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An analysis of Maynard Smith’s two-player, ESS model of biological signalling, the
“Sir Philip Sidney game”, is presented. The stable strategies of the players in this
game are shown to satisfy the conditions of Zahavi’s handicap principle. At equilib-
rium, signals are honest, costly, and costly in a way that is related to the true quality
revealed. Further analysis reveals that the level of cost required to maintain stability
is inversely related to the degree of relatedness between the players. It therefore seems
likely that stable biological signalling systems will feature lower signalling costs when
communication occurs between relatives. A three-player, extended version of the
model is investigated, in which signals are passed via an intermediate, or “mes-
senger”’. It is shown that this destabilizes the signalling system, and leads to increased
signalling costs. This result suggests that “kin conflict” theories of the evolution of
the endosperm in flowering plants require further refinement. The introduction of a
novel resource acquisition tissue, which mediates parent-offspring interaction during
development, cannot be assumed to limit parent-offspring conflict simply because it
carries an extra copy of the maternally inherited genes. The ability to add such
complications to the Sir Philip Sidney game and still obtain solutions makes it a very
useful modelling tool.

1. Introduction

The evolution of biological signals is a fascinating subject. The optimal “rule” of
signalling behaviour for a signaller depends on the receiver’s “rule” of interpretation.
At the same time, the optimal interpretation rule depends on the signalling rule that
is used. Signal and response behaviour therefore co-evolve, and the outcome of this
co-evolution is difficult to predict. The confusing nature of signal evolution is illus-
trated by the long-running debate over deceit and honesty in animal communica-
tion—it is not immediately obvious whether or not animal signals should convey
honest information, and different authors have held conflicting views on the subject
(Zahavi, 1975, 1977, 1987; Dawkins & Krebs, 1978; Krebs & Dawkins, 1984).
Mathematical models provide an excellent tool for resolving conceptual problems
of this kind. They are less prone to logical inconsistencies than are verbal arguments,
and make their assumptions explicit. Grafen’s (1990) “strategic handicap” model
demonstrates how useful a rigorous, mathematical approach can be. His formal
exposition of Zahavi’s “handicap principle” revealed that, under fairly general condi-
tions, stable signals are honest, costly, and costly in a way that depends on the true
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quality revealed. However, there have been very few other attemps to model signal
evolution (see Enquist, 1985; Godfray, 1991; Maynard Smith, 1991, for exceptions).

We present a two-player ESS model of signal evolution, the “Sir Philip Sidney
game”. The simple format of this model makes it easy to understand and manipulate,
but at the same time it captures enough of the essential features of signal evolution
to provide biologically meaningful results. This allows us to demonstrate the validity
of the handicap principle in a way that is relatively easy to follow, and also to
investigate some new questions relating to the “cost” of signals.

In section 2 we describe the basic model: the strategy sets of both players (i.e. the
range of possible signalling and interpretation rules), the “payoff” to both players
of the various possible outcomes, and so on. We then derive the evolutionarily stable
pair of strategies, and demonstrate that they satisfy the conditions of the handicap
principle. Section 3 looks at the effects of relatedness on the cost of the stable signals.
Finally, in section 4 we investigate the way in which signal costs change when signals
are relayed via an intermediate, or “messenger”, rather than passed directly from
signaller to receiver. This extension of the basic model sheds some light on “kin
conflict” theories of the role of the endosperm in angiosperm seed development.

2. The Basic Model

Sir Philip Sidney, the famous soldier, statesman and poet, was mortally wounded
in battle under the walls of the stronghold of Zutphen, in the year 1586. Despite his
injury, he managed to escape from the conflict, and reached the English camp, which
was a mile or two distant. There, parched for thirst, he called for a drink. A bottle
of water was brought, but as Sidney was placing it to his lips, a grievously wounded
soldier was borne past him. Rather than taking a drink himself, Sidney at once
handed the bottle to the soldier, with the famous words: “Thy necessity is yet greater
than mine”. This incident inspired Maynard Smith to formulate the “Sir Philip
Sidney game”, an ESS model of biological communication of need (see Maynard
Smith, 1991).

The Sir Philip Sidney game features two players; we will call them X and Y. Both
are at risk of dying, their survival chances being x and y respectively (0<x<1 and
0<y<1). X controls some resource, which he may choose to keep for himself or
give to Y. If X keeps the resource, he ensures his own survival; if he gives it to Y,
then Y’s survival is ensured. The coefficient of relatedness between the two players
is r.

Clearly, X’s decision as to whether or not he keeps the resource will depend on
how closely related he is to ¥, and on their relative risks of dying. However, we
assume that each player cannot directly perceive the other’s survival chance (as far
as X is concerned, y has a uniform probability distribution between 0 and 1, and as
far as Y is concerned, x has a similar distribution). Y signals to X with a signal of
variable magnitude (“magnitude” is defined in terms of the extent to which the signal
reduces Y’s survival chance) and X must decide whether or not to relinquish the
resource on the basis of this signal (Maynard Smith, 1991, analyses the situation in
which Y’s signal, if given, is of a fixed magnitude).
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For those who prefer a more concrete model, X and Y may be thought of as
vampire bats in a day-time roost. X managed to obtain a blood meal during the
previous night while Y did not. ¥ must therefore resort to begging for blood, and X
must decide whether or not to feed it. Wilkinson’s (1984) classic study of food sharing
in wild vampire bats is often cited in discussions of behavioural reciprocity. However,
the study showed that blood sharing depended equally and independently on degree
of relatedness and an index of opportunity for reciprocation. The Sir Philip Sidney
game, which models signals of need between relatives, can therefore be applied to
this case. If X keeps the blood meal, then X is bound to survive until the next night,
although Y may starve. Conversely, if X regurgitates the blood for Y, then Y is
bound to survive, but X may itself starve. The optimal decision depends on the
degree of relatedness of the two bats, and on their chances of starvation if left unfed.
Neither bat can perceive directly the other’s chance of starvation, so X must respond
instead to the intensity of Y’s begging.

Y’s strategy in the game is a signalling rule that determines how strongly he should
signal on the basis of any particular survival chance—if we refer to the strength of
the signal as g, then this becomes some function Q(y) that determines ¢ given y. X
will give up the resource if this signal exceeds a certain threshold, which we shall
refer to as p. Since the threshold that X sets depends on his own survival chance, his
strategy becomes some function P(x) that determines p given x.

What is the equilibrium pair of strategies? Zahavi’s handicap principle suggests
that, at equilibrium, Y will signal honestly. X will then be able to extract accurate
information about y from g. It might be the case, however, that Y will “cheat” by
signalling strongly even when he has a high survival chance. If this is so, then X
would probably evolve to ignore the signal altogether. As the next subsection will
show, the equilibrium strategies of X and Y do, in fact, satisfy the conditions of the
handicap principle.

2.1. THE SIGNALLING EQUILIBRIUM

The utility functions of the two players may be written as follows:

U(x, p) =J (I+ry)dy
p>001)

~

+J (x+r)ydy—rq (for X at x, with threshold p)
PO

V(iy, q)=j (r+y) dx+f (rx+1)dx—gq (for Y at y, signalling g).
P(x)>q P(x)<y

In both formulae, the first integral covers those cases where the magnitude of Y’s
signal falls below X’s threshold, and X consequently keeps the resource. The second
integral covers the remaining cases, where Y’s signal is strong enough to persuade
X to give him the resource.
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At equilibrium,
U(x, P(x))= U(x,p) Vp (1a)
Vv, 00 =zV(y,q) Vq. (1b)

That is, Q(y) is the optimal signalling strategy for Y [given that X is playing the
strategy defined by P(x)], and P(x) is the optimal interpretation strategy for X [given
that Y is playing the strategy defined by Q(»)].

Given that U and ¥V can be differentiated, this implies that

oU(x, p)
o lp-rw

aV(y, q)
09 lg=om

=0 Vx

=0 Vy.

So we can determine the equilibrium strategies of the two players by differentiating
their utility functions (see Appendix A).
The equilibrium strategies are

P(x)=% . (%—r) .(1-x) (2a)

0(n)=3.r.(1=r") . (1-y)". (2b)

Figures 1 and 2 show graphs of these two functions. The combined result of the two
strategies is that X transfers the resource whenever

l+ry<x+r

P(x)

1 1 ! L
0.2 0.4 0-6 0-8 |
X

FiG. 1. The ESS response threshold for player X, P(x), as a function of his survival chance, x, when
r=0-5. Other values of r yield qualitatively similar functions.
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FiG. 2. The ESS signalling rule for player Y, Q(y), as a function of his survival chance, y, when r=
0-5. Other values of r yield qualitatively similar functions.

which is the optimal decision and satisfies Hamilton’s rule. The fact that X follows
the optimai decision rule shows that, at equilibrium, he is perfectly informed. In
other words, the equilibrium strategies of the two players satisfy the conditions of
Zahavi’s handicap principle: Y signals honestly, and as a result, X can extract the
information he needs from the signal.

The honesty of the system is maintained by the cost of signalling, in particular by
the fact thet a signal of a given magnitude effectively costs more when y is higher.
If Y has a high survival chance, then he has little to gain from acquiring the resource,
and so will only signal weakly. If, on the other hand, Y is very likely to die without
the resourcz, then the potential gain from acquiring it is high and justifies a strong
signal. In the next section we will consider just how costly signals are at equilibrium.

3. Signalling Costs

Zahavi’s handicap principle states that stable signalling systems will be honest if,
and only if, there is a cost to signalling (and this cost is dependent on the true quality
revealed). In the previous section, it was shown that the model’s predictions do match
those of the handicap principle. But now that we know Y's equilibrium signalling
rule in the game, we can do more than simply state that signals are costly; we can
calculate precisely the mean signalling cost at equilibrium [assuming that y has an
even probability distribution between 0 and 1, we can simply integrate Q(y) between
those limit<]. The mean cost is

Lo (=),

The fact that signal cost depends on the degree of relatedness between the two
players is not surprising. We would, however, expect high relatedness to yield low
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cost signals, and low relatedness to yield high cost signals. The function shown above,
in contrast, sometimes increases with relatedness (see Fig. 3). This reflects the fact
that as r increases, X becomes more likely to transfer the resource, and consequently
Y has more to gain from signalling. By contrast, where r=0, X will never transfer
the resource, so Y has nothing to gain. This means that Y will not bother to signal,
and the mean signal cost is zero.

0.06-

0-05r

0.04}

0:03-

Mean signal cost

0-021-

O-0I+

1 | ] 1
0-2 0-4 06 0-8 |
r

F1G. 3. This shows mean signalling cost as a function of r, the coefficient of relatedness between the
two players.

In order to rule out the effect of relatedness on X’s probability of response, we
can divide the mean signal cost by the probability of his giving up the resource. This
will give us the cost per benefit transferred. Given that X transfers the resource
whenever

1+ry<x+r

and both x and y have uniform probability distributions between 0 and 1, the
probability of the transfer must be r/2. Cost per benefit is therefore

3. (1-1)

which is strictly decreasing in r (see Fig. 4).

The model therefore suggests that stable biological signalling systems will feature
lower signal costs when communication occurs between relatives, but that care should
be taken in evaluating signal cost relative to the benefits obtained.

4. An Extended Model Involving a “Messenger”

The basic model involves only two players, X (the signaller) and Y (the receiver).
In this section, we consider an extended version of the Sir Philip Sidney game that
features a third player, Z (referred to as a “messenger””). X cannot perceive Y’s
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F1G. 4. Mean signalling cost per benefit transferred, as a function of r, the coefficient of relatedness
between the players.

signal directly. Instead Y must signal to Z, and Z must in turn signal to X. We
assume that the outcome of the signalling game does not influence Z directly, so that
his utility function will reflect only the survival chances of the other two players,
weighted according to the extent of their relatedness to him (the “cost” of Z’s signal
is the extent by which it reduces Y’s survival chance). The coefficients of relatedness
between the players are r,,, r,. and r,.. Z’s strategy in the game is defined by some
function T(q), which specifies ¢, the strength of the signal he will give, on the basis
of g, the strength of the signal that Y gives.

This extended model captures something of the complexity of the potential conflict
during seed development in angiosperms. During the development of a plant seed,
resources are transferred from the maternal sporophyte to the growing embryo (the
young sporophyte). As in animals, there is the potential for conflict between these
two diploid generations. The mother should not favour any of her offspring on the
basis of relatedness, because maternal alleles have the same 50% chance of having
been transmitted to each offspring. In contrast, an offspring allele is sure to benefit
from maternal investment in that particular offspring, while investment in its siblings
will benefit identical copies of the allele only some of the time. Offspring will therefore
be selected to try to acquire more resources than the mother is selected to give
(Trivers, 1974; Cook, 1981; Westoby & Rice, 1982; Queller, 1983; Haig, 1987).

At first glance, it seems likely that the maternal plant can enforce its own interests.
However, if offspring are able to assess their own quality better than the mother can,
it may pay her to be responsive to offspring signals. This sets the stage for a signalling
“game” in which offspring may try to deceive the mother as to their quality, in order
to obtain a greater share of maternal resources (see Godfray, 1991). But a two-player
ESS model such as the basic Sir Philip Sidney game fails to capture the essentials of
the situation, because the parental and offspring sporophyte do not directly interact.
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In most angiosperm plants, resource acquisition is carried out by a third tissue, the
endosperm (Johri, 1984). Offspring signals must be “relayed” to the mother via the
endosperm, which acts as a “messenger”. Hence, we require an extended, three-
player version of the Sir Philip Sidney game in order to determine the kinds of
behaviour that the three tissues might exhibit.

The endosperm is unique to angiosperms (in gymnosperms, for instance, it is
usually the female gametophyte which acts as the resource acquisition and storage
tissue—Singh, 1978), and its adaptive significance (if any) is something of a puzzle.
Recent theories have concentrated on its role in kin conflict (Westoby & Rice, 1982;
Queller, 1983, 1989; Willson & Burley, 1983). The endosperm genotype is identical
to that of the embryo, but it possesses one extra copy of all maternally inherited
genes. This difference means that endosperms will not be selected to acquire extra
resources at the expense of other embryos as strongly as the embryos themselves
would be. Consequently, interposing the endosperm between mother and embryo
may reduce the degree of kin conflict. In terms of the signalling “game” between
parent and offspring, this implies that the introduction of a “messenger” (who is
more closely related to the receiver than is the original signaller) will reduce overall
signalling costs.

In the next subsection, we show that the introduction of a messenger in fact
destabilizes the signalling system, and is unlikely to reduce signal costs.

4.1. THE THREE-PLAYER EQUILIBRIUM

The utility functions of the players may be written as follows:

U(x, p)= J (I+ryy)dy
p>TIQ(O]

+J (x+ry)dy—re . (g+1) (for X at x, with threshold p)
P<TIQ(M)]
Wy, )= J (roty)dx
P(x)>T(q)
+J (1+r,x)ydx—g—T(q) (for Y at y, signalling ¢)
P(x)<T(q)

W(q' t) = Jv (r.\‘: + V)»_-,V) dx
P(x)>1

+j (rx+r.-)dx—r.(g+1) (for Z receiving g, signalling ¢).
P(x)<t
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An attempt to calculate the stable strategies of the players by differentiation of
these functions reveals that there is no stable solution (see Appendix B). When
Fx-

—>r xv
Fyz

then the messenger, Z, is less prone to “exaggeration” than is the signaller, Y. The
messenger’s signal, 7(g), thus tends to decrease, but as a consequence the signaller
tends to signal more strongly, leading 7(g) to decrease even further etc. When

then the messenger, Z, is more prone to “exaggeration” than is the signaller, Y. The
messenger’s signal, 7(g), tends to increase, so that the signaller tends to signal less
strongly, so that T(q) increases even further etc.

Stability can be imposed on either of these cases by specifying a minimum signalling
level. In the first case, if the messenger’s signal, T(g), cannot drop below &g (where
£>0 but is very small) then there is a stable state, in which the signaller signals
strongly and the messenger “whispers” (see Appendix C). In the second case, if the
initial signal, Q(y), cannot drop below &(1 —y) then there is a stable state in which
the signaller “whispers” and the messenger “‘exaggerates” this by signalling strongly
to the receiver (see Appendix D). In either situation, the overall level of signalling
cost is set by the individual (signaller or messenger) who is more prone to exaggera-
tion. The introduction of a “messenger” may therefore increase signalling costs, if
he is more prone to exaggeration than the original signaller, but cannot reduce them,
even if he is less prone to exaggeration.

4.2. IMPLICATIONS FOR THE ROLE OF THE ENDOSPERM

These results seem to suggest that interposing the endosperm between the maternal
sporophyte and the developing embryo cannot reduce kin conflict. We do not wish
to claim, however, that “kin conflict” theories of the role of the endosperm are
invalid, merely that they require further refinement. One cannot assume that the
introduction of a novel resource acquisition tissue will limit conflict simply because
it carries an extra copy of the maternally inherited genes. We suggest that kin conflict
theories need to place greater emphasis on the information available to each compo-
nent involved in seed development. Given that the endosperm has qualitatively the
same genome as the embryo, it may be able to assess offspring quality better than
the parent can. If so, this would limit the possibilities for ‘“cheating” on the part of
the embryo. Refined kin conflict theories could, then, explain the triploid genome of
the endosperm: the resource acquisition tissue must contain a copy of the paternal
genome in order to restrict deceit of the mother by the developing embryo, because
this allows it to assess offspring quality better than the mother can. At the same time,
it must be sufficiently closely related to other offspring, otherwise its interests will
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coincide with those of the embryo. This means that a single copy of the paternal
genome must be combined with two or more copies of the maternal genome.
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APPENDIX A
Determining the Equilibrium Strategies in the Basic Model

We wish to prove that there is a solution to the ESS conditions given in eqn 1(a)
and (b), and to show that it is of the form given in eqn 2(a) and (b).
The utility functions of the two players in the game may be written as follows:

U(x,p)=J (1+ry)dy+f (x+r)ydy—rq

P> Q) P<Q()
(for X at x, with threshold p) (A.la)
Viy, q)= (r+y) dx+f (rx+1)dx—gq
P(x)>q P(x)<y

(for Y at y, signalling ¢q). (A.lb)



