms separately. The crucial logic of the concept
of role is that it must permit a proof that the Hamilton
residual is zero or close to it. The next subsection
discusses how relatednesses have been and can be
chosen.

3.2. Relatednesses

Eq. (2) holds true for all possible values of the rt, but
is most useful in linking inclusive fitness to gene
frequency change if the Hamilton residual can be shown
to be zero exactly, zero on average, or small. When the rt

are so chosen, they measure genetic similarity between
actor and recipient, and from now on we will call them
‘relatednesses’. Specifically, rt will be the relatedness of
an actor to recipients in role t. There is a considerable
literature on this topic including a foundational paper
by Crozier (1970) who introduced the distinction
between coancestry (his ‘relationship’) and genetic
similarity (his ‘relatedness’), and many papers on how
to measure relatednesses so as to make inclusive
fitness work (beginning with Orlove, 1975; Orlove and
Wood, 1978).

The methods of choosing the rt, the relatednesses, can
be divided into two, according to the kind of informa-
tion used to calculate them. Hamilton (1964) used
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information about ancestral links between individuals
This, along with other methods which use a sma
amount of information about kinship links or the grou
structure of a population will be referred to as followin
a ‘modelling approach’. This is to contrast with th
‘measurement approach’, which uses complete informa
tion about the genotypes of the individuals and thei
social interactions. We will return to a comparison o
modelling and measurement once they have been give
more substance through examples.

Identity-by-descent is the commonest and origina
(Hamilton, 1964) modelling approach. It involves i
principle averaging over Mendelian segregations i
previous generations, just as we have already average
over them in the production of offspring by parents i
this generation. The method by which this choice for r

renders the Hamilton residual zero on average i
discussed in some detail by Grafen (1985). Essentially
as Hamilton explained in 1964, the genotype of th
recipient is viewed as a mixture: some fraction is as i
drawn from the population gene pool at random, an
some fraction (the relatedness) is as if identical with th
actor’s genotype. This implies that the deviation of th
recipient’s genotype from the population mean (pj � p

equals on average a fraction of the deviation of th
actor’s genotype from the population mean (rtðpi � pÞ)
which implies as required that on average ðpj � pÞ�

rtðpi � pÞ ¼ 0. The uncertainty in Mendelian segrega
tions over which these averages are taken is no
incorporated into the formal structure of the mode
and it would be difficult to do so, as the mode
conditions on the population and its genotypes. Th
weighting in the Hamilton residual in Eq. (2) of ðpj �

pÞ � rtðpi � pÞ with njbijt is partly a matter of givin
more importance to those individuals j in the role t tha
are the recipient of more benefit from i, but note that th
‘weights’ can be negative so that helps and hindrances t
the same role can cancel each other out. As Hamilto
(1964) also explained, this approach works only unde
an assumption of weak selection: coancestry canno
predict genetic similarity all by itself when gen
frequencies have been changing.

Identity-by-descent provides useful results for clos
kin in an outbreeding population. However, for reason
that are well-rehearsed (Seger, 1981; Grafen, 1985), i
cannot provide a sensible approach for calculatin
relatedness where there may be many weak ties goin
back many generations, as might frequently be the cas
between neighbours in a viscous population. Essentially
the concept of identity-by-descent depends on declarin
all individuals in some recent generation as having n
identity-by-descent, and then calculating on the basi
only of ties since then. Seger’s ‘‘paradox of inbreeding
is that if we declare the foundational generation to b
long enough ago, then all pairs of organisms alive toda
have a relatedness of 1, as they all share complet
descent from the common ancestor of all currently livin
creatures. This shows that the method of identity-by
descent cannot be conceptually central, and illustrate
that even without selection, paths must not become to
long: even drift disturbs the calculations eventually. Bu
we do have a serviceable method of calculating rt fo
some kinds of roles, and under some kinds of assump
tions. Importantly, this method gives the same value
of rt for all alleles and all loci with the same transmissio
pattern.

Another modelling approach, used for groupe
populations, is to use group sizes and immigratio
patterns to calculate genetic similarity, using th
F-statistics of Wright (1969–1978). Note that F-statistic
themselves can be calculated from identity-by-descen
considerations or from measured frequencies of geno
types. They were first employed in relation to inclusiv
fitness by Hamilton (1971). Two members of a grou
will typically share genes through many lengthy linkin
ancestral paths. To use ordinary identity-by-descent i
unsatisfactory because (i) the relevant calculation
become poorer and poorer approximations as th
lengths increase, owing to the increasing strength o
cumulative selection and drift over lengthy paths (ii) it i
less plausible that two group members know of all th
ancestral links and so can act according to them, an
more plausible that the information they have is simpl
that they belong to the same group. Recursion equation
can provide measures of relatedness and F-statistic
under simple assumptions. Other modelling approache
are in principle possible.

The ‘measurement’ approach was first advocated an
employed as a complete approach by Orlove (1975) an
developed as a regression coefficient by Orlove an
Wood (1978). Hamilton (1972) had already mixed thes
methods in deriving coefficients for the case of inbreed
ing, estimating the inbreeding coefficient FA, bu
calculating the probability of identity between random
gametes of two individuals rAB using identity-by
descent, in the course of presenting his regressio
coefficient of relatedness equal to rAB=ð1þ FAÞ. In ou
current context, measurement takes the values of pi an
bijt as given, and calculates from them the relatednes
associated with a given role, that is, it chooses the rt t
make the Hamilton residual zero. It is most natura
to do this with a role such as ‘neighbour’ or ‘fellow
group-member’, but perfectly possible also with kinshi
roles such as ‘full-sib’ or ‘second cousin’. Finding
value of rt to make the t-th term in the Hamilto
residual in Eq. (2) equal to zero is possible provideP

i

P
j ðpi � pÞnjbijta0, which requires that the nb

weighted sum of actors’ p-scores is not equal to th
nb-weighted sum of the population mean p-score
The actors must be unrepresentative of the populatio
in this very precise sense, and we discuss the exactl
representative case further in Section 3.3. The require
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definition is

rt ¼

P
i

P
j njðpj � pÞbijtP

i

P
j njðpi � pÞbijt

. (3)

This formula can be interpreted as a kind of regression,
in which pj is regressed on pi across all pairs of
individuals, with two special features. First, the regres-
sion is forced to pass through the point ðp; pÞ, and
second the datapoint ðpi; pjÞ is weighted by nj

P
tae bijt.

The failure when
P

i

P
j njðpi � pÞbijt ¼ 0 can be ex-

plained in simple geometric terms, on the assumption
that

P
i

P
j njbijta0. The mean values of pi and pj as

weighted in the regression are the relevantly weighted
mean p-scores for the actors and recipients, respectively.
Writing them as p̄A and p̄R, we have

p̄A ¼

P
i

P
j pinjbijtP

i

P
j njbijt

; p̄R ¼

P
i

P
j pjnjbijtP

i

P
j njbijt

.

Now the value of rt is simply

rt ¼
p̄R � p

p̄A � p
. (4)

the slope from ðp; pÞ to ðp̄A; p̄RÞ. If it happens that the
two points share the same value on the horizontal axis
only, then the slope will be ‘infinite’. As choosing rt ¼ 1

does not sensibly reduce the Hamilton residual to zero in
this case, this solution will not be useful to us. Note that
the geometric analogy makes clear that measured
relatednesses can take any positive or negative value
and are not restricted to lie between zero and one, or
minus one and one.

The conceptually appealing view of relatedness is as a
measure of information about the recipient’s genotype
from the actor’s point of view, and the regression slope
is indeed predicting recipient’s genotype from actor’s
genotype. This interpretation of the regression, first
offered by Hamilton (1963), is developed at some length
in Grafen (1985).

We now return to the comparison of the two types of
approach to calculating relatedness. The modelling
approaches are likely to produce relatednesses we can
calculate, but only in special circumstances, where we
happen to know the ancestral links between interactants.
Further, they will imply only that the Hamilton residual
is zero on average, and likely to be small in most cases.
The measurement approaches rely on information that
is most unlikely to be available, except in computer
simulations of evolution. But measurement always in
principle provides relatednesses that guarantee the
Hamilton residual to be exactly zero. Thus measured
relatednesses always make the link to gene frequency
change exact, apart from the uncertainties of this
generation’s Mendelian segregation, but there is no
guarantee that the relatednesses will be the same for all
p-scores. In a moment we investigate chance variation in
measured relatednesses by adding uncertainty in general
to our population genetics model, and a suggestion for
joint measurement is made in Section 6.3.

Our measurement and modelling approaches to deal-
ing with the Hamilton residual in Eq. (2) should not be
confused with the separate issue of which computational
statistic is employed. Genetic similarity was originally
presented formally as a correlation coefficient based on
identity-by-descent (Hamilton, 1964), but Hamilton
(1963) is quite clear that this only an approximation to
the true nature of relatedness as a regression coefficient.
Hamilton (1970) showed how relatedness could be
defined as a regression coefficient, but continued to
base it on identity-by-descent.

Forcing the regression line through the point ðp; pÞ is
technically very important (Grafen, 1985). Centring on
the population mean makes the regression slope most
meaningful, and most simply related to gene-frequency
change. Regression slopes based on estimated intercepts
require unnecessary correction terms that are complex
and hard to interpret, when the opportunities for action
are available to a non-representative subset of the
population.

3.3. Representative actors

The t-th term in the Hamilton residual from Eq. (2) isX
i

X
j

njðpj � pÞbijt � rt
X

i

X
j

njðpi � pÞbijt.

Choosing rt to render this zero is always possible
provided the sum multiplying rt does not equal zero, and
in this section we consider the biological significance of
this exact circumstance, because it carries the implica-
tion that we cannot define rt by ‘measurement’ to make
inclusive fitness work. Note that under identity-by-
descent arguments there is nothing special or difficult
about this equality.

It is easy to understand the problem in the geometric
terms of Grafen (1985), if slightly informally. The
population mean, the actors’ mean and the recipients’
mean are three points in the one-dimensional space of
possible p-scores. Actors are said to be representative
when the actors’ mean and the population mean are at
the same point. Relatedness is the fraction of the distance
from the population mean to the actors’ mean at which
the recipients’ mean is found. This concept becomes
meaningless when actors are representative. Actors may
be representative for some p-scores but not for others.

We now turn to a more analytical approach. In some
cases, which are unproblematic, the first sum in the
Hamilton residual is zero as well as the second one. In
this case the Hamilton residual equals zero whatever the
value of rt. Thus we can simply set rt ¼ 0, or, if rt has
taken a value in previous generations as gene frequen-
cies have been changing, retain that value for the one
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generation when actors are representative. Both sum
equalling zero will arise quite often, when the p-score i
not causally involved in any social fitness effects, and is i
linkage equilibrium with all the alleles that are; and will o
course always happen if there are no social effects at all so
bijt ¼ 0 for tae. This just means the whole socia
apparatus is irrelevant to that p-score, and need no
concern us in principle. There is a practical issue, however
If both sums are very close to zero, as might arise throug
small chance effects in the bs

ijt, or through small chanc
linkage disequilibrium, then the measured value of rt;s wi
vary wildly as two very small values that are zero o
average wobble about. But by virtue of being very smal
they will have little effect on net selection anyway.

The issues in principle arise, therefore, if the second
sum equals zero while the first does not, for systemati
reasons. In geometric terms, the actors’ mean an
population mean are at the same point, but th
recipients’ mean is elsewhere. No difficulty arises whe
role t satisfies the assumptions of identity-by-descent
for if the actors’ mean and population mean are th
same point, then so is the recipients’ mean, at least o
average, and the relatednesses ðrtÞ do not vary with s an
so do deal with the average. A simple problematic kind
of role would be ‘A random red-headed sibling if ther
are red-headed siblings; otherwise a random sibling
Here the gene for red hair benefits at the expense of a
alleles, and the recipient’s genotype will be system
atically biassed towards red hair genes compared to th
actor’s genotype. Here the measurement approach
allows us in general to find a relatedness that will mak
inclusive fitness work, though one might wonder at th
utility of such an interpretation, and this is a goo
example of where measurement of relatedness produce
accurate but unmeaningful results. It is also an exampl
where the representativeness of actors would make th
relatedness calculation fail because of dividing by zero

It is also worth noting that if the trait is geneticall
staightforward in relation to the p-score, so that th
higher the p-score the more the individual gives t
recipients, then actors will never be representative of th
population, as their p-score will be always be highe
than the population average, except when the trait goe
to fixation and then again both sums are zero.

Thus this failure of measurement is likely to arise onl
in unusual circumstances, and not when identity-by
descent assumptions are met, or when allelic effects ar
straightforward. So there is a very occasional failure i
principle to be able to find an rt that will render th
Hamilton residual equal to zero, but it should not caus
concern except in peculiar cases.

3.4. The Price equation under uncertainty

The model of the previous section holds good fo
fixed bijt. In order to accommodate flexibility o
behaviour on the part of the organisms, and i
order to deal more formally with Mendelian segrega
tion, it is important to extend the model to allow
uncertainty. We will take the population of individual
and their genotypes as fixed, but allow all othe
components of the model to depend on the situatio
that arises. Thus ni, pi and p do not vary with th
situation s, but we will superscript other notation thus t
indicate that they do depend on s: ws

j , ws, p0s, Dps an
Dps

j . It is important to note that variation in bs
iie ca

allow individuals’ fitnesses to vary randomly an
differently across situations.

Suppose situation s arises with probability ts, and tha
the set of situations is S, so that

P
s2S t

s ¼ 1. It is help
ful to consider the situation to include informatio
about howMendelian segregations are resolved. Partitio
S into subsets ðSuÞu2U such that the situations withi
a subset differ only in Mendelian segregations. Agre
to use a bracketed superscript SðsÞ to denote Su suc
that s 2 Su. The technical representation of our assump
tions of fairness and independence of meiosis is tha
two situations belonging to the same Su have equa
probabilities ts. It follows that

P
s02SðsÞ Dps0

j ¼ 0 fo
all j and s.

As in the absence of uncertainty, the Price equatio
holds in the face of arbitrary linkage, linkage disequili
brium, ploidy levels, non-random mating, a mixture o
sexual and asexual reproduction, and populatio
structure.

Obtaining the formula for the change in gen
frequency in situation s is straightforward. Eq. (2) i
simply rewritten with the relevant symbols superscripte
for situation s:

wsDps ¼ C pi; bs
iie þ

X
tae

rt;s
X

j

nj

ni

bs
ijt

 !" #
þ E½ws

jDps
j �

þ
1

N

X
tae

X
i

X
j

njðpj � pÞbs
ijt � rt;s

X
i

X
j

njðpi � pÞÞbs
ijt

 !

We focus on the expected value of Dps, namelP
s2S t

sDps. ws must be moved to the right-hand side t
make further progress, and its natural place is in th
denominator of the target of selection, to make ‘relativ
fitness’. Then multiplying by ts and summing over s w
obtain a version of Eq. (2) that incorporates uncertaint
as follows:

X
tsDps ¼

X
s2S

tsC pi;
bs

iie þ
P

taE rt;s
P

j
nj

ni
bs

ijt

ws

 !" #

þ
X
s2S

tsE
ws

j

ws
Dps

j

� �
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þ
1

N

X
s2S

ts

ws

X
tae

X
i

X
j

njðpj � pÞbs
ijt

 

�rt;s
X

i

X
j

njðpi � pÞÞbs
ijt

!
. ð5Þ

The second summand can now be dealt with formally.
We saw above that

P
s02SðsÞ Dps0

j ¼ 0, but we also know
that ws

j is equal for all situations belonging to the same
Su, as such situations differ only in Mendelian segrega-
tion. Thus

P
s02SðsÞ ðw

s
j=wsÞDps0

j ¼ 0 for all j and s, and so
the covariance representing the second summand as a
whole equals zero.

In the first and third summands, the sum over
situations can be brought inside the other structures,
as pi does not depend on s, and so the final Price
equation with uncertainty becomes

X
tsDps ¼ C pi;

X
s2S

ts
bs

iie þ
P

tae rt;s
P

j
nj

ni
bs

ijt

ws

 !" #

þ
1

N

X
tae

X
i

X
j

njðpj � pÞ
X
s2S

ts
bs

ijt

ws

 

�rt;s
X

i

X
j

njðpi � pÞÞ
X
s2S

ts
bs

ijt

ws

!
. ð6Þ

The target of selection here is the arithmetic average of
the inclusive fitness effect relative to mean neighbour-
modulated fitness, which will be referred to as ‘expected
relative inclusive fitness’.

What are the consequences of incorporating uncer-
tainty into the model? It extends the model to a more
realistic situation, as uncertainty will always hold. It
allows the assumption of perfect transmission to be
expressed and render the second summand in Eq. (5)
exactly zero. Further, it extends to social behaviour the
result of Grafen (2002) that expected relative fitness is
the maximand in natural selection. The highest mean
expected relative fitness will be selected, and the variance
in relative fitness is irrelevant.

Next, how does the uncertainty affect the Hamilton
residual? The only change formally between Eqs. (2) and
(6) is that the definite fitness effect bijt is replaced with
the expected relative fitness effect

P
s t

sbs
ijt=ws. The case

of identity-by-descent is simple, as the individuals, their
genotypes and ancestral links are all fixed, and
independent of the situation. Thus if a role can have
its relatedness calculated by identity-by-descent, then it
will not vary with the situation: formally, rt;s will not
depend on s for such roles. Other modelling methods
might allow dependence. For example, if t denoted
‘neighbour’, then in a very windy year organisms in
some species may find themselves with a lower genetic
similarity to neighbours than they would have in a very
still year.
The case of measurement is more complicated. It
seems likely to require dependence on s, as it relies on
observing values of bs

ijt. Supposing that everything can
be observed except Mendelian segregation, what we
know is which value of u occurs and which subset Su of
situations has occurred. Then the full measurement
approach is to make the Hamilton residual equal to zero
uniformly across situations by choosing

rt;s ¼

P
i

P
j njðpj � pÞ

P
s02SðsÞ t

s0 bs0

ijt=ws0P
i

P
j njðpi � pÞ

P
s02SðsÞ t

s0 bs0

ijt=ws0

¼

P
i

P
j njðpj � pÞbs

ijtP
i

P
j njðpi � pÞbs

ijt

, ð7Þ

where the second simpler equation is possible because
for s 2 Su, the values of ts, ws and bs

ijt do not vary with s.
With this definition the Hamilton residual will be zero,
and so the change in Dps, averaged over the s belonging
to a given Su (and so over Mendelian segregation in
production of offspring), is equal to the covariance
between p-score and observed (or we could say realized)
relative inclusive fitness. This ‘measured relatedness’ will
therefore absorb random changes in gene frequency, and
so vary randomly itself, as discussed in Section 6 where
the possibility of measuring relatedness jointly for a
number of p-scores is suggested.

A further consequence is that a graduation of possible
actions can be appropriately represented. With just one
situation, the kind of help is strongly constrained, as an
action must alter the recipient’s number of successful
gametes by an integer. Allowing uncertainty permits the
same action to lead to no gain in some situations and
some gain in other situations, so the average gain can
take non-integer values.
4. Optimization programs

The purpose of this section is to construct an
optimization program, which can then be linked in
Section 5 to gene frequency changes through Eq. (6).
Optimization programs are rarely seen in the biological
literature (though see Grafen, 1998, 2002, forthcoming),
but are a standard tool in game theory and economics
(e.g. Mas-Colell et al., 1995). To make sense of the book
title The Selfish Gene (Dawkins, 1976) in formal terms, it
is necessary to have a mathematical description of how
genes behave, and also a mathematical encapsulation of
selfishness. The Formal Darwinism project (Grafen,
1999, 2000, 2002, forthcoming) therefore aims to link
the mathematics of motion (difference and differential
equations) used to describe gene frequency trajectories
with the mathematics of optimization used to describe
purpose and design.

Section 4.1 develops in stages a model of the in-
dividual’s decision problem along with an optimization
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program that can represent the sophisticated optimalit
that is expected of organisms in behavioural ecolog
and related disciplines. A simple example worked ou
in Section 4.2 shows how the formalities of th
final optimization program represent sophistication i
decision-taking. An abstract model is constructed i
Section 4.3 that expresses the maximized quantity in th
optimization program in terms of numbers of successfu
gametes of the decision-taker and others. This wi
allow a link to population genetics in the next section
In the course of the section, we make notationall
explicit that the Price equation refers to a particula
class of p-scores.
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4.1. Developing an optimization program

Optimization programs focus on one implicit indivi
dual, the decision-taker. Suppose the decision-take
finds herself in one of a number of situations, and reca
that S denotes the set of possible situations. In situatio
s 2 S, suppose there is a finite set of decisions Ds to b
taken. In a decision d 2 Ds, there is a (finite or infinite
set of actions Ad available. A strategy is a function
that says what to do in each decision, and so is
function from the set of all decisions D �

S
s Ds to th

set of all actions A �
S

d Ad , and a feasible strateg
satisfies at least aðdÞ 2 Ad . Then we will denote th
maximand in situation s 2 S playing strategy a b
pðs; aÞ. After setting out optimization programs employ
ing p, an expression will be sought for it in terms of th
population genetic quantities of previous sections. Fo
the moment, we simply explore how to represent a
assumption that there is some quantity that is max
imized.

Our first optimization program, for an individual in
fixed situation s, is written as follows:

a max pðs; aÞ,

aðdÞ 2 Ad 8d 2 Ds. ðProgS

The name ProgS indicates that it is for individuals in on
particular situation. The term before the ‘max’ indicate
the instrument, in this case the decision rule a. Th
maximand pðs; aÞ appears after the ‘max’. On succeedin
lines appear the constraints, although in this case ther
is only one line, representing the feasibility constrain
for each decision. Note that we have required feasibilit
only for the decisions in situation s.

An introduction to the mathematical structure o
optimization programs can be found in economic
textbooks (e.g. Mas-Colell et al., 1995). An optimization
program may have a solution. A solution a� to Prog
must itself obey the constraint, and is defined by th
inequality pðs; a�ÞXpðs; aÞ for all a satisfying th
constraint. There may be more than one solution, an
some optimization programs have none. In the case o
ProgS, because the behaviour in other situations doe
not affect the maximand, a solution may well have othe
equally good feasible strategies, which differ only o
decisions that do not arise in situation s. The value of
program is the value of the maximand at a solution.

This first program is now developed in two importan
ways to make it more general. The first is to create
program for the whole decision rule by assuming tha
the probability-weighted arithmetic average of pðs; aÞ i
the maximand for the whole decision rule across a
situations. There has been some discussion, under th
topic of bet-hedging, about whether fitnesses should b
arithmetically or geometrically averaged in variou
different circumstances (Seger and Brockmann, 1987
Grafen, 1998, 2000). In this case, it will come out in th
proof of links between the optimization program an
gene frequency change that the arithmetic averagin
works.

The second extension removes a restriction of th
model of choice used so far. We have assumed that i
decision d the actions Ad are available; and ProgS i
based on assuming that all the actions in Ad are alway
available irrespective of actions taken in other decisions

It is likely, however, that decisions are inter-related, an
that actions in some decisions constrain actions i
others. This possibility can be formally written a
follows. The set of available actions indexed by decision
is ðAdÞd2D. We can constrain the decision rule, requirin
that ðaðdÞÞd2D belongs to an arbitrary subset B o
ðAdÞd2D. Making both these extensions, we can writ
ProgASC as

a max
X
s2S

tspðs; aÞ,

ðaðdÞÞd2D 2 B ðProgASC

and we will also use the shorthand pðaÞ foP
s2S t

spðs; aÞ.
So far, the optimization programs have been built u

quite independently of the gene frequency equations
Their interest depends on first, the expression we ca
find for pðs; aÞ in terms of the population genetics mode
and second, the links we can establish between gen
frequency changes and the optimization program
Before doing so, it is worth showing how ProgASC
formalizes a widespread assumption about anima
behaviour. Behavioural Ecology and other subject
essentially use this program as a working hypothesis.
4.2. Example

ProgASC has a number of important properties, an
we elaborate a simple example, which even lacks socia
behaviour, to display some of them. Suppose a
organism has to choose between eating and hiding
and that in the absence of predation its basic payoff of
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is decreased to 0.9 if it hides, through failing to eat, but
is increased to 1.05 if it eats. However, there is a
predator who may be far or near. If far, then there is no
chance of predation and these payoffs stand, but if the
predator is near and the organism is eating, then there is
a 0.2 chance that the organism itself will be eaten and
have its payoff reduced to zero. There is no chance of
being predated while in hiding. Thus the net payoffs are
given in Table 1.

To introduce information processing, we assume that
the reeds rustle either quietly or loudly. The probabil-
ities of the predator being near or far, and the reeds
rustling quietly or loudly, are given in Table 2.

To complete the specification of the program we need
to decide on the value of B, the set of actions available
to the organism, and two will be discussed. B1 insists
that the organism must behave as if deaf, and take the
same action irrespective of the reeds. B2 permits the
organism to make entirely separate decisions in the cases
of loud and quiet rustling.

We can therefore write the maximand of ProgASC
when B ¼ B1 as

1:05� ðsFL þ sFQÞ þ 0:84� ðsNL þ sNQÞ if Eat

0:9 if Hide

�

An organism that solves this optimization program,
and would also solve it for other values of the payoff
matrix, acts as if it knows the value of ðsFL þ sFQÞ and
ðsNL þ sNQÞ, which are the probabilities that the
predator will be far or near, respectively. Thus the
organism acts as though it has a correct prior
Table 1

Payoffs for eating and hiding when predator is far and near

Far Near

Eat 1.05 0.84

Hide 0.90 0.90

Net payoffs are calculated by assigning zero where the organism is

predated, which has probability 0.2 when the predator is near and 0

when the predator is far, and the value of 1.05 or 0.9 when the

unpredated organism has been eating or hiding, respectively.

Table 2

Probabilities of rustling and predator position

Loud Quiet

Far sFL sFQ

Near sNL sNQ

The probabilites are merely given symbols with subscripts denoting the

situation they correspond to. The four probabilities are assumed to

sum to 1.
probability distribution over the location of the pre-
dator.

Now consider the maximand of ProgASC when
B ¼ B2, where the program allows independent deci-
sions depending on the rustling of the reeds. It is

1:05� sFL þ 0:84� sNL if Eat when Loud

0:9� ðsFL þ sNLÞ if Hide when Loud

)

þ

1:05� sFQ þ 0:84� sNQ if Eat when Quiet

0:9� ðsFQ þ sNQÞ if Hide when Quiet

)

The first and second terms are therefore optimized
separately, and the first term is proportional to the
optimization program conditional on the reeds rustling
loudly. The maximand of this conditional program,
which represents the strategic position once it is known
that the rustling is loud, is found by dividing by the
probability that the rustling is loud ðsFL þ sNLÞ, thus:

1:05� sFL

sFLþsNL
þ 0:84� sNL

sFLþsNL
if Eat when Loud

0:9 if Hide when Loud

�

The first point to make is that solving the whole
program therefore requires solving the separate pro-
grams corresponding to the different information states
(loud or quiet rustling) the organism may be in. We may
safely generalize to conclude that if B permits comple-
tely separate decisions in subsets of cases, to solve the
whole program requires solving each subset separately,
and this represents appropriate flexibility in response
to cues.

The second point is that we can view the tranforma-
tion from the unconditional program with B ¼ B1 to the
two parts of the program with B ¼ B2 in terms of
Bayesian updating. The probability of the predator
being far is ðsFL þ sFQÞ when no information is
available, but is sFL=ðsFL þ sNLÞ when it is known the
rustling is loud and sFQ=ðsFQ þ sNQÞ when it is quiet.
Again we may generalize: if the information received is
correlated with information about relevant factors in
making the decisions, solving the whole program implies
optimal Bayesian updating of the prior distributions to
obtain the correct posterior distributions for the relevant
factors.

In the notation employed in this paper, the cues
received are left implicit—they are represented in the
structure of B. The non-social case of Grafen (2002) has
a similar program in which the cues received by the
organism are explicitly modelled, but the notation in
general is more complex. The point of this example has
been to show that an organism playing a solution to
ProgASC is acting as though it was a sophisticated
decision-taker, with correct prior distributions over
uncertainty, flexible responses to cues, and appropriate
Bayesian updating in response to information received.
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When it is shown in Section 5 that a kind of populatio
genetic equilibrium implies a solution to such
program, therefore, this will be a powerful link between
population genetics and optimality.

Behavioural ecologists who expect organisms t
maximize their inclusive fitness expect them to do s
conditionally, and appropriately in the light of informa
tion received. Organisms are so sophisticated, it is har
to think of any unconditional behaviour. Thus th
formal treatment of conditional behaviour in no sens
goes beyond what is required for the justification of
very common working hypothesis. Conditional beha
viour is the same as environmental-dependence, bu
with emphasis on strategic consequences rather than
mechanism.

4.3. A linking model

We now embark on the second step and turn to
useful choice of the maximand in population geneti
terms. The obvious possibility is a target of selection i
the Price equation, and the general thrust of the pape
makes quite clear that the expected relative inclusiv
fitness effect in Eq. (6) will be chosen. But we must firs
deal with three notational preliminaries.

First, we have so far been working with a set o
p-scores that share the same transmission pattern (whic
by itself would define the coreplicon of Cosmides an
Tooby, 1981) and the same relatednesses, but now w
need to indicate this in our notation. Let us call such
set of p-scores a family of p-scores, or more briefly
p-family, give the p-family with which we are working
name—Q—and indicate on relevant symbols that the
refer to the p-family Q. The basic variables that depen
on Q are the ploidies nj, and the number of successfu
gametes wj, from the population genetic side of th
argument, and the relatednesses rt;s. A man is haploi
for X- and Y-chromosomes, and diploid for autosomes
The fitnesses depend on Q because genes in differen
p-families can have different values of wj: for example,
man with one daughter and one son has wj ¼ 2 for hi
autosomes, wj ¼ 1 for his X- and Y-chromosomes, but
for his mitochondria. The relatednesses vary for reason
explained further in Section 6. We will not burden nj , w

bs
ijt and rt;s with their superscript Q. It is, however, usefu

to notice the dependence on p-family in variables bein
used in bringing the population genetics and optimiza
tion side of the argument together. Thus, for example
because the ploidies nj affect the weighting in th
expectation and covariance, we need to write EQ½�� an
CQ
½�; ��.
Second, we will now use more frequently the longe

notation in which we recognise that the social effects bs
i

depend on the phenotype of the actor i, so that bs
ijtða

represents the effect of i on j in role t when i ha
phenotype a. Recall that we notate the strategie
actually played as gi, so the simpler bs
ijt has stood an

will continue to stand for bs
ijtðgiÞ.

Third, other ingredients of the formula for inclusiv
fitness, ws and, if relatednesses are measured, rt;s, als
depend on phenotypes, but we will want to ignore thos
dependencies when the maximand varies with a
individual’s changing strategy. We therefore adopt th
device of using other variables in their place. Thus w
will use rt;s for relatednesses, and os for mea
neighbour-modulated fitness, and consider these a
parameters of the maximand and the optimization
program. To lighten the notation, we will treat r as
matrix and o as a vector, so that we can write r and o
instead of ðrt;sÞt2T ;s2S and ðosÞs2S.

Returning to the substantive issue, we first note tha
in choosing expected relative inclusive fitness effect to b
the maximand, the question arises whose? Let u
suppose for the moment that it is individual k, an
recognize this by adding a subscript k when we defin
the absolute inclusive fitness effect in situation s, and th
relative expected inclusive fitness effect, fQ

k and FQ
k

respectively, as

fQ
k ðs; a; rÞ ¼ bs

kkeðaÞ þ
X
tae

rt;s
X

j

nj

nk

bs
kjtðaÞ, (8

FQ
k ða; r;oÞ ¼

X
s2S

ts f
Q
k ðs; a; rÞ
os

. (9

These expressions are pivotal in the argument, an
central to them is the way dependence on p-family Q i
distributed. The nj and the bs

jks depend on Q at a
individual level. The useful optimization program fo
linking to a population genetic equilibrium will o
course be that in which the relatednesses and mea
fitnesses in the program are chosen to be equal to thei
values in the equilibrium, so the appropriate choices wi
be o ¼ ðwsÞ and r ¼ ðrt;sÞ: for then Fkða; r;oÞ equals th
expected relative inclusive fitness of individual k. Th
bivalent role of F, defined in population genetic term
but used as the maximand of the optimization program
is a major essential element of the whole argument.

The strong assumption of universal strategic equiva
lence is now made. The optimization program has jus
been linked to particular individual k, but we could hav
chosen any individual for this purpose. Universa
strategic equivalence means that for all ‘fair’ o,

FQ
k ða; r;oÞ ¼ FQ

j ða;r;oÞ 8j; k 2 I ; a 2 B;r

and that the set of feasible strategies is the same for a
individuals. See Section 5.1 for further discussion o
the assumption, including the definition of ‘fairness’ o
o. The essential point is that we are restrictin
our analysis to the case in which all individuals fac
the same evolutionary problems, when averaged over a
situations.
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Thus we had in ProgASC an optimization program
that represented sophisticated behaviour on the part of
organisms, and we have now identified the maximand in
terms of population genetic quantities. Here we formally
rewrite the program with an explicit dependence on
important parameters, namely the p-family used to
define the maximand, the set of feasible strategies, the
relatednesses and the mean fitnesses. Fortified by
universal strategic equivalence, we may also drop the
subscript k from F to obtain

a max FQða; r;oÞ,

ðaðdÞÞd2D 2 B. ðProgIFðQ;B;r;oÞÞ

This allows us to consider how selection acts on
different p-families by contrasting ProgIFðQ;B;rQ;oQÞ

and ProgIFðR;B;rR;oRÞ, where the relatednesses and
mean fitnesses are shown to depend on Q as they
typically will; and how it acts with different constraint
sets by comparing ProgIFðQ;B1;r;oÞ and
ProgIFðQ;B2; r;oÞ, as we did in Section 4.2.
5. Links between population genetics and the

optimization program

Section 3.4 constructed a population genetic model,
and Section 4 proposed an optimization program and an
expression for the maximand in population genetic
terms. Here, by proving links between them, the
connection is explicitly articulated between population
genetics and the optimization of inclusive fitness. We
begin by defining equilibrium concepts for the popula-
tion genetics model, and then we prove four results
linking the optimization program and population
genetics. In order to complete the proofs, it will be
necessary to use again the assumption that the actor
controls the performance of the action and its quanti-
tative consequences.

It is important to recall that our population genetic
analysis holds only for one p-family, namely the one
whose transmission pattern is encapsulated in the values
of ws

j and whose relatednesses are represented by the rt;s.
Recall that dependence on p-family is now indicated
explicitly by a superscript, for example FQða; r;oÞ
denotes the maximand of ProgIFðQ;B;r;oÞ, where Q

represents the p-family.
The equilibrium concepts for gene frequencies are

now introduced. The first concept is ‘scope for
Q-selection’, which means that individuals have differ-
ent values of FQ

i ðgi; r; ðw
sÞÞ, so that p-scores belonging to

Q can be found that are subject to selection on average.
Note that we allow hypothetical p-scores, in which we
assign a number to each individual, without asking
whether there is an actual set of allelic weights that does
produce that set of numbers. Thus no scope for
Q-selection is defined by
P

s2S t
sDps ¼ 0 for all p-scores

in Q. This in turn implies that FQ
i ðgi; r; ðw

sÞÞ is constant
for all i, as otherwise we could define a p-score to
distinguish one individual i from all the others which
would be under selection.

The second concept is ‘potential for Q-selection’,
which is defined in relation to a set X of possible
strategies: ‘no potential for Q-selection in relation to X 0

means that no phenotype a 2 X would have been
favoured by selection in the p-family Q had that
phenotype been present, where we neglect the consequent

effect on population mean fitness. Formally, suppose that
one individual, say h, has her strategy gh replaced with a.
If we let Di represent the difference made to Fi by
the change in strategy, we conclude that Dh ¼

FQ
h ða; r; ðw

sÞÞ � FQ
h ðgh; r; ðw

sÞÞ while the assumption of
actor’s control ensures that the inclusive fitnesses of all
other individuals are unchanged, so Di ¼ 0 for iah. Let
qh

i be a p-score that equals one for i ¼ h and zero
otherwise, and note that its mean equals nh=N. Then
selection on this p-score with the altered phenotype
proceeds according to

Dph ¼ C½ph
i ;F

Q
i ðgh; r; ðw

sÞÞ þ Di�

¼ C½ph
i ;F

Q
i ðgh; r; ðw

sÞÞ� þ C½ph
i ;Di�.

On the assumption of no scope for Q-selection, the first
of the two covariances equals zero, and we proceed to
obtain

¼ C½ph
i ;Di� ¼

X
i

niðp
h
i � phÞDi ¼

nh

N
1�

nh

N

� �
Dh

The new allele would spread if

nh

N
1�

nh

N

� �
½FQ

h ða; r; ðw
sÞÞ � FQ

h ðgh; r; ðw
sÞÞ�40.

Some qh would spread unless this covariance is non-
positive for all h and a, so the condition for no potential
for Q-selection in relation to the set X can be written as

FQ
h ða; r; ðw

sÞÞ � FQ
h ðgh; r; ðw

sÞÞp0 8h 2 I ; a 2 X . (10)

This definition is made for all population sizes, but the
neglect of the effect on population mean fitness makes
most sense when the population, though finite, is large.
The awkwardness, in principle, would be if the change in
one individual’s strategy altered the ws considerably, so
changing the balance of importance of different situa-
tions in comparing two strategies: then a strategy might
in reality spread even though there was no ‘potential for
Q-selection’. It is like a central limit theorem assump-
tion, that no individual should be very important, even
in just one situation. Further work on small populations
could be useful.

Summarizing, ‘no scope for Q-selection’ means that
gene frequencies in the p-family Q will not change on
average from this generation to the next, while ‘no
potential for Q-selection’ means that no mutant in the
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p-family Q with a single phenotypic expression woul
have increased in frequency in expectation, and i
relative to some set X of possible mutants.

Four propositions are now proved connecting popu
lation genetics and optimization programs. The majo
assumptions required to arrive at this point includ
additivity of social effects, actor’s control, and universa
strategic equivalence.

Proposition 1. Suppose the population is playing strate

gies ðgiÞi2I , and that the Hamilton residual is rendere

negligible by relatednesses ðrt;sÞ. If each individual i

the population is playing a strategy that is optima

in ProgIFðQ;B; r; ðwsÞÞ, then there is no scope fo

Q-selection in the population genetics model, and n

potential for Q-selection in relation to B.

Proof. If all individuals solve ProgIF, which b
universal strategic equivalence is the same program fo
all individuals, then they must achieve the same value o
the maximand, hence FQ

k ðgk; r; ðw
sÞÞ is equal for all k

This establishes no scope for selection. Further, since g
is a solution, FQ

k ða; r; ðw
sÞÞpFQ

k ðgk; r; ðw
sÞÞ for all a 2 B

and through Eq. (10) it follows that there is no potentia
for Q-selection in relation to B. &

Proposition 2. Suppose the population is playing strategie

ðgiÞi2I , and that the Hamilton residual is rendered negligibl

by relatednesses ðrt;sÞ. If all individuals in the population d

not solve ProgIFðQ;B; r; ðwsÞÞ but nevertheless achieve a

equal value of the maximand, then there is no scope for Q

selection in the population genetics model, but there i

potential for Q-selection in relation to B.

Proof. If each individual attains the same value of th
maximand in ProgIFðQ;B; r; ðwsÞÞ, then by universa
strategic equivalence, it follows that FQ

k ðgk; r; ðw
sÞÞ i

equal for all k, establishing no scope for Q-selection. Bu
if they do not solve the program then there is an a 2 B

such that FQ
h ða; r; ðw

sÞÞ4FQ
h ðgh; r; ðw

sÞÞ for some h, an
so there is potential selection for a p-score that picks ou
individual h. Hence, there is potential for Q-selection i
relation to B. &

Proposition 3. Suppose the population is playing strate

gies ðgiÞi2I , and that the Hamilton residual is rendere

negligible by relatednesses ðrt;sÞ. If individuals in th

population play strategies with different values of th

maximand in ProgIFðQ;B; r; ðwsÞÞ, then there is scope fo

Q-selection, and the expected change in each p-score i

family Q equals its covariance across individuals with th

attained value of the maximand.

Proof. If individuals attain different values of th
maximand, then

CQ
½pi;F

Q
i ðgi; r; ðw

sÞÞ�a0

for the p-score defined by pi ¼ FQ
i ðgi; r; ðw

sÞÞ, and s
there is scope for Q-selection. The Price equation (6
states that the expected change in any p-score equals it
covariance with the value of the maximand.

Proposition 4. Suppose the population is playing strate

gies ðgiÞi2I , and that the Hamilton residual is rendere

negligible by relatednesses ðrt;sÞ. Further suppose there i

no scope for Q-selection in the population genetics mode

and no potential for Q-selection in relation to B. The

each individual acts rationally in the sense that each play

a strategy that solves ProgIFðQ;B; r; ðwsÞÞ.

Proof. If there is no scope for Q-selection and n
potential for Q-selection in relation to B, it follows from
Eq. (10) that FQ

k ðgk; r; ðw
sÞÞXFQ

k ða; r; ðw
sÞÞ for all a 2 B

and k. This by definition implies that gk is a solution o
ProgIFðQ;B; r; ðwsÞÞ. &

A number of important points need to be made abou
these conclusions, which represent the first explici
connection between population genetics and the opti
mization of inclusive fitness. First, they link th
optimization program to gene frequency change, an
do not have anything to say about genotype frequencies

Second, the emphasis on gene as opposed to genotyp
frequencies is of conceptual importance as well a
historical interest. Fisher (1930) presented his funda
mental theorem in the same way, and in a 1955 letter t
O. Kempthorne explicitly defended the view that
population evolves to the extent that its gene frequencie
change (Bennett, 1983, p. 228):

if by extinction of certain insects a plant were rapidl
to become generally self-fertilised and homozygou
through lack of means to cross-pollination, I should
so long as the gene ratios remained unchanged
consider that the plant had not evolved but wa
responding passively to its changed environment

See Grafen (2003) for a further discussion. Fisher deal
with genotype frequencies when it was required for th
problem at hand, including a substantive paper o
linkage under polysomy (Fisher, 1947) and a book o
inbreeding (Fisher, 1949). His emphasis on gen
frequencies in the quotation does not stem, therefore
from an inability or dislike for the extra work involved
but rather from the conviction, fully backed up b
mathematical proofs, that gene frequencies play
critical role in the formal representation of the centra
argument of Darwin (1859).

For present purposes, it is enough to stress that th
emphasis on gene frequencies in no way compromise
the exactness of the conclusions or the rigour of th
arguments, and to recall that interesting evolution, sa
from their common ancestor to humans and to chimps
is likely to be caused by gene frequency change and not
for example, by fluctuations in linkage disequilibrium
Grafen (2002) includes the example of sickle-ce
anaemia in a longer discussion of other types o
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genotypic change besides gene frequency, in the parallel
propositions for non-social Darwinian fitness.

Third, the links do not just hold at optimality. Other
foundational work aimed at linking ‘phenotypic meth-
ods’ with population genetic methods, such as Hammer-
stein (1996) and Taylor (1996), focus on the final
outcome of evolution. The results here show non-
equilibrium connections that reflect biologists’ use of
the term ‘fitness’.

Next, the fourth proposition is of particular interest,
as it moves from a hypotheses based purely on dynamic
population genetic conditions to a conclusion about
sophisticated rationality, of the kind illustrated in
Section 4.2.

Finally, the results apply to expected gene frequency
changes. Thus the observation of selection does not
automatically contradict the assumptions of the model.
The incorporation of uncertainty in Section 3.4 makes
the results in principle stronger, but also more remote
from empirical observations.

5.1. Universal strategic equivalence

There is only one decision-taker in an optimization
program, but a whole population in the population
genetics model. Reducing the population to a single
individual involves making an assumption that all
individuals in the population face the same strategic
situation. This section discusses the exact nature of the
assumption required, and the limitations on its biologi-
cal reasonableness. A weaker assumption would require
a more complex definition and justification of inclusive
fitness.

The assumption was defined by requiring that

FQ
k ða;r;oÞ ¼ FQ

j ða; r;oÞ 8j; k 2 I ; a 2 B;r

for all ‘fair’ o, and we now define this fairness by
requiring that there is a set of strategies ðaiÞi2I , ai 2 B,
such that the os are the mean neighbour-modulated
fitnesses in situation s, or formally,

os ¼

P
j nj 1þ bs

jjeðajÞ þ
P

tae

P
i bs

ijt

� �
P

j nj

.

This is a highly technical assumption, and is the price to
be paid for much of the simplicity of notation. In the
parallel work for non-social behaviour (Grafen, 2002),
the behaviour and information are more explicitly
articulated at the cost of more complex notation, and
the parallel assumption of pairwise exchangeability is
biologically more meaningful as a result. One key to
understanding is that if o could be chosen freely, then in
many cases, the assumption could never be met and the
propositions would never be true.

One important point about universal strategic equiva-
lence is that we do not assume that individuals are
equivalent within any one situation. Individuals are
allowed to be lucky and unlucky, and just plain different
from each other, in any one situation. It is only when
averaged over all situations that their strategic position
is assumed to be the same.

But it is not always reasonable to assume that
individuals are identical, even while the ‘veil of
ignorance’ obscures which situation will prevail. In
many species gender is not assigned by situation, and
other determining circumstances may well put indivi-
duals in different strategic positions, particularly in a
model with social behaviour. Here is a simple illustrative
hypothetical example showing that social interactions
are likely to require non-identical individuals. In some
species of social Hymenoptera, relatives cooperate to
build a nest, and there is a premium on completing the
nest early enough (Queller, 1989). It is likely that the
number of cooperators, whom we now for simplicity
assume to be sisters, will affect the chance of success.
Suppose a lone female has two daughters, but that she
could instead increase her sister’s reproductive output
by two, from two to four daughters. Counting offspring
and relatives, she would give up 2 and gain 0:75� 2, so
by simple inclusive fitness reasoning, this would be
definitely disadvantageous to the strength of 0:5 off-
spring. But if four daughters cooperating have a 60%
chance of successfully founding a nest while two have
only a 10% chance, then we do better to count
successful nests. Let’s assume for simplicity that nests
with different numbers of foundresses are equally
successful once started in terms of grandoffspring for
the parent. Now the lone female would give up 0:1, but
gain 0:75� ð0:6� 0:1Þ, so helping would make a net
profit of 0:275 nests worth of grandoffspring. Thus to
capture this situation, giving a 3rd and 4th offspring to a
sister would have to be different from giving a 1st and
2nd, or 5th and 6th. Recognizing classes of offspring,
and assigning them reproductive values (Taylor, 1990,
1996; Grafen, forthcoming), would go some way
towards this. But it is even more complicated, because
the success of the sister’s existing offspring is affected by
the altruism, as they become part of a foursome rather
than of a twosome. (To reconcile the situations of the
mothers and the daughters, as parents, we would need to
introduce bivoltinism, with the possibility for helping
arising in only one of the generations.) Most biologists
faced with this case would doubtless reach the same
solution. The point here is the difficulty for a single
general method in applying automatically to this and
similar examples.

Thus there are significant complexities awaiting the
relaxation of the assumption of universal strategic
equivalence. We cannot make number of sibs part of
the situation, as it is an essential element of the structure
of the model that the population and its constitution are
fixed and independent of the situation.



f
)
o
e

f

f
s

f

ARTICLE IN PRESS
A. Grafen / Journal of Theoretical Biology 238 (2006) 541–563556
It is also worth noting that the relevant models o
reproductive value (Taylor, 1990; Grafen, forthcoming
not only assume an infinite population, but also have n
uncertainty in them. Thus while relaxing it seems quit
feasible in due course, for the moment there is no option
but to make the sometimes reasonable assumption o
universal strategic equivalence.
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Table 3

Relatednesses to full sibs in humans varying with transmission pattern

Pattern Sis-sis Sis-bro Bro-sis Bro-bro

Autosomal 1/2 1/2 1/2 1/2

X-linked 3/4 1/4 1/2 1/2

Y-linked u u 0 1

Mitochondrial 1 1 1 1

Four different transmission patterns confer four different patterns of

relatednesses in humans. The symbol ‘u’ denotes an undefined

relatedness.
6. How relatedness varies across the genome

It is vitally important in understanding the implica
tions for natural selection of the results of earlie
sections to consider how rt varies across the genome
Previous sections establish an optimization program
with a maximand for a particular p-family. If a
p-scores share the same maximand, then natura
selection is acting on all loci and traits in concert, an
we can expect sophisticated adaptations to arise i
pursuit of the single organism-wide maximand. On th
other hand, if the p-scores have different maximands, w
can ask ‘what maximand will the organism appear to b
maximizing, if any?’; and we should also expect intra
organismal conflict, as some alleles and traits ar
selected to oppose the changes that other alleles an
traits are selected to promote. The importance of th
maximand varying across the genome was first recog
nized by Hamilton (1967) in his paper on extraordinar
sex ratios, and we can view p-families as different partie
in the ‘parliament of genes’ of Leigh (1971).

There are two basic expectations about p-families
The larger a p-family, the more alleles belong to it, an
the more phenotypic effects it has, the greater subtlety o
adaptation will result in line with the correspondin
optimization program. A small p-family consisting o
the alleles at one locus must be considered extremel
weak: on its own, it has very limited power, could easil
be thwarted by many other loci, and is not likely t
produce a biological adaptation. It takes many loci t
construct complicated organs. Second, when p-familie
have different maximands, the larger and stronger th
p-family, the more likely it is to win out over others, an
in two ways. Opposing selection in two families will tend
to drive the smaller or weaker set to genetic uniformit
at relevant loci, waiting for mutations to arise; thus th
larger or stronger p-family will tend to prevail. Ther
will also be selection for one p-family to take measure
to prevent other p-families being expressed at all, i
general or in particular contexts.

While some families may be very different from each
other, it is also possible for a set of rather simila
families to operate mainly together. In principle, th
difference in interests between p-families Q and R

could be measured by the difference in maximand
FQða;r;oÞ � FRða; r;oÞ, and in particular cases b
some average over this function.
The succeeding subsections look at different kinds o
genetic conflict, linking it to the nature of the p-familie
involved.

6.1. Conflict based only on transmission pattern

The first property defining p-families is pattern o
transmission, and the simplest case of conflict is betwee
p-scores with different transmission patterns. In hu
mans, the relatednesses between full sibs vary for th
patterns associated with autosomes, X-linked, Y-linke
and mitochondrial genes, as shown in Table 3. It seem
likely that the resolution of this four-way tug-of-war i
that humans as organisms have essentially the sam
maximand as the autosomes, and the reason is simpl
that there are so many more of them. This distinctio
between these groups of genes occurs even for non
social Darwinian fitness: for example, the wj will var
for a male human depending on whether autosoma
X-chromosome or Y-chromosome genes are bein
discussed. If individual j is a male with m sons and
daughters, then wj ¼ mþ f for autosomes, wj ¼ f fo
X-linked genes, and wj ¼ m for Y-linked genes, whil
wj ¼ 0 for mitochondrial genes. In non-social selection
these differences in pattern of transmission can affec
sex ratio. Including social actions, they will differentiall
affect altruism towards male and female sibs, fo
example.

Also coming under the heading of ‘transmission
pattern’ is genomic imprinting (Haig and Westoby
1989; Haig, 1997), though the part of the pattern tha
matters here is not where the genes go from here, bu
how they got here, and where else their clone-mates ar
therefore likely to be found. To apply the models o
previous sections to genomic imprinting, we need t
interpret ‘individual’ in the model as applying to eithe
the paternally derived alleles in one physical individua
or to the maternally derived alleles in one physica
individual. Essentially, each physical individual count
as two. In addition, for the genomic imprinting to hav
interesting consequences, there must be roles tha
distinguish maternal from paternal relatives. Then th
different relatednesses of paternally derived and mater
nally derived alleles to the different roles will result i
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Table 4

Some relatednesses under genomic imprinting

Actor Pat. Mat. Pat. Mat. Full-sib Father Mother

cous. cous. half-sib half-sib

Paternal 1
4

0 1
2

0 1
2

1 0

Maternal 0 1
4

0 1
2

1
2

0 1

Does not know 1
8

1
8

1
4

1
4

1
2

1
2

1
2

Relatednesses to seven classes of relative, of three different types of alleles within a single physical individual, at autosomal loci. Note that the ‘does

not know’ allele is always the average of the other two, and that roles differentiating paternal from maternal relatives are necessary to create the

difference. The sharpest discordance occurs for the closest kin.
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intra-genomic conflict. Table 4 shows how relatednesses
differ to various classes of relative from the standpoint
of parentally derived alleles, maternally derived alleles,
and from random alleles (those presumed not to know
their origin, or more explicitly, those assumed to be
expressed in the same way regardless of their origin).

These two kinds of conflict both use identity-by-
descent as the basis for calculating relatednesses. They
produce ‘static’ differences that are constant over time
and through all of the genome that shares a given
transmission pattern. Thus they can be expected to give
rise to constant selection resulting in serious and
sustained conflicts.

We have assumed outbreeding so far in this section.
Inbreeding alters relatednesses by increasing them, but
more fundamentally from the point of view of this
section, it does so differently for different alleles, thus
splitting a single p-family into many. This is further
discussed by Grafen (1985).

6.2. Varying by matching

Rather different biological issues are raised by
variation of rt between loci with the same transmission
pattern. Apart from chance, dealt with in Section 6.3,
this form of variation in rt across the genome depends
on genetic matching of some kind. The analysis of this
section is based on Grafen (1990). Green beard genes
were originally proposed by Hamilton (1964) and given
their vivid name by Dawkins (1976), and now have a
large literature devoted to them (e.g. Keller and Ross,
1998; Summers and Crespi, 2005). They will serve to
illustrate the important points. Take first the simple case
in which one gene at a particular locus causes its bearer
to produce a distinctive marker (the green beard) and to
seek out another unrelated individual with a green beard
and to perform some altruistic act towards them. It is
understood that only individuals with the gene have a
green beard. The other individual is supposed unrelated
in the sense that only the possession of the green beard
distinguishes them from a random member of the
population. Letting t denote the role ‘fellow green beard
bearer selected from otherwise random members of the
population’, we will study how rt varies for the p-score
that counts how many green beard genes an individual
has, and we will assume that gene is rare enough that no
individual has more than one copy. At the relevant
locus, actor and recipient are heterozygotes with
pj ¼ 1=2. Assuming that the alternative allele is null,
so that bijt ¼ 0 except for green beard altruism, the
measurement formula in Eq. (3) then gives rt ¼ 1. At
unlinked loci, relatedness equals zero, on the assump-
tion that green beard individuals pick each other out by
cues that are uncorrelated with any other genetic
property. The relatedness decays from one to zero on
either side of the relevant locus according to the strength
of linkage disequilibrium. In general, this would
produce a very small region of positive relatedness in a
chromosome with a zero relatedness everywhere else.
Thus the autosomes in general would have zero
relatedness apart from a very small region around the
relevant locus. The great bulk of the genome would all
belong to a single p-family, and so even if the green
beard behaviour continued for lack of a mutant arising
that sported the beard but was not altruistic towards
beard-wearers, the main thrust of evolution would
continue as though the matching did not occur.

If we alter our assumption, and suppose that the green
beard individual is picked out from a group composed
partly of relatives all with the same identity-by-descent
relatedness rIBD at the other autosomes and partly of
unrelated individuals, so that the mean relatedness to
group members is rAVE , then the conclusion is changed
in two ways. The baseline to which green beard
relatedness falls on either side of the relevant locus is
also rAVE , but the speed at which rt falls from 1 now
depends on linkage, on the chance that two loci have
been recombined in the ancestral paths linking the two
relatives. Characteristically, linkage is much stronger
than linkage disequilibrium, and the falling off will take
much further to happen. Thus autosomes will have a
relatedness of rAVE , the coancestry value, apart from a
moderate sized region around the relevant locus. The
majority of the genome would still likely belong to the
same p-family.

On the basis of these observations, we can conclude
that we would not expect sophisticated adaptations to
arise in support of green beard genes that assist



e
s
s
g

d

o

f

n
r
s
a
a
,
f
-

i
-
e
s

.
t
.
t
e
d
e
d
e
s
d
n
e
e
s
f
t
-
a

t
e
l

a
n

l’
a
1
e
e
e
a
e

t
t

f
n
f
e
n
e
.
r
c
g
-
e

e
e
r
d
g
.

d

f
f
n
.
t
k
i

y
t
.
e

ARTICLE IN PRESS
A. Grafen / Journal of Theoretical Biology 238 (2006) 541–563558
otherwise random members of the population. It is mor
likely that adaptations would arise for green beard gene
that assist relatives, as the region of elevated relatednes
is greater. But it is even more likely that a matchin
mechanism would be used to pick out a green beard
from a mixed group of relatives and non-relatives; an
that the evolutionary support for this would arise from
the elevation of genome-wide relatedness from rAVE t
close to rIBD that results for the whole genome from
picking out a relative rather than a random member o
the group.

The other causes of variation can be understood i
relation to these two green beard examples. Conside
first kin recognition by matching loci. This provide
a high relatedness at the loci actually matched, with
falling off according to linkage: more precisely by
mixture of linkage disequilibrium and linkage proper
with the quantities depending on the distribution o
coancestry with the actor among the matched indivi
duals. A main effect is to establish a higher background
relatedness, closer to rIBD: it is doubtful whether the loc
can be sufficiently numerous, and the matching suffi
ciently strong, to make the higher rt around th
matching loci really make the effective relatednes
exceed rIBD.

Another possible mechanism is assortment by trait
Suppose there is a p-score and that individuals interac
with others possessing the same value of the p-score
Essentially the same analysis applies. Selection of tha
one p-score will proceed with a relatedness of one. Th
relatedness applying to some other p-score will depen
on the correlation between the two p-scores. If th
selection of interactants is from a group of unrelate
individuals, then it is likely that most p-scores ar
uncorrelated with the matching p-score, and so there i
still one dominant p-family. If interactants are selecte
from a group with varying ancestral relatednesses, the
individuals equal on the matching p-score will tend to b
relatives, and so have a higher relatedness across th
genome. Simultaneous matching on a number of p-score
would more effectively discriminate kin. The evolution o
group-directed altruism based on assortment, firs
discussed by Hamilton (1975), can be a robust phenom
enon only if the assortment succeeds in establishing
substantial relatedness across the genome as a whole.

Calculations can be done for a simple case, in which
individuals assort exactly on a p-score based on alleles a
n different unlinked loci in linkage equilibrium, and th
allelic values at each locus are drawn from a Norma
distribution with zero mean and standard deviation
1=

ffiffiffi
n
p

. The p-score itself then has a mean of zero and
standard deviation of 1. The relatedness at each of the
loci is

z2

n� 1þ z2
in a group whose matched p-score is z. In the ‘typica
case of z ¼ �1, this reduces to 1=n. Thus from
relatedness of 1 at a single locus, to a relatedness of 0.
at ten loci, in some crude sense there is the same averag
‘push’ towards higher relatedness. Matching at a mor
broadly based p-score does not therefore seem to increas
overall genetic similarity. Matching simultaneously for
number of p-scores would increase it. Interestingly, th
equation shows an advantage to making the altruism
conditional not only on matching a p-score, bu
simultaneously on sharing an extreme value of tha
p-score, as indicated in an extreme value of z.

6.3. Relatedness varying by chance

Finally, we come to chance as a cause of variation o
rt;s, which will occur with measurement methods as show
by Eq. (7). At first sight it may seem to be a strength o
measurement that it gives an exact expression for th
realized Dps (apart from the randomness of Mendelia
segregation) rather than just the more approximate valu
for the expected Dps provided by identity-by-descent
However, it is really a weakness. Dps may vary with s fo
all kinds of reasons, having nothing to do with geneti
similarity. For example, the same assistance of providin
an item of food may have markedly different conse
quences depending on how much other food is availabl
to the recipient around that time. All these changes, from
whatever cause, are ‘explained’ by variation in rt;s, th
measured relatedness coefficients. Thus in interpreting th
rt;s as causal, we need to be cautious about othe
possibilities. Nevertheless, it is possible to use measure
relatednesses to illuminate simulations by providin
interpretation and insight into the selective process (e.g
Frank, 1994; Axelrod et al., 2004).

Recall that the Price equation and rt;s are define
with respect to a particular p-score. The estimates from
Eq. (7) will sometimes be very ‘noisy’, for example i
there are only a few individuals with non-zero bs

ijt, or i
the p-score represents a rare allele. The estimate can the
respond strongly to chance effects, and even vary wildly
In some circumstances it may be useful to form a join
estimate of the rt;s across a number of alleles. Suppose q

is the p-score for individual i representing the frequenc
of allele number k, belonging to a set K of alleles no
necessarily at the same locus. Let qk be the mean of qk

i

Then a joint estimate for all the alleles in K can b
formed by

Nt;s
k ¼

X
i

X
j

njðq
k
j � qkÞbs

ijt,

Dt;s
k ¼

X
i

X
j

njðq
k
i � qkÞbs

ijt,

rt;s ¼

P
k Dt;s

k Nt;s
kP

k Dt;s
k Dt;s

k

.
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This has the useful properties that (i) it agrees with
identity-by-descent in very large populations when the
relevant assumptions are upheld (ii) it is defined except
where actors are exactly representative at all alleles in K

(most unlikely for large K except when bijt ¼ 0 and there
are no fitness effects anyway) (iii) it gives more weight to
p-scores more correlated with social actions, and so
emphasizes those p-scores whose calculation contains
more ‘signal’ over those uncorrelated with social action
whose p-scores contain more ‘noise’. It is equivalent to
estimating rt from a single p-score that is maximally
correlated with social action. If there is no matching and
no selection going on, then for p-scores uncorrelated
with the the central p-score, the Hamilton residual will
be small and differ unsystematically from zero.

6.4. Conclusion

These considerations of varying rt;s over the genome
allow a number of conclusions. The logic of inclusive
fitness provides an anatomy of intra-genomic conflict,
allowing optimization ideas to be used of p-families,
including most importantly the case where different
p-families within the same body are pulling in different
directions. The size of p-families is important in how
these conflicts are resolved, and also in how complex an
adaptation can be expected.

Perhaps the most important conclusion is that
although, as seen earlier, coancestry has no logically
special place in the theory of inclusive fitness, it is
nevertheless the most powerful likely cause of non-zero
relatednesses that are consistent over large parts of the
genome, and so likely to have significant evolutionary
consequences. It is not impossible in theory that
combinations of linkage, linkage disequilibrium and
matching could raise relatednesses throughout the
genome, but theoretical discussions putting forward
the idea of assortment-based altruism, even the initial
treatments by Hamilton (1964, 1975), have not taken
seriously the issue of the selective pressures in the bulk
of the genome.

It was Hamilton (1967) who first analysed what we
now call intragenomic conflict in terms of different
relatednesses, and it was further developed for genomic
imprinting by Haig and Westoby (1989) and Haig
(1997). Thus no originality is claimed for this section,
which aims only to place intragenomic conflict in its true
place as a theoretically immediate corollary of the logic
of inclusive fitness.
7. Discussion

Many biology students are taught that natural
selection leads to organisms acting as if maximizing
their inclusive fitness, which for that reason alone
becomes a key concept. The discussion is directed at
implications of the derivation of previous sections for
the concept of inclusive fitness. In Section 7.1 the current
paper is situated in relation to some previous theoretical
and exegetical work on inclusive fitness, and is in places
technical. Section 7.2 avoids technical language, and
considers the new ideas in the paper and the current
status of inclusive fitness.

7.1. Relationship to some previous theory

The current paper is set in the context of the formal
Darwinism project, and then its relationship discussed
to previous theoretical and exegetical works.

The Formal Darwinism project aims to provide a full,
explicit and rigorous justification for ideas of fitness
optimization in terms of population genetics. After two
preparatory papers (Grafen, 1999, 2000), the project’s
first link (Grafen, 2002) treated theory that covered
Darwin’s ideas in the Origin of Species in 1859. Grafen
(forthcoming) brought the theory up to the Descent of

Man in 1871 by permitting different classes of indivi-
dual. Now this paper treats the only major extension of
Darwinian theory: the inclusive fitness concept of
Hamilton (1964). Within the topics so far, it would be
useful to extend the classes result to finite populations,
and the inclusive fitness result of the current paper to
infinite populations and situations. Combining the
results so far is also desirable. The assumption of
discrete non-overlapping generations has so far been
made throughout, and removing this assumption is an
important goal. The analysis of ESS theory and
sequential interactions has yet to be tackled at all.

This paper can also be compared to an earlier account
of mine on inclusive fitness as an evolutionary tool
(Grafen, 1985). The earlier work is longer and more
expository on a number of issues including relatedness
and the Price equation; but was restricted in that
relatednesses were always ‘measured’ rather than
‘modelled’, there was no uncertainty, the concept of
p-family was present but implicit, and there were no
explicit optimization programs. The concept of ‘role’ is a
development of the ‘action category’ of the earlier work,
and at the same time a return to the original treatment
of Hamilton (1964).

A substantial and important difference is that the
earlier treatment considered only one kind of social
action at a time, and derived Hamilton’s Rule for it. The
use of Hamilton’s Rule as opposed to inclusive fitness
was recommended on the grounds that it was simpler to
apply. The present paper aims to show that inclusive
fitness is optimized, and takes the view that the extra
complications are after all important. The significance is
that the earlier work leaves open the possibility that
each action obeys Hamilton’s Rule, but different actions
have different relatednesses. The present paper shows
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that for all actions affected by a given p-family, th
alleles in the p-family all pull in the same direction. T
the extent that the individual is under the control of
single p-family, we can expect the organism to be well
designed, with all its alleles and organs playing their par
in maximizing inclusive fitness. Thus the link between
genetics and organismal design is made much mor
strongly if it can be shown that inclusive fitness tends t
be optimized.

It is important to place the present work in th
context of other basic theory on inclusive fitness and th
natural selection of social behaviour. Taylor (1990
1996) provides a mathematical description of inclusiv
fitness theory in relation to gene frequency change (a
part of a wider project that includes class-structure
populations). A methodology employed in a series o
papers by Frank (e.g. Frank, 1994, 1995a,b) was partl
formalized by Taylor and Frank (1996), Frank (1997
and Frank (1998) who offer general prescriptions, an
many worked examples, of how to apply inclusive fitnes
theory in constructing useful models of biologica
problems. To this end, they relax assumptions such a
additivity made in the present paper, and conside
population structure. They go beyond Hamilton’
technical results in making optimization of fitness
usable principle, avoiding the need to build a populatio
genetic model. In this sense they are more applicabl
than the present paper. On the other hand, they do no
aim to provide a proof connecting population genetic
and optimization of inclusive fitness, and they mak
tacitly assumptions uncovered here, such as universa
strategic equivalence. Thus, the present paper provide
general background support, and more explicit logic, o
use in asking more fundamental, abstract questions
such as ‘when are organisms selected to maximize thei
inclusive fitness?’. The earlier papers are much mor
useful in constructing particular inclusive fitnes
models, answering ‘what biological conclusions follow
from the optimization of inclusive fitness?’. In fact
Frank (1998) and the other papers in this section of th
literature mainly employ neighbour-modulated fitness
but with the emphasis on relatednesses this approach i
very much a contribution in the original Hamilto
tradition.

A further important paper is by Queller (1992), wh
derives a very general inclusive fitness result. Essentially
he extends the measuring of relatednesses and measure
the benefits and costs too. This very elegant approach
shares the difficulties pointed out for measured related
nesses in Section 6.3, but even more strongly. Th
generality is appealing and valuable, but is achieved at
cost: the exact gene frequency change will be predicted
whatever values of fitnesses and gene frequencies ar
supplied, and whether or not brought about by natura
selection on social behaviour. The introduction of
model of how fitness is determined, as in the curren
paper, restricts the generality but gives in some ways
more valuable result.

We now turn to an issue that is important fo
population genetics, namely dynamic sufficiency. Sinc
at least Lewontin (1974) it has been a mark o
respectable population genetic models that they ar
dynamically sufficient, which means in our context tha
given the array of genotypes present in one generation
the model constructs the complete array of genotypes i
the next generation. In previous papers (Grafen, 1999
2000, 2002), I have described the Price equation a
dynamically insufficient, but I now view this a
misleading. The assumptions made at the point o
applying the Price equation are insufficient to predic
the whole array of genotypes in the next generation. Fo
it is assumed how many successful gametes each
individual has, but not how those gametes are combine
into offspring. Thus no equation could be dynamicall
sufficient in that case. The important point is that th
argument as a whole is fully rigorous despite th
dynamic insufficiency of the assumptions. The inaccura
cies that dynamic sufficiency was introduced to preven
do not arise in this application. It is a positive benefit o
the Price equation that it will produce conclusions abou
gene (not genotype) frequencies from those dynamicall
insufficient assumptions. The Fundamental Theorem o
Natural Selection (Fisher, 1930) shares the sam
property.

7.2. Current status of inclusive fitness

The main lines of the conclusions from the curren
paper are by no means new to biology, as its main task i
to formalize ideas introduced decades ago (e.g. Hamil
ton, 1964, 1970; Dawkins, 1976), which have becom
basic principles for many biologists. However, man
misunderstandings have arisen among more mathema
tical biologists because the original presentations wer
insufficiently mathematically explicit. As well as aimin
to undo those misunderstandings, the formal argument
have uncovered assumptions and details, and hav
clarified conclusions.

What was essentially shown by Hamilton (1964, 1970
was that genes correlated with inclusive fitness woul
increase in frequency. The major addition in the curren
paper has been to articulate the next step, to claimin
that inclusive fitness will be maximized as a conse
quence. There have been two stumbling blocks. First
heterozygote advantage is a simple example in whic
inclusive fitness is not actually maximized. The resolu
tion here is to find slightly more complicated expression
of optimality conditions, which apply universally, but i
some circumstances will not lead to all individual
possessing an optimal phenotype. Essentially, gen
frequencies always change in the direction of increase
inclusive fitness, but genotype frequencies may not. Th
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second stumbling block has been to interpret the
principle as providing a Lyapunov or potential function
of the dynamic state of the population, in other words
that the optimization principle is about how genotype
frequencies change through time. Instead, the biologi-
cally interesting conclusion is about how an individual’s
fitness would change if it changed its behaviour. Both of
these difficulties vanish once optimization programs are
used to make wholly explicit the conclusion that natural
selection tends to result in individuals that act as if
maximizing their inclusive fitness.

One detail to emerge from the current paper has been
that, when dealing with uncertainty, the quantity
individuals will act as if maximizing is the expected
relative inclusive fitness effect, where, perhaps surpris-
ingly, ‘relative’ means to the average neighbour-
modulated fitness. In a positive sense, we could use this
detail to construct examples where dividing by the
average inclusive fitness would give the wrong answer.
In the more important negative sense, this detail can
reassure us that most of our understanding of how
inclusive fitness works has not required amendment now
the argument has been fully articulated.

An important assumption uncovered in the paper has
been ‘universal strategic equivalence’, parallel to the
‘pairwise exchangeability’ of Grafen (2002). Both say
roughly that to justify a strategic analysis, we have
needed to assume that all individuals face the same
strategic situation. The need for such an assumption
makes sense, as explained in Section 5.1. A natural
attempt to allow a diversity of strategic situations would
somehow bring together strategic situations and the
classes central to reproductive value theories, in a
combination of this paper and Grafen (forthcoming).
This illustrates that the links proved in this paper could,
and should, be improved by further work.

Other future improvements could remove the assump-
tion of discrete non-overlapping generations, permit
frequency dependence and more complex interactions,
and allow non-additivity of fitness effects. Mutation
could also be added to the theory.

The concept of the ‘Hamilton residual’, along with the
use of ‘roles’, allows us to apply inclusive fitness theory
with relatednesses defined for some roles by modelling
such as identity-by-descent, and for other roles by
measurement. The inclusion of uncertainty allows a
more sophisticated kind of optimality to be considered,
in which averages are taken and suitable conditional
behaviour required.

Two points can be made about the nature of the
optimization demonstrated. First, inclusive fitness is a
generalization of Darwinian fitness as, if we set bijt ¼ 0
for all tae, we get Darwinian fitness optimization,
which follows because ProgIF has Darwinian fitness as
maximand, and the Price equation has Darwinian fitness
as target of selection. Second, the nature of the
connections is quite intimate, including out-of-equili-
brium connections in the presence of arbitrary genetic
and phenotypic variability, and it is unlikely that other
maximization principles proposed in biology would be
able to achieve a similar level of support. Bet-hedging
(Seger and Brockmann, 1987), with its maximization of
geometric mean of absolute fitnesses, would be hard
pressed to integrate as neatly. MacArthur’s product
theorem for sex ratios (e.g. Charnov, 1982) applies to
populations rather than individuals. The analogy
between genes and memes could be investigated further
by constructing the parallel argument for memes, and
considering the plausibility of the necessary assump-
tions. Finally, it is doubtful that group selection would
in general produce optimization programs sharing the
same maximand over a range of loci, and so be shown to
be a creative evolutionary force: note also that the
programs developed here have the individual and not
the group as the optimizing agent.

It emerges that inclusive fitness is more of a
conceptual construction than neighbour-modulated fit-
ness. There is a choice of how to argue that the
Hamilton residual equals zero at least on average, and
different relatednesses would result from different
choices. Thus different biologists could attribute differ-
ent inclusive fitnesses to the same individual organisms
in the field or in a model. On the other hand, even
Darwinian fitness is an abstraction: Williams (1966)
argued that fitness was a property of a design and
should mean the average success a design would achieve,
averaged over uncertainties and over years. Measuring
lifetime reproductive success of individuals is only a
stage towards calculating the success of a design, and by
recognizing the design differently, or choosing different
years or uncertainties, biologists could assign different
Darwinian fitnesses to the same design. Inclusive fitness
may have a larger measure of construction compared to
Darwinian fitness, but this is a price to be paid for its
greater utility.

The optimization principle has been a central feature
of Hamilton’s argument since the 1964 paper, although
it is only here made fully explicit. It is clear that the
precursors of inclusive fitness to be found in papers of
Fisher (1914) and Haldane (1955) were so primitive as
not to have an optimization principle behind them.
Hamilton intended his writings on inclusive fitness to
provide a comprehensive analytical tool for social
behaviour (Hamilton, 2001, p. 135). The treatment here
fully confirms that intention for simple additive social
interactions, and with arguments that are wholly explicit
in a mathematically rigorous way. Although there is still
more work to do to extend the logical reach of the
derivation presented here, it is clear that relatedness and
inclusive fitness are essential and ubiquitously useful
tools in understanding the social behaviour of organisms
and the social interactions of genes.
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