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Summary. — This paper and a following one develop a Hamiltonian formulation of
the de Broglie-Bohm (deBB) interpretation of quantum mechanics. Drawing upon
a unified Hamiltonian treatment of a classical particle and its associated ensemble,
it is shown how the interaction of a particle and a spin-0 quantum wave can be
consistently expressed in a canonical framework. A formulation is found in which
the particle is acted upon by a force determined by the quantum potential but the
particle does not react on the Schrödinger field. This requires the introduction of an
additional field which the particle does act upon, and allows the deBB theory to be
expressed in Hamiltonian terms. An ensemble theory for the wave-particle system
based on Liouville’s equation is developed, and it is shown that for a pure quantum
state the particle obeys its own Liouville equation. The general particle phase space
distribution that is compatible with |ψ|2 is derived. A special case of this corresponds
to the relation p = ∂S/∂q (and thus the guidance law of the deBB theory) but more
general distributions, and hence non-deBB motions, are possible. This relation is
interpreted as a constraint on the phase space of the composite system. Using the
theory of Hamiltonian constraints it is shown that the first-order guidance law and
Hamilton’s second-order particle equations are dynamically equivalent.

PACS 03.65 – Quantum mechanics.

1. – Introduction

1.1. The problem. – The Hamiltonian approach is generally regarded as the deepest
formulation of dynamics, and most physically important theories of particles and fields
can be treated according to its methods. A problem that has not been fully addressed
in the literature is whether theories of quantum mechanics which employ the trajectory
concept, in particular the de Broglie-Bohm (hereafter deBB) theory of motion [1], can
be couched in these terms. In the deBB theory a quantum system comprises a wave
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aspect whose evolution is described by Schrödinger’s equation, and a particle whose
motion is determined by a specific deterministic law involving the wavefunction. It is
not established that this theory admits a Hamiltonian formulation.

As it exists at present the deBB proposal formally works in the sense that, for an
ensemble of trajectories, the flow generates the quantum-statistical predictions. As a re-
sult it reproduces the empirical content of quantum mechanics while providing a causally
connected account of individual processes. Yet, while the deBB theory has been success-
fully applied to a variety of problems and some of its general ramifications explored [1],
the law of motion on which it is based is an unexplained postulate. If S is the phase of
the wavefunction obeying the (spin 0) Schrödinger equation for a particle of mass m (see
the mathematical note below),

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂q2
i

+ V ψ,(1.1)

where ψ =
√
ρ exp[iS/h̄], the particle track is the solution qi = qi(t) to the differential

equation (the “guidance law”)

m
dqi(t)

dt
=

∂S(qi, t)
∂qi

∣∣∣∣
qi=qi(t)

, i = 1, 2, 3.(1.2)

The phase obeys the equation

∂S

∂t
+

1
2m

∂S

∂qi

∂S

∂qi
+ Q + V = 0,(1.3)

where

Q(q, t) = − h̄2

2m
√
ρ

∂2√ρ
∂q2

i

=
h̄2

4mρ

(
1
2ρ

(
∂ρ

∂qi

)2

− ∂2ρ

∂q2
i

)
(1.4)

is what Bohm called the quantum potential. To compute an individual trajectory we
need only specify the initial position q0. As far as is known the resulting theory is con-
sistent yet, viewed from the perspective of the general dynamical theory of individual
systems, (1.2) is something of an enigma. This equation is reminiscent of the sort of re-
lation implied in classical Hamilton-Jacobi (HJ) theory, and indeed it was the latter that
de Broglie [2] and Bohm [3] drew upon as justification for their proposed law. Thus, (1.3)
looks like the classical HJ equation modified by an additional quantum potential term,
and this led to the appellation “the quantum Hamilton-Jacobi equation” (e.g., [4]). How-
ever, simply postulating the validity of (1.2) without further justification is analogous
in classical mechanics to being presented with one half of the canonical transformation
equations which trivialize the motion (i.e., which effect a transformation to a set of con-
stant (in time) phase space coordinates), together with the HJ equation, and being given
no further explanation as to the meaning or origin of the equations. Our understanding
would be enhanced if we could derive (1.2) from, for example, some Hamiltonian theory,
much as happens in the classical case, or at least if we could establish its connection with
such a description.
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In fact, the reason the deBB theory works in the first instance is not because of
the putative HJ analogy but because of the second equation implied by the Schrödinger
equation:

∂ρ

∂t
+

1
m

∂

∂qi

(
ρ
∂S

∂qi

)
= 0.(1.5)

If the initial values q0 are distributed according to |ψ0|2, (1.5) ensures that the flow
defined by (1.2) generates the quantal distribution for all time. Indeed, there are good
reasons to question whether (1.2) really is a HJ-type relation, with (1.3) as the associated
HJ equation. To begin with, the quantum phase is not in general a function of a set of
non-additive constants and hence cannot generate a transformation which trivializes the
motion (for an early discussion of this point see [5]). Moreover, (1.3) does not seem to
be a HJ-like equation at all—as noted, it contains the quantum potential, and this, by
virtue of (1.5), depends on S. The equation thus has a complicated dependence on S
quite different from that of any classical HJ equation. This is evident, for example, in
cases where we may use (1.5) to eliminate ρ from (1.3) to leave just an equation for S [6].
It is found that the “quantum HJ equation” involves derivatives of S higher than the
first—what kind of Hamiltonian theory could have such a relation as its associated HJ
equation?

Two questions are addressed here. First, can the quantum trajectory theory indeed
be formulated as a brand of Hamiltonian mechanics? Second, is there a relationship
between the law of motion (1.2) and some HJ theory of the system—can the quantum
phase be regarded as the generator of a canonical transformation which trivializes the
motion, for instance?

A possible starting point in seeking a Hamiltonian theory of the particle is, for this
purpose at least, to treat the quantum potential as if it were an external field function of
q on a par with V . Then, assuming by analogy with classical HJ theory that the relation

pi =
∂S(q, t)
∂qi

(1.6)

holds, we may propose that (1.3) is representative of the Hamiltonian (e.g., [7])

H(q, p, t) =
1

2m
pipi + Q(q, t) + V (q, t)(1.7)

when the substitution (1.6) is made. Hamilton’s equations imply

pi = mq̇i, ṗi = − ∂

∂qi
(V + Q),(1.8)

so that the particle moves in response to a force determined by the classical and quantum
potentials, as expected from (1.3). It is this proposal that we are going to investigate in
this paper. However, in itself, the idea is not satisfactory, being open to the following
three objections.

First, we have just pointed out that Q depends on S, and this in turn is connected to
p via (1.6). It is therefore arbitrary to suppose that in the phase space formulation Q is
a function of q alone and not of p—maybe it should be expressed as a function of both
so that it becomes a function of just q only in the HJ representation, say.
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Second, in such a theory the initial position and momentum coordinates can be chosen
freely and there is no guarantee that the ensemble of q-projected motions will generate
the quantal distribution. There are potentially “too many” possible motions and these
must be restricted somehow, e.g., by imposing the deBB law (1.2) or something like it
as a subsidiary condition on the initial coordinates. A way of seeing this is to consider
the HJ equation implied by (1.7):

∂σ

∂t
+

1
2m

∂σ

∂qi

∂σ

∂qi
+ Q + V = 0.(1.9)

Although it has the same form, this equation admits many more solutions than (1.3) and
in general the HJ function σ does not coincide with the quantum phase S [8].

The final and most serious objection to the use of (1.7) is that it is not clear whether
this Hamiltonian is compatible with the wave equation and its Hamiltonian description.
The particle is, after all, acted upon by the wave and we have to ensure that the interac-
tion can be formulated in a way that does not give rise to a back-reaction which would
disturb the Schrödinger evolution of the wave, and hence alter the usual predictions of
quantum mechanics.

It is the latter problem in particular that is addressed in this paper. We shall explore
the use of (1.7), and the associated Lagrangian, but in the context of a fully interacting
wave-particle system which includes the field Hamiltonian. In the course of our analysis
we shall see that the first objection mentioned above, although reasonable, is not an
impediment to the development of a consistent phase space theory. In addition, we show
how to accommodate the second objection by imposing suitable restrictions on the phase
space of the total system. In this way we answer the two questions posed above. We find
that we can indeed formulate the deBB theory in Hamiltonian terms, in the context of an
interacting wave-particle system, and that it does have an interpretation in HJ theory.

In this first paper we shall concentrate on establishing the Hamiltonian theory, proving
its consistency with quantum mechanics, and showing how the deBB theory is to be
interpreted in Hamiltonian terms. Our method is based on a generalization of a particular
canonical treatment of a classical particle and its associated ensemble (sects. 2, 3), and
necessitates the introduction of an additional (complex) field of which the particle is a
source (sect. 4). Within this scheme equations (1.3) and (1.5), supplemented by equations
determining the evolution of the particle and additional-field variables, come out as
Hamilton equations. The consistency of the Hamiltonian theory with quantum mechanics
is demonstrated through a thorough examination of Liouville ensemble theory for the
total system (sect. 5), and it is shown that for a pure quantum state the particle obeys its
own Liouville equation. The general expression for the particle phase space distribution
that is compatible with quantum statistics is found. A special case of this corresponds
to the relation (1.6) (and thus the guidance law of the deBB theory) but more general
distributions, and hence non-deBB motions, are possible. The relation (1.6) is interpreted
as a constraint on the phase space coordinates of the total wave-particle system (sect. 6).
It is shown how this can be consistently regarded as a constraint on Hamilton’s equations
for the particle and, using the theory of Hamiltonian constraints, that the first-order
guidance law and Hamilton’s second-order particle equations are dynamically equivalent.
The HJ theory of the system and an examination of alternative forms for the Hamiltonian
are presented in the following paper. There we shall also give an explicit solution for the
additional field which includes a particle back-reaction term, and discuss the conservation
of energy and momentum in the model.
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1.2. Role of the quantum potential . – In the approach developed here we shall be giving
a central physical role to the quantum potential. There are three principal reasons for
this.

One reason is that, as we shall see, it allows a consistent Hamiltonian formulation
of the theory. In a previous attempt to give a Lagrangian description of this system,
Squires [9] found a field + particle Lagrangian from which one can derive the guidance
law (1.2) directly, but in that approach the Schrödinger equation becomes modified by
an extraneous nonlinear term. An important aspect of our demonstration based on (1.7)
is that we can formulate the particle-field interaction in a way that maintains the exact
validity of the Schrödinger equation.

The second reason for giving a central role to the quantum potential has to do with
the problem of which variables associated with the wavefunction should be afforded
ontological status. It may be argued that this cannot be the wavefunction itself since
the phase is defined only up to an additive constant. One idea then might be to define
the physical object as the equivalence class of wavefunctions, analogous to the idea of
a geometric object in general relativity [10]. However, unlike the latter case where we
have some notion of the physical meaning of the different coordinate systems, there does
not seem to be a comparable interpretation of the “coordinate systems” with respect
to which the phase takes different values (in the related case of the (gauge-dependent)
electromagnetic potentials we do not attribute the physical content of the potentials to
an equivalence class). Hence, it seems reasonable to seek to define the physical content
of ψ through individual functions which do not display the phase freedom. We might
choose ∂S/∂q, and indeed this quantity will play a central role in what follows. However,
this quantity gives a meaningful description of the physical content of ψ only in the case
of an external scalar potential. More generally, we have to contend with even greater
arbitrariness in the phase than that just cited—when external electromagnetic fields
are present a gauge transformation of the potentials is accompanied by a local phase
transformation of the wavefunction which modifies ∂S/∂q. Now, the gauge freedom in
the electromagnetic potentials is usually adduced as an argument against their physical
reality, the physical fields being gauge invariant functions of the potentials. It seems
that a similar argument should apply to the wavefunction—the local gauge freedom in
the phase mitigates against it or its derivatives having a direct physical significance,
and hence against the wavefunction as a whole. What we should do then is treat the
wavefunction as analogous to a potential field (for further discussion of this in the context
of nonlinear theories see [11]), the corresponding physical field being described by gauge
invariant functions of this potential. The amplitude

√
ρ of the wavefunction is one such

function, and the quantum potential Q (an unfortunate name in this context) is another.
One of the insights of Bohm’s version of the trajectory theory is that it is precisely
Q that captures those features of ψ that are relevant to the guidance of a particle, and
contributes to an explanation of the difference between quantum and classical behaviour.
When considering the particle motion, then, it is natural to regard Q as the physical field,
an assumption that applies in all cases.

The final reason for emphasizing the quantum potential is that it has explanatory
power in situations where other basic aspects of the theory, such as the guidance law (1.2),
are silent. There are many such cases—in the extension of the deBB approach to quan-
tized fields, for instance, where the field variables obey a guidance law analogous to (1.2),
the Casimir effect is due to the force exerted by the quantum potential [12].

Along these lines, an example of a macroscopic effect which is relevant to the particle
case is the explanation the theory provides for the pressure exerted by a non-interacting
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quantum gas. If we suppose the gas is in a real stationary state the guidance law (1.2)
generalized to a many-body system [13] implies that all the gas particles are at rest.
Hence, in this case the pressure cannot come from particle motions and the guidance law
provides no insight. The usual expression for the pressure of a gas is

p = −Z−1
∑

n

e−En/kT ∂En

∂Σ
, Z =

∑
n

e−En/kT , Σ = volume,(1.10)

where En is the energy of the gas in the n-th stationary state. Noting that the Schrödinger
equation for the gas reduces to En = Qn, this expression becomes

p = −Z−1
∑

n

e−Qn/kT ∂Qn

∂Σ
(1.11)

which locates the quantum potential as the origin of pressure.

Mathematical note.

Repeated discrete indices are summed over, with i, j, k = 1, 2, 3. Let L be a functional
of a field function g(x, t) and its derivatives with respect to the arguments t (up to the
first order) and xµ, µ = 1, . . . , n (up to the second order), and L its associated density:

L
[
g, ġ, ∂xg, ∂

2
xg

]
=

∫
L(

g, ġ, ∂xg, ∂
2
xg

)
dnx.(1.12)

The variational derivative of L with respect to g is given by

δL

δg
=

∂L
∂g

− ∂

∂xµ

∂L
∂(∂g/∂xµ)

+
∂2

∂xµ∂xν

∂L
∂
(
∂2g/∂xµ∂xν

) , µ, ν = 1, . . . , n.(1.13)

In the case that L is a Lagrangian, the Euler-Lagrange equations are

d
dt

δL

δġ
− δL

δg
= 0.(1.14)

Quantities are assumed to have units so that the Lagrangian has the dimension of energy.
Applying the formula (1.13) to the density in (1.12) gives for its functional derivative

δL(x)
δg(x′)

=
∂L(x′)
∂g(x′)

δ
(
x− x′

) − ∂

∂x′µ

(
∂L(x′)

∂(∂g/∂x′µ)
δ
(
x− x′

))
+(1.15)

+
∂2

∂x′µ∂x′ν

(
∂L(x′)

∂
(
∂2g/∂x′µ∂x′ν

)δ(x− x′
))

.

When integrating by parts it is assumed that all surface integrals at infinity vanish,
whatever the nature of the variable x. For two functionals L,M of g partial functional
integration may then be performed using the usual exchange rule:∫

M
δL

δg

∏
x′

dg(x′) dnx = −
∫

L
δM

δg

∏
x′

dg(x′) dnx.(1.16)
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2. – Hamiltonian theory of individual and ensemble in classical dynamics

To motivate the treatment of quantum systems we give below we start by looking
at a particular formulation of classical ensemble theory as defined by an appropriate
Lagrangian for Liouville’s equation. This is useful also because, as we shall see, the
Liouville equation is central to our quantum treatment.

Liouville’s theorem asserts that, for an ensemble of identical systems obeying the
same Hamilton equations in the phase space labelled by (q, p), their density f(q, p, t) is
conserved along each phase space path:

df
dt

= 0,(2.1)

where

d
dt

=
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi
.(2.2)

Employing Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,(2.3)

Liouville’s theorem may be written in field-theoretic form:

∂f

∂t
+
∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi
= 0.(2.4)

This is the fundamental equation describing the flow of ensembles in classical mechanics.
There are several interpretations that may be given to f [14] but here and subsequently
we shall assume that f represents a probability density (and that it is normalized).

Liouville’s theorem is proved [15] by considering an ensemble whose boundary is de-
fined by the moving phase space points. Each point evolves by a canonical transformation
in accordance with Hamilton’s equations, and hence so does the volume of points. Phase
space volume is a canonical invariant and so, since the number of points in the volume
is fixed, the density of points is also constant. But, instead of thinking of (2.4) as a
deduction from Hamilton’s equations, we may regard it as an independent field equation
and seek to derive it from a variational principle (we shall refer to f as a “field”).

We shall consider functions on the phase space (q, p) and introduce a Lagrangian
density Lf (q, p, t) in this space that implies a Lagrangian functional:

Lf =
∫

Lf

(
q′, p′, t

)
d3q′ d3p′.(2.5)

Throughout this paper we shall attach primes to field arguments to distinguish them
from the particle coordinates, except where we evaluate the fields in the particle subspace
(e.g., (2.4) and sect. 5). We desire to obtain Liouville’s equation as the Euler-Lagrange
equation corresponding to a suitably chosen Lagrangian. To achieve this we employ the
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technique of introducing an independent auxiliary function (e.g., [16]) on the phase space,
g(q, p, t), and define the Lagrangian to be

Lf =
∫

g

(
ḟ +

∂H

∂p′i

∂f

∂q′i
− ∂H

∂q′i

∂f

∂p′i

)
d3q′ d3p′.(2.6)

This is a functional of f and g (H is a prescribed function of q and p).
Varying with respect to g, the Euler-Lagrange equation (1.14) with xµ replaced by

(qi, pi) yields the Liouville equation (2.4). Varying with respect to f , the Euler-Lagrange
equation (with f in place of g) implies that g also obeys Liouville’s equation:

ġ +
∂H

∂pi

∂g

∂qi
− ∂H

∂qi

∂g

∂pi
= 0.(2.7)

A key point about the Lagrangian (2.6) is that the Euler-Lagrange equation for f is
independent of g. The nature of the latter will be left unspecified—in particular, it need
not have a probability interpretation (note that it has different units to f).

It is straightforward now to write down a Lagrangian from which we may obtain
both the individual orbit and the evolution of the ensemble. To this end, we consider a
configuration space labelled by the numbers (q, f(q′, p′), g(q′, p′)) and the Lagrangian

Ltot

(
q, q̇, f, ḟ , g, ġ, t

)
= L

(
q, q̇, t

)
+ Lf

[
f, ḟ , g, ġ, t

]
.(2.8)

In the following we shall be concerned particularly with the particle Lagrangian

L
(
q, q̇, t

)
=

1
2
mq̇iq̇i − V (q, t)(2.9)

although much of the formalism is independent of this specific form. Here V is of course
independent of f and g. The Euler-Lagrange equations for the total system then yield
Newton’s second law

mq̈i = −∂V (q, t)
∂qi

∣∣∣∣
q=q(t)

(2.10)

together with the field equations (2.4) and (2.7).
The Hamiltonian version of this theory is easy to derive. We define the momenta

conjugate to the particle (q) and field (f) coordinates, respectively, as

pi =
∂Ltot

∂q̇i
= mq̇i, π(q, p) =

δLtot

δḟ(q, p)
= g(q, p).(2.11)

The momentum conjugate to the coordinate g is zero and hence the Poisson brackets
(PBs) between the coordinate and the momentum cannot be satisfied. This variable
must therefore be eliminated from the Hamiltonian (this is similar to the situation in
the usual canonical treatments of Schrödinger’s equation and Maxwell’s equations [17]).
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Then a Legendre transformation gives for the total Hamiltonian

Htot = piq̇i +
∫

π
(
q′, p′

)
ḟ
(
q′, p′

)
d3q′ d3p′ − Ltot(2.12)

= H −
∫

π

(
∂H

∂p′i

∂f

∂q′i
− ∂H

∂q′i

∂f

∂p′i

)
d3q′ d3p′,

where

H(q, p, t) = piq̇i − L =
1

2m
pipi + V (q, t).(2.13)

Thus,

Htot =
1

2m
pipi + V −

∫
π

(
p′i
m

∂f

∂q′i
− ∂V

∂q′i

∂f

∂p′i

)
d3q′ d3p′.(2.14)

Hamilton’s equations for the total system,

q̇i =
∂Htot

∂pi
, ṗi = −∂Htot

∂qi
, ḟ =

δHtot

δπ
, π̇ = −δHtot

δf
,(2.15)

give the particle and field equations (2.3), (2.4) and (2.7) (with g replaced by π).

3. – Generalization to an interacting system

Although in the theory just described the particle and the fields enter into a single
Hamiltonian, they evolve independently in the sense that neither is a physical source of
the other. We now consider how the theory can be generalized to provide a model of an
interacting field-particle system in which the particle and the fields act on one another,
so that in particular the particle motion is modified, in such a way that the evolution of
one of the fields is undisturbed. The purpose of this is to illustrate the kind of idea we
shall use in our treatment of quantum systems.

Suppose, then, we modify the Hamiltonian (2.14) by introducing an interaction term
into the particle component:

Htot =
1

2m
pipi + V (q, t) + U

(
q, p, f(q, p), t

) − ∫
π

(
p′i
m

∂f

∂q′i
− ∂V

∂q′i

∂f

∂p′i

)
d3q′ d3p′.(3.1)

The most general form that will be assumed for U is that it is a function of the particle
phase space coordinates, and a local function of f . This dependence implies that the
particle Hamilton equations (2.3) and eq. (2.7) for the conjugate field momentum will
be modified, but not Liouville’s equation (2.4) for f . From the point of view of physics
this move is illegitimate as it makes the behaviour of an individual particle depend on
a fictitious ensemble (described by f) of which it is a representative. Suppose, however,
that we attribute to f a new primary property that it is descriptive of a physical field,
and that only as a secondary property it has a (additional) statistical interpretation.
Then such action on the particle would be meaningful. In the context of the classical
ensemble theory we are using to illustrate the general idea the proposed generalization
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would not be a particularly appealing or well-motivated thing to do, but as a point of
principle such a theory would be consistent. In this connection, consistency requires that
the new term does not affect the (now secondary) statistical interpretation of f in the
sense that its presence in the Hamiltonian should not alter Liouville’s equation when
the variation is made, and that is why U is assumed to be independent of π. Although
f is not affected, this does not mean that there is no reciprocal action of the particle.
Rather, this exists but is confined to the equation obeyed by π which is modified by a
source term. We shall not write this down since we shall examine an equation of this
type below in the analogous quantum case.

Mathematically, our proposal is similar to the conventional description of any inter-
acting field-particle system, with the novel element here that one component of the total
system—one of the fields (f)—forms a closed system (it is independent of the conjugate
momentum and the particle variables).

4. – Canonical treatment of wave and particle in quantum mechanics

The method we have used to treat in a single canonical formalism the dynamics of a
classical particle and an associated field which also has an ensemble interpretation pro-
vides a clue as to how to proceed in the quantum case. Actually, the connection between
the classical and quantum cases is deeper than just an analogy for, as we shall see later,
the Liouville equation plays a key role in selecting a consistent set of admissible quantum
particle motions (sect. 5), and indeed the quantum formalism can be written in a Liouvil-
lian language of the type just described in sect. 3 (see sect. 3 of the following paper). To
establish the precise form of the latter that corresponds to quantum mechanics, we begin
with a Lagrangian defined directly in terms of the Schrödinger field variables, taking as
our cue the method of auxiliary functions used for the classical Liouville function.

It is convenient, in particular for the HJ theory to be developed later, to represent the
field ψ(q, t) by the two real fields ρ and S defined in sect. 1. Introducing two independent
auxiliary real fields g1(q, t) and g2(q, t) the field Lagrangian is

Lψ =
∫ {

g1

(
ρ̇ +

1
m

∂

∂q′i

(
ρ
∂S

∂q′i

))
+ g2

(
Ṡ +

1
2m

∂S

∂q′i

∂S

∂q′i
+ Q + V

)}
d3q′,(4.1)

where in the integrand ρ̇ = ∂ρ(q′, t)/∂t, etc.
Including the particle variables, the total Lagrangian will be

Ltot = Lψ + L(4.2)

with

L
(
ρ(q, t), q, q̇, t

)
=

1
2
mq̇2

i − V (q, t) −Q
(
ρ(q, t)

)
,(4.3)

where we represent the quantum effects through the quantum potential. The total phys-
ical system now comprises the fields ρ, S, g1 and g2, and the particle. We shall refer to
this as a “wave-particle” system with the understanding that this includes the auxiliary
fields as well as the wavefunction.
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Variation of (4.2) with respect to g1 and g2 yields, respectively, eqs. (1.5) and (1.3):

∂ρ(q′, t)
∂t

+
1
m

∂

∂q′i

(
ρ(q′, t)

∂S(q′, t)
∂q′i

)
= 0,(4.4)

∂S(q′, t)
∂t

+
1
m

∂S(q′, t)
∂q′i

∂S(q′, t)
∂q′i

+ Q(q′, t) + V (q′, t) = 0.(4.5)

These equations are equivalent to the Schrödinger equation for ψ if the fields obey con-
ditions corresponding to those imposed on the wavefunction (single-valuedness, bound-
edness, etc.). Next, varying with respect to ρ and S gives, in turn,

∂g1(q′, t)
∂t

+
1
m

∂g1(q′, t)
∂q′i

∂S(q′, t)
∂q′i

=(4.6)

δ

δρ(q′)

∫
g2(q′′, t)Q

(
ρ(q′′, t)

)
d3q′′ − δQ

(
ρ
(
q(t), t

))
δρ(q′)

,

∂g2(q′, t)
∂t

− 1
m

∂

∂q′i

(
ρ(q′, t)

∂g1(q′, t)
∂q′i

− g2(q′, t)
∂S(q′, t)
∂q′i

)
= 0.(4.7)

The external potential V is absent in these equations, its effect being carried by ρ and
S. We can evaluate the integral term in (4.6) in terms of local derivatives of ρ and g2
but it will prove useful to leave it in this form. It will be noted that in (4.6) the second
term on the right-hand side involves the delta-function δ(q(t) − q′) and its derivatives,
and represents a particle source term. Finally, varying the variables q, we obtain

mq̈i = − ∂

∂qi
(V + Q)

∣∣∣∣
q=q(t)

.(4.8)

In passing to the Hamiltonian version of this theory we note that in our approach ρ
and S have been treated as coordinates and not as canonically conjugate variables as is
usually assumed (where one or other of these fields, or equivalently ψ or ψ∗, is regarded
as a momentum variable [17]). As discussed previously, we have developed the theory
in this way so that the field equations (i.e., Schrödinger’s equation) are not modified by
the inclusion of the field in the particle component of the total Lagrangian and Hamil-
tonian. In the conventional approach this inclusion would introduce a (singular) particle
source term in the Schrödinger equation. Our approach necessitates the introduction of
additional field variables g1 and g2 whose coupled equations of motion do, as we have
seen, include a source term.

The momenta corresponding to the variables g1 and g2 are zero and hence, as in sect. 2,
these variables must be eliminated from the Hamiltonian. Points in the phase space of
the total system are then labelled just by the coordinates (q, ρ(q′), S(q′), p, πρ(q′), πS(q′)).
Here the canonical momenta are given by

pi =
∂Ltot

∂q̇i
= mq̇i, πρ(q′) =

δLtot

δρ̇(q′)
= g1(q′), πS(q′) =

δLtot

δṠ(q′)
= g2(q′).(4.9)

Generally in Hamiltonian theory the canonical momenta do not have direct physical
significance but in this theory the relations (4.9) imply that we may equivalently treat
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πρ and πS as the additional physical fields, and p as the physical momentum. Making a
Legendre transformation, the Hamiltonian will be

Htot = H +
∫ {

− πρ

(
1
m

∂

∂q′i

(
ρ
∂S

∂q′i

))
− πS

(
1

2m
∂S

∂q′i

∂S

∂q′i
+ Q + V

)}
d3q′(4.10)

with

H(ρ, q, p, t) = piq̇i − L =
1

2m
pipi + V (q, t) + Q

(
ρ(q)

)
.(4.11)

Although the field component is here defined only on q-space, the theory is of the type
described in sect. 3.

In this phase space the PB between two functionals A and B is defined by

{A,B} =
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
+(4.12)

+
∫ (

δA

δρ(q′)
δB

δπρ(q′)
+

δA

δS(q′)
δB

δπS(q′)
− δA

δπρ(q′)
δB

δρ(q′)
− δA

δπS(q′)
δB

δS(q′)

)
d3q′.

The basic PBs are

{
qi, pj

}
= δij ,

{
ρ(q′), πρ(q′′)

}
= δ(q′ − q′′),

{
S(q′), πS(q′′)

}
= δ(q′ − q′′)(4.13)

with all others zero. Hamilton’s equations now give,

q̇i =
{
qi,Htot

}
=

∂Htot

∂pi
=

1
m
pi,(4.14)

ṗi =
{
pi,Htot

}
= −∂Htot

∂qi
= − ∂

∂qi

[
V (q, t) + Q

(
ρ(q)

)]
,(4.15)

ρ̇(q′, t) =
{
ρ,Htot

}
=

δHtot

δπρ(q′)
= − 1

m

∂

∂q′i

(
ρ(q′)

∂S(q′)
∂q′i

)
,(4.16)

Ṡ(q′, t) =
{
S,Htot

}
=

δHtot

δπS(q′)
= − 1

2m
∂S(q′)
∂q′i

∂S(q′)
∂q′i

− V (q′, t) −Q
(
ρ(q′)

)
,(4.17)

π̇ρ(q′, t) =
{
πρ,Htot

}
= − δHtot

δρ(q′)
(4.18)

= − 1
m

∂πρ(q′)
∂q′i

∂S(q′)
∂q′i

+
δ

δρ(q′)

∫
πS(q′′)Q

(
ρ(q′′)

)
d3q′′ − δQ

(
ρ(q)

)
δρ(q′)

,

π̇S(q′, t) =
{
πS ,Htot

}
= − δHtot

δS(q′)
=

1
m

∂

∂q′i

(
ρ(q′)

∂πρ(q′)
∂q′i

− πS(q′)
∂S(q′)
∂q′i

)
,(4.19)

where on the right-hand sides of these equations we write

ρ(q′) = ρ(q′, t), S(q′) = S(q′, t), πρ(q′) = πρ(q′, t),(4.20)
πS(q′) = πS(q′, t), qi = qi(t), pi = pi(t).
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The motion of the composite system is thus represented as a single moving point in the
total phase space. As discussed in sect. 3, the coupled fields ρ and S have a dual interpre-
tation: they define a physical field (represented by Q) and, as a secondary property, have
a statistical interpretation (ρ represents the probability distribution of the particle—see
sect. 5).

To clarify the meaning of the time derivatives in these equations, note that “dot”
represents the total time derivative:

d
dt

=
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi
+(4.21)

+
∫

d3q′
(
ρ̇(q′)

δ

δρ(q′)
+ Ṡ(q′)

δ

δS(q′)
+ π̇ρ(q′)

δ

δπρ(q′)
+ π̇S(q′)

δ

δπS(q′)

)
.

The term ∂/∂t applies to time dependence at a fixed point in the phase space, i.e., to
change other than that due to the natural evolution of the system. Thus, for example,
when we write ∂S/∂t for Ṡ this is to be interpreted as the total time derivative and is
represented by the fifth term on the right-hand side of (4.21).

As required, the field equations for ρ and S are unmodified by the particle variables,
but the equations for the conjugate momenta are. We can see the effect of the source
term in a more transparent way by a redefinition of variables. Writing the canonical
momenta in terms of the momenta conjugate to ψ and ψ∗, the latter obey the complex
conjugate Schrödinger equation and the Schrödinger equation, respectively, modified by
additional source terms (see eq. (4.5) of the following paper), and eqs. (4.18) and (4.19)
(and (4.6) and (4.7) for g1 and g2) are equivalent to these. (It follows that for the pure
field case the equations for the conjugate momenta are equivalent to the Schrödinger
equation.) The presence of the particle source term in the momentum field equations
implies that the additional fields cannot generally be combined so that they obey the
linear superposition principle.

We can solve for the particle motion by first solving (4.16) and (4.17) for the fields ρ
and S and then computing Q from (1.4). Inserting this in (4.14) and (4.15) we can solve
for

q = q
(
q0, p0, t

)
, p = p

(
q0, p0, t

)
.(4.22)

In the theory presented so far there is no restriction on the initial coordinates q0 and p0.
The particle Hamilton equations are those suggested by the deBB theory, (1.8), but we
have not yet considered the role of the deBB law (1.2).

The formal generalization of the above theory to a system of N bodies, including
an external electromagnetic field, proceeds in an obvious way. Specifically, in (4.10) we
make the replacements

pi −→ pi − eAi(q),
∂S

∂q′i
−→ ∂S

∂q′i
− eAi(q′)(4.23)

and extend the range of the index to i = 1, . . . , 3N . With this extension it becomes pos-
sible to apply the theory to a typical measurement process. Using analogous techniques
the theory may in principle also be extended to describe systems with spin, relativis-
tic matter systems, and quantum fields. These extensions will be discussed in detail
elsewhere.
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5. – Liouville’s theorem for the wave-particle system

5.1. Derivation of Liouville’s equation for the particle. – So far we have presented a
canonical formalism which treats together the Schrödinger field and the particle moving
in the quantum and external potentials. For the reason given in sect. 1 this theory is
not yet complete if it is our aim that an ensemble of particle motions should reproduce
the quantum distribution ρ—there are “too many” potential motions. To see that the
ensemble associated with the theory presented so far is more general than that desired,
we examine the probability distributions implied by Liouville’s theorem for the combined
system, and derive the equation obeyed by the partial distribution in the reduced phase
space of the particle.

Consider an ensemble of composite systems with distribution P [q, p, ρ(q′), S(q′),
πρ(q′), πS(q′), t] (in general P will depend on the derivatives of the fields; see, e.g.,
(5.46)). Since the motion of each ensemble element is governed by Hamilton’s equa-
tions, this distribution will obey Liouville’s equation in the total phase space:

dP
dt

= 0,(5.1)

where the total time derivative is defined by (4.21). That is

∂P

∂t
+
∂Htot

∂pi

∂P

∂qi
− ∂Htot

∂qi

∂P

∂pi
+(5.2)

+
∫ (

δHtot

δπρ

δP

δρ
+
δHtot

δπS

δP

δS
− δHtot

δρ

δP

δπρ
− δHtot

δS

δP

δπS

)
d3q′ = 0.

The functional P is assumed to be normalized:∫
P

[
q, p, ρ(q′), S(q′), πρ(q′), πS(q′), t

]
d3q d3p

∏
q′

dρ(q′) dS(q′) dπρ(q′) dπS(q′)=1,(5.3)

a condition that is preserved by (5.2). The particle phase space distribution function is
defined by the projection of P on the (q, p)-coordinates:

f(q, p, t)=
∫
P

[
q, p, ρ(q′), S(q′), πρ(q′), πS(q′), t

] ∏
q′

dρ(q′) dS(q′) dπρ(q′) dπS(q′).(5.4)

The normalization (5.3) then becomes
∫

f(q, p, t) d3q d3p = 1.(5.5)

The evolution of f is obtained by integrating (5.2) over the field variables. It is easy to
see that the final (integral) term in (5.2) will vanish if we perform a functional partial
integration and assume that P → 0 when the fields→ ∞ (see (1.16)). We obtain finally

∂f

∂t
+
∂H

∂pi

∂f

∂qi
−

∫
∂H

∂qi

∂P

∂pi

∏
q′

dρ(q′) dS(q′) dπρ(q′) dπS(q′) = 0.(5.6)
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For general P the final term in (5.6) cannot be evaluated in terms of just f because the
quantum potential in H depends on ρ. We now show how this term can be evaluated in
terms of just f when P describes a quantum-mechanical pure state.

We first use the usual probability formula to write P in the form

P = Ω
[
q, p, πρ(q′), πS(q′), t | ρ(q′), S(q′)

]
Pψ

[
ρ(q′), S(q′), t

]
,(5.7)

where Ω is the conditional probability density of the variables q, p, πρ, πS given ρ, S and
Pψ is the marginal distribution of the wavefunction:

Pψ

[
ρ(q′), S(q′), t

]
=(5.8) ∫

P
[
q, p, ρ(q′), S(q′), πρ(q′), πS(q′), t

]
d3q d3p

∏
q′

dπρ(q′) dπS(q′).

The functional Pψ is the probability distribution of wavefunctions appearing in the usual
quantum-mechanical density matrix. Integrating (5.2), doing some partial integrations,
and using the fact that Htot is linear in the field momenta, Pψ obeys its own Liouville
equation:

dPψ

dt
=

∂Pψ

∂t
+

∫ (
δHtot

δπρ

δPψ

δρ
+
δHtot

δπS

δPψ

δS

)
d3q′ = 0.(5.9)

This equation depends only on the variables ρ, S which is expected since these quantities
are dynamically independent of all the others. This means that we can freely choose an
appropriate form for Pψ. Here we shall only consider pure states (mixed states will be
discussed in another paper) so that Pψ is a delta-function in the ρ, S variables. Thus

Pψ =
∏
q′
δ
(
ρ(q′) − ρ(q′, t)

)
δ
(
S(q′) − S(q′, t)

)
(5.10)

and the total distribution function has the form

P = Ω
[
q, p, πρ(q′), πS(q′), t | ρ(q′), S(q′)

] ·(5.11)

·
∏
q′
δ
(
ρ(q′) − ρ(q′, t)

)
δ
(
S(q′) − S(q′, t)

)
.

In this connection, note that we could not assume that P is also a delta-function in
the fields πρ and πS since fixed solutions for these depend on the particle variables
(through the source term in the coupled equations (4.18) and (4.19)) and the latter are
distributed. Thus, we evaluate P for a fixed solution of Schrödinger’s equation so that
the distribution is restricted to lie on the Schrödinger phase space trajectory, but for
each such trajectory the particle phase space coordinates (and the field momenta) are
distributed. The connection between the particle distribution f and Ω will be established
below.
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To show that (5.11) is a solution of the Liouville equation we substitute it into the
left-hand side of (5.1):

dP
dt

= Ω
d

∏
q′
δρδS

dt
+

dΩ
dt

∏
q′
δρδS ,(5.12)

where the deltas correspond to those in (5.11), in an obvious notation. The first term
on the right-hand side of (5.12) is zero (or equivalently, (5.10) obeys (5.9)) since, when
applied to the δρ-factor, for example, the total time derivative is

d
dt

∏
q′
δρ =

(
∂

∂t
+

∫
d3q

(
ρ̇(q)

δ

δρ(q)

)) ∏
q′
δρ(5.13)

and evaluating the partial time derivative gives

∂

∂t

∏
q′
δρ = −

∫
d3q

(
ρ̇(q)

δ

δρ(q)

)∏
q′
δρ.(5.14)

The same result holds for δS , which establishes that the pure state is preserved by Liou-
ville’s equation. Hence, (5.11) is a solution of Liouville’s equation (5.2) if the functional
Ω obeys the equation

dΩ
dt

∏
q′
δρδS = 0,(5.15)

or, integrating over the field coordinates,

∂Ω
∂t

∣∣∣∣ ρ=ρ(t)
S=S(t)

+
∂H

∂pi

∂Ω
∂qi

− ∂H

∂qi

∂Ω
∂pi

+(5.16)

+
∫ (

δHtot

δπρ

∂Ω
δρ(t)

+
δHtot

δπS

δΩ
δS(t)

− δHtot

δρ(t)
δΩ
δπρ

− δHtot

δS(t)
δΩ
δπS

)
d3q′ = 0.

We now show that the assumption of a pure state, (5.11), reduces (5.6) to an equation
in just f . Substituting (5.11) into (5.4) gives

f(q, p, t) =
∫

Ω
[
q, p, πρ(q′), πS(q′), t | ρ(q′, t), S(q′, t)

] ∏
q′

dπρ(q′) dπS(q′).(5.17)

That is, the particle distribution function is the functional Ω evaluated along the field
trajectory and integrated over the field momenta. Note that f depends on the fields ρ
and S (an explicit expression is given in subsect. 5.2). Then, substituting (5.11) into (5.6)
and using (5.17) gives the desired result:

∂f

∂t
+
∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi
= 0.(5.18)
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Here ρ in the quantum potential is now time-dependent.
To clarify the meaning of the time derivative in (5.18) we derive the latter from (5.16)

by integrating over the field momenta. By partial functional integration the last two
terms in the integral in (5.16) vanish and, because Htot is linear in the field momenta,
we find

∂f

∂t

∣∣∣∣ ρ=ρ(t)
S=S(t)

+
∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi
+

∫ (
δHtot

δπρ

δf

δρ(t)
+
δHtot

δπS

δf

δS(t)

)
d3q′ = 0.(5.19)

This equation is the same as (5.18) if we take note of (5.17) which shows that the time
dependence of f has two sources—the explicit dependence of Ω on t and its implicit
dependence through the fields. That is,

∂f

∂t
=

∂f

∂t

∣∣∣∣
ρ,S

+
∫ (

ρ̇
δf

δρ
+ Ṡ

δf

δS

)
d3q′.(5.20)

It is therefore the “total” partial time derivative which appears in (5.18).
Inserting the explicit form of H from (4.11) we obtain finally the following equation

of evolution for the particle distribution function:

∂f

∂t
+

pi

m

∂f

∂qi
− ∂

(
V (q, t) + Q

(
ρ(q, t)

))
∂qi

∂f

∂pi
= 0.(5.21)

Thus, under the assumption of a pure state, we may restrict attention to the subspace
(q, p) of the total phase space, the total potential V + Q in (5.16) being treated as a
prescribed function of space and time. This is Liouville’s equation for the particle which
we may evidently write as

df
dt

=
∂f

∂t
+ q̇i

∂f

∂qi
+ ṗi

∂f

pi
= 0,(5.22)

where the partial time derivative is given by (5.20). We may thus treat f as a constant
of the motion in the usual way.

To see that the flow implied by (5.21) does not generally reproduce the quantal particle
distribution ρ, consider the space- (q-) projection. Defining the spatial distribution to be

n(q, t) =
∫

f(q, p, t) d3p,(5.23)

we have

∂n

∂t
+

1
m

∂
(
np̄i

)
∂qi

= 0,(5.24)

where

p̄i(q, t) =
∫

pif d3p/n(5.25)
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is the local mean momentum. If the particle is distributed according to ρ, (5.24) should
coincide with the field equation (1.5) but clearly in general it does not. Even if n(q, t =
0) = ρ(q, t = 0), n �= ρ for other times since the mean momentum is arbitrary. As an
example of a distribution that is incompatible with the quantum distribution we note
that a possible solution of (5.21) is a “pure state” for the particle:

f(q, p, t) = δ
(
q − q(t)

)
δ
(
p− p(t)

)
.(5.26)

The q-projection of this function is a δ-function for all time and we know that a quantal
distribution cannot have this form.

5.2. Constraints giving the quantal distribution: general form of the phase space dis-
tribution function. – To ensure that the ensemble of particles is distributed as required
we have to restrict the flow of permissible motions in some way. Our basic constraint
will be to require that the space-projected density n coincides with ρ for all time. Then
from (5.23) and (5.24)

ρ(q, t) =
∫

f(q, p, t) d3p ,(5.27)

∂ρ

∂t
+

1
m

∂
(
ρp̄i

)
∂qi

= 0 ,(5.28)

so that the current is given by ρp̄i. We now examine the implications of this assumption
for the flow, taking into account that (5.21) must be consistent with Hamilton’s equa-
tions (4.16) and (4.17) for the fields ρ and S, i.e., Schrödinger’s equation. In this way
we shall exhibit the most general particle phase space distribution that is compatible
with the quantal spatial distribution, for particles moving according to Hamilton’s equa-
tions (4.14) and (4.15). As envisaged in sect. 3 the field coordinate ρ is now playing two
roles: it is a component of a physical field which contributes to the force acting on the
particle and, as we shall see, it is a component of the particle distribution function; there
is no conceptual inconsistency between these two roles. This dual role has the effect of
making Liouville’s equation (5.21) highly nonlinear.

Comparing (4.16) with (5.28) shows that the local mean momentum must be restricted
by the condition

p̄i =
∂S

∂qi
+

1
ρ
Xi,(5.29)

∂Xi

∂qi
= 0,(5.30)

where the vector field Xi(q, t) may depend on the fields. The evolution equation (5.28)
is then the same as the Hamilton equation for ρ. The divergenceless of Xi gives a second
constraint on the flow.

Multiplying (5.21) by pi and integrating over p we get an equation of evolution for
the local mean momentum:

∂

∂t

(
ρp̄i

)
+

1
m

∂

∂qj

(
ρpipj

)
= −ρ∂(V + Q)

∂qi
,(5.31)
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where

pipj(q, t) =
∫

pipjf d3p/ρ(5.32)

is the local mean momentum stress tensor. Now, using the Hamilton equation (4.16) for
ρ, the q-derivative of the Hamilton equation (4.17) for S may be brought to the form

∂

∂t

(
ρ
∂S

∂qi

)
+

1
m

∂

∂qj

(
ρ
∂S

∂qi

∂S

∂qj

)
= −ρ∂(V + Q)

∂qi
.(5.33)

Subtracting (5.33) from (5.32) and using (5.29), then gives

∂Xi

∂t
+

1
m

∂Xij

∂qj
= 0,(5.34)

where

pipj =
∂S

∂qi

∂S

∂qj
+

1
ρ
Xij(5.35)

and the tensor field Xij(q, t) is symmetric. Equation (5.34) is a third constraint on the
flow, analogous to (5.30). If the condition (5.34) is obeyed, eq. (5.31) for the mean
momentum coincides with eq. (5.33) derived from the Schrödinger equation.

Now, ρ is uniquely fixed by the two coupled Hamilton equations (4.16) and (4.17)
so the information contained in the Liouville equation pertaining to ρ should at most
reproduce the implications of these two equations. Hence eq. (5.28) for ρ and eq. (5.31)
for p̄i, which can in principle be solved together to give ρ, must already exhaust the
independent morsels of information on ρ implied by the Liouville equation, and must be
equivalent to deductions from the Schrödinger equation (these two equations are indepen-
dent since, for example, the latter involves V ). This means that the equations for all the
higher momentum moments deducible from (5.21), which are functions of q and t, must
simply reproduce the information on ρ contained in these first two moment equations, or
equivalently in the Schrödinger equation. This requirement imposes constraints on the
higher moments, and consequently on the distribution function, as we now see. (Actually,
all possible space-projected equations must reproduce just implications of Schrödinger’s
equation. For polynomial functions of p with (q, t)-dependent coefficients this will be
ensured by conditions on the momentum moments, and we may confine attention to the
latter as they give sufficient information to determine the distribution f as a function of
p, as shown below).

The trend implicit in eqs. (5.28)-(5.35) is clear. Defining the n-th momentum moment
as

pi1 · · · pin
(q, t) =

∫
pi1 · · · pin

f d3p/ρ,(5.36)

we deduce from (5.21)

∂

∂t

(
ρpi1 · · · pin−1

)
+

1
m

∂

∂qin

(
ρpi1 · · · pin

)
= −ρ

∑
P

pi1 · · · pin−2

∂(V + Q)
∂qin−1

,(5.37)
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where P denotes permutation of the indices and n = 1, . . . ,∞ with the convention that

pi0 = 1, pir
= 0, r < 0.(5.38)

Likewise, the field Hamilton equations (4.16) and (4.17) imply, with the same convention,

∂

∂t

(
ρ
∂S

∂qi1

· · · ∂S

∂in−1

)
+

1
m

∂

∂qin

(
ρ
∂S

∂qi1

· · · ∂S

∂qin

)
=(5.39)

= −ρ
∑
P

∂S

∂qi1

· · · ∂S

∂qin−2

∂(V + Q)
∂qin−1

.

Subtracting these relations, we get

∂Xi1···in−1

∂t
+

1
m

∂Xi1···in

∂qin

= −
∑
P

Xi1···in−2

∂(V + Q)
∂qin−1

,(5.40)

where

pi1 · · · pin
=

∂S

∂qi1

· · · ∂S

∂qin

+
1
ρ
Xi1···in

, Xir
= 0, r ≤ 0(5.41)

and the tensor field Xi1···in
is totally symmetric. We shall call the latter the “X-tensor”.

The set of X-tensors are connected by (5.40), a set of relations which generalize (5.30)
and (5.34), and they generally depend on the fields. Under these circumstances the
equations obeyed by the space projections of polynomial functions of p simply reproduce
implications of the Schrödinger equation. Note that each X-tensor generally appears in
three equations in the set (5.40).

Does a distribution f having these properties exist? This is a difficult question to
answer in general but we can at least exhibit its explicit form, given that it does exist,
by using the method of moments [18]. The method we use fixes the p-dependence of f .
Then, as we shall see, it is possible to prove the existence of at least one solution, and in
the process fix the q-dependence of f in terms of known functions as well.

The (complex) momentum characteristic function is defined as

M(λ, q, t) =
∫

eiλjpjf(q, p, t) d3p(5.42)

= ρ

(
1 +

∞∑
n=1

in

n!
λi1 · · ·λin

pi1 · · · pin

)
,(5.43)

using the definition (5.36). Here λi is real and we integrate over all p. Inserting (5.41)
in (5.43) gives

M(λ, q, t) = ρeiλj(∂S/∂qj) +
∞∑

n=1

in

n!
λi1 · · ·λin

Xi1···in
.(5.44)
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Inverting (5.42) we get for the particle distribution

f(q, p, t) = (2π)−3

∫
e−iλjpjM(λ, q, t) d3λ(5.45)

which, with (5.44), gives finally

f(q, p, t) = fδ(q, p, t) + θ(q, p, t),(5.46)

where

fδ(q, p, t) = ρ(q, t)δ
(
p− ∂S(q, t)

∂q

)
(5.47)

and

θ(q, p, t) = (2π)−3

∫
e−iλjpj

∞∑
n=1

in

n!
λi1 · · ·λin

Xi1···in
(q, t) d3λ.(5.48)

The function (5.46), subject to the constraints that the component θ obeys the relations

∫
θ(q, p, t) d3p = 0,

∫
pi1 · · · pin

θ d3p = Xi1···in
(5.49)

(the first condition comes from (5.27)) where the X-tensors satisfy (5.40), is the most
general solution of (5.21) which ensures that the space-projected equations obeyed by
polynomial functions of p (with (q, t)-dependent coefficients) will be consistent with the
Schrödinger equation. An ensemble of particles moving in accordance with Hamilton’s
equations (4.14) and (4.15) will generate the quantal distribution ρ if their phase space
distribution is (5.46). The dependence of f on the fields will be observed. Note that
we have ignored mathematical issues here, such as whether the series that defines θ
converges.

To check the validity of (5.46) we can compute its momentum moments and confirm
that it obeys (5.21). In fact, the functions fδ and θ are independent solutions. To check
this it is easier (e.g., to avoid the δ-function) to use the evolution equation obeyed by
the characteristic function. Inserting (5.42) in (5.21) this is

∂M

∂t
− i

m

∂2M

∂λj∂qj
+ iλj

∂(V + Q)
∂qj

M = 0.(5.50)

Using the relations (5.39) and (5.40) it is readily confirmed that each of the components
in (5.44) corresponding to fδ and θ is a solution. Although (5.21) is nonlinear in f we
see that it obeys a limited form of the superposition principle. A caveat to this result is
that, although it obeys the differential equation, θ cannot be an acceptable solution on
its own since it does not give the correct momentum moments (5.27) and (5.36) when
integrated over p. Likewise fδ is not individually acceptable as it does not imply the
moments (5.36) (however, fδ is acceptable if θ = 0 for all q, p).

While the function (5.46) is compatible with the (non-negative) quantal spatial dis-
tribution, we have not required so far that it be non-negative everywhere in the particle



1064 PETER HOLLAND

phase space (q, p), which would justify the appellation “distribution”. In analogous stud-
ies of phase space functions in quantum mechanics, such as the Wigner function, it is
accepted that the functions may have no particular sign since they are not supposed to
be representative of an underlying physical motion of an ensemble of particles. Here in
contrast f is precisely such a descriptor, and hence we require that it be non-negative:
f ≥ 0. The function fδ already obeys this condition but it imposes further constraints
on θ. The first relation in (5.49) shows that, if finite, θ must be negative for some values
of p, for each q. Consider the case where p �= ∂S/∂q. Then from (5.46) f = θ so that θ
must be positive for those p’s for which it is finite, for all q. Hence, θ must be strictly
negative for some p = ∂S/∂q, and only there. (If θ is zero for all p = ∂S/∂q it will be
zero everywhere since it must be negative somewhere). Thus, if θ is finite,

θ(q, p, t)

{
< 0, for some p = ∂S/∂q,

≥ 0, p �= ∂S/∂q.
(5.51)

5.3. A special solution. – We do not enter into the general question of whether a finite
function θ can be found that obeys all the conditions (5.40), (5.49), and (5.51) in order
that it contributes to a genuine distribution function f . For, as hinted at above, it is
clear that there exists at least one solution that satisfies all our criteria: θ = 0 for all q, p
and t. This is ensured if we assume that all the X-tensors vanish, which is obviously a
possible solution of (5.40). In fact, by virtue of the fact that a solution (here, f = θ)
to Liouville’s equation (5.22) is a constant of the motion we need merely assume that θ
vanishes for all q, p at one instant, for this condition will be preserved for all t. Making
this assumption, we have then the solution

f(q, p, t) = fδ(q, p, t) = ρ(q, t)δ
(
p− ∂S(q, t)

∂q

)
.(5.52)

This solution has the property that no arbitrary functions appear—both the p- and
the q-dependences are uniquely fixed in terms of known functions. We conclude that a
distribution that obeys Liouville’s equation, that is non-negative everywhere in the phase
space, and that generates the quantal distribution, is given by (5.52).

However, although (5.52) is a valid solution, the possible existence of finite-θ solutions
implies that the conditions we have imposed on solutions to Liouville’s equation to ensure
compatibility with the Schrödinger equation do not result in a unique distribution. In
fact, these conditions do not exhaust those that we may reasonably impose. For example,
we may require that the momentum moments have some connection with the quantum-
mechanical mean values of the corresponding momentum operators, or there may be
natural conditions to be imposed on the q-moments of f . Connected with this, we may,
for instance, require that the mean momentum density ρp̄i (obeying (5.28)) coincides
with the usual expression for the quantum-mechanical current. From (5.29) this implies
that Xi = 0 and amounts to the assertion that the usual expression for the current is
unique. Schrödinger’s equation per se does not imply this uniqueness for we can add to
the usual expression a divergenceless vector to obtain a total current that is consistent
with the same spatial distribution, as in (5.29) (an argument may be advanced for the
uniqueness of the spin-(1/2) current starting from relativistic considerations and it is
possible a similar demonstration could be given for the spin-0 current [19]). However,
even if we could demonstrate uniqueness of the current, the single condition Xi = 0 will
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not imply a unique expression for θ (it does not, for example, imply that all the other
X-tensors vanish) and other assumptions must be made. And in any case, if our concern
is to demonstrate, for example, the uniqueness of the deBB theory (which as we shall see
in sect. 6 is connected with fδ) such a result will be of no assistance for we shall show
later using other arguments that this theory is not unique (see the following paper).

6. – Interpretation of the phase space constraint p = ∂S(q, t)/∂q. The de
Broglie-Bohm theory

The dependence of the distribution (5.52) on the particle coordinates q and p is
expressed through the (q- and t-dependent) field coordinates ρ and S. This function
thus pertains not just to the particle subspace (where it is a distribution function) but
also to a wider subspace of the phase space of the composite system. To emphasize this
dependence we may express the distribution as a functional:

fδ(q, p, t) ≡ fδ

[
q, p, ρ(q′, t), S(q′, t)

]
=

∫
ρ(q′, t)δ

(
p− ∂S(q′, t)

∂q′

)
δ(q − q′) d3q′.(6.1)

It is finite only in the region of the total phase space defined by the following relation:

p =
∂S(q, t)
∂q

.(6.2)

The relation (6.2) makes p a q- and t-dependent function. This is not yet an equation
determining the time dependence of p along a particle path, i.e., it is not a solution to
Hamilton’s equations. It is rather the sought-for constraint on the full set of Hamilton’s
equations which is sufficient to ensure that the particle phase space flow reproduces the
quantal distribution.

This constraint on the available phase space has two interpretations. First, it asserts
a relation between the particle position and momentum coordinates q and p and the field
coordinate S (where the latter is evaluated along a field trajectory). However, regarded
as a constraint, this relation restricts only the particle coordinates and not S. Hence we
have a second interpretation: regarding S as a given “external” function, (6.2) implies
a relation just between the particle momentum and position coordinates which defines
a moving curve in the particle subspace to which the particle motion is confined. The
value of p is uniquely fixed when we specify the particle position q. Conversely, given the
momentum, we can in principle invert (6.2) to obtain the associated position although in
general this is not unique (indeed, there can be an infinite number of q’s associated with
a single momentum value; e.g., for a real stationary state, p = 0 for all q (outside nodes
where the right-hand side of (6.2) is undefined)). Our statistical argument of sect. 5
has therefore resulted in a condition that limits the motion of individual members of the
ensemble of particles.

Although (6.2) is not a restriction on S, it can be used to construct possible initial
phase functions. Thus, if

pi0 = µi(q0) ,(6.3)
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where µi(q) is a given single-valued function, we can define

S0(q0) =
∫ q0

µi(q) d3qi.(6.4)

The consistency of the constraint (6.2) may be demonstrated by establishing its com-
patibility with Hamilton’s equations. We note first that (6.2) is automatically consistent
with the field Hamilton equations (4.16)-(4.19) since these are independent of p. Next,
we may demonstrate that (6.2) is consistent with Hamilton’s equation for p by showing
that the latter follows from the other Hamilton equations when we assert the validity
of (6.2). To this end, we insert the position q(t) in (6.2):

p(t) =
∂S

(
q(t), t

)
∂q

.(6.5)

Then

ṗi =
(
q̇j

∂

∂qj
+

∫
d3q′Ṡ(q′)

δ

δS(q′)

)
∂S

∂qi
= q̇j

∂2S

∂qj∂qi
+

∂

∂qi
Ṡ(q).(6.6)

Taking the q-derivative of (4.17) we get

(
∂

∂t
+

1
m

∂S

∂qj

∂

∂qj

)
∂S

∂qi
= −∂(V + Q)

∂qi
.(6.7)

Using Hamilton’s equation (4.14) we obtain from (6.5) the law of motion:

mq̇i(t) =
∂S

(
qi, t

)
∂qi

∣∣∣∣
qi=qi(t)

, i = 1, 2, 3.(6.8)

Inserting (6.8) and (6.7) in (6.6) then gives Hamilton’s equation (4.15), and the consis-
tency is proved.

In the course of deriving a constraint on the solutions of Hamilton’s equations we have
given a condition which in the form (6.8) can itself be used to solve for the particle motion.
This of course is the deBB law (1.2). We see that the deBB equation arises through a
particular solution of Liouville’s equation, fδ, whose form is fixed by the requirement that
the phase space evolution is compatible with the implications of Schrödinger’s equation.
It is to be interpreted as arising from a relation between the phase space coordinates
of the total wave-particle system, one which also implies a relation between the particle
phase space coordinates. Although it has the form of a HJ-type relation it has been
derived here without reference to HJ theory. The role of the latter is discussed in the
following paper.

We have shown that the force law follows from the constraint (6.2) (in conjunction
with Hamilton’s equations for q and S) so this condition encodes information on the forces
acting on the particle (a similar situation obtains in classical HJ theory). To examine
whether the constraint implies forces additional to those already contained in Hamilton’s
particle equations, we set it within the context of the usual theory of constraints in
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Hamiltonian systems [20]. Suppose for a moment that the phase space were subject to a
general set of (primary) constraints

φµ

(
qi, pi, ρ(q′), S(q′), πρ(q′), πS(q′), t

)
= 0,(6.9)

where µ is less than the number of freedoms in the system. Then Hamilton’s equations
are to be evaluated using the modified Hamiltonian

H̄tot = Htot +
∑

µ

uµφµ,(6.10)

where uµ is an undetermined multiplier (independent of the phase space coordinates).
In the present case we have three primary constraints since, writing

φi ≡ pi −
∫

∂S(q′, t)
∂q′i

δ(q − q′) d3q′ = 0,(6.11)

q′ is a dummy index. Using the modified Hamiltonian (6.10) in Hamilton’s particle
equations gives

q̇i =
∂Htot

∂pi
+ uj

∂φj

∂pi
=

1
m
pi + ui,(6.12)

ṗi = −∂Htot

∂qi
− uj

∂φj

∂qi
= − ∂

∂qi
(V + Q) + uj

∂2S

∂qj∂qi
.(6.13)

Hamilton’s equations for the fields computed using the modified Hamiltonian are un-
changed except for eq. (4.19) for πS which picks up an additional δ-function term multi-
plied by ui. This shows, as stated above, that (6.11) is not a constraint on the Schrödinger
field. To ensure that eq. (6.11) is obeyed for all time we require that φ̇i = 0 (so that φi

is a constant of the motion). In general such a condition implies identities, secondary
constraints, or further conditions on ui. Using the definition (4.21) of the total time
derivative, Hamilton’s equations (6.12) and (6.13), and Hamilton’s equation for S, we
find

dφi

dt
=

d
dt

(
pi − ∂S(q, t)

∂qi

)
= − 1

m

(
pj − ∂S

∂qj

)
∂2S

∂qj∂qi
,(6.14)

which vanishes in virtue of the constraint (6.11). Thus, φi is a constant of the motion
automatically and we do not obtain any extra useful conditions.

To fix ui we appeal to Liouville’s equation (5.22). The flow implied by (6.12) and
(6.13) must be compatible with the distribution fδ (since we are assuming the con-
straint (6.11) implied by the latter) and hence, inserting q̇ and ṗ into (5.22) and noting
that fδ is a solution when ui = 0, we must have

ui
∂fδ

∂qi
+ uj

∂2S

∂qj∂qi

∂fδ

∂pi
= 0.(6.15)
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This equation reduces to

ui
∂ρ

∂qi
δ

(
p− ∂S

∂q

)
= 0(6.16)

and, integrating over p, we deduce that ui = 0. The complete set of Hamilton’s equations
is therefore unmodified by the constraint (6.11) and we conclude in particular that the
latter does not introduce any forces additional to those implied by V + Q.

If we use Hamilton’s particle equations to solve for the motion (rather than deBB)
the role of the constraint is then to restrict the admissible initial conditions. This follows
since, if the constraint is obeyed at an instant, Hamilton’s equations guarantee its validity
for all time by virtue of Liouville’s equation (5.22):

d
dt

(
ρ(q, t)δ

(
p− ∂S(q, t)

∂q

))
= 0.(6.17)

Thus, if the initial coordinates obey the constraint evaluated at t = 0,

p0 =
∂S0(q)
∂q

∣∣∣∣
q=q0

,(6.18)

where S0 is a prescribed function, we may solve for the ensemble of admissible motions
using the particle Hamilton equations (4.14) and (4.15), and the flow so obtained will
coincide with that obtained by directly integrating (6.8). This result was asserted by
Bohm [3,5] starting from the second-order equation for q (obtained by substituting (4.14)
in (4.15)) but he did not prove it explicitly.

We have thus shown that we can solve for the particle motion in two dynamically
equivalent ways: solve Hamilton’s equations subject to the constraint (6.18) on the initial
coordinates, or solve (6.8). The deBB theory can therefore be formulated as a brand of
Hamiltonian mechanics in a way that preserves its statistical harmony with quantum
mechanics. This answers the first of the questions posed in sect. 1 which motivated this
investigation.

We have seen in subsect. 5.2, however, that, while the assumption of the deBB
law (6.8) implies that the quantum potential is the appropriate quantity with which
to describe quantum actions on the particle, the converse is not true: the Hamiltonian
theory based on the quantum potential does not uniquely result in the deBB law if our
only concern is compatibility of Liouville’s equation with Schrödinger’s. Thus, we could
have laws other than deBB (i.e., we could restrict the solutions to Hamilton’s equa-
tions (4.14) and (4.15) in a different way) so long as the coordinates are distributed
according to the general expression (5.46). The momentum need not then be restricted
to a unique value when the position is specified.

That the function fδ is the distribution appropriate to the deBB theory was first
shown by Takabayasi [21]. We shall see in sect. 6 of the following paper, however, that
it has more general validity in that it can be valid in cases where the particle law of
motion is different from that of deBB. Note that the argument resulting in fδ applies in
a phase space frame in which H has the form (4.10). The relations (6.1) and (6.2) are
not canonically invariant and will take different forms in other frames. How to effect this
transformation is discussed in sect. 4 of the following paper. There we shall also discuss
further the significance of the results obtained here.
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