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Hamiltonian theory of wave and particle in quantum mechanics
II: Hamilton-Jacobi theory and particle back-reaction
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Summary. — Pursuing the Hamiltonian formulation of the de Broglie-Bohm
(deBB) theory presented in the preceding paper, the Hamilton-Jacobi (HJ) theory
of the wave-particle system is developed. It is shown how to derive a HJ equation for
the particle, which enables trajectories to be computed algebraically using Jacobi’s
method. Using Liouville’s equation in the HJ representation we find the restriction
on the Jacobi solutions which implies the quantal distribution. This gives a first
method for interpreting the deBB theory in HJ terms. A second method proceeds
via an explicit solution of the field+particle HJ equation. Both methods imply that
the quantum phase may be interpreted as an incomplete integral. Using these re-
sults and those of the first paper it is shown how Schrödinger’s equation can be
represented in Liouvillian terms, and vice versa. The general theory of canonical
transformations that represent quantum unitary transformations is given, and it is
shown in principle how the trajectory theory may be expressed in other quantum
representations. Using the solution found for the total HJ equation, an explicit solu-
tion for the additional field containing a term representing the particle back-reaction
is found. The conservation of energy and momentum in the model is established,
and a weak form of the action-reaction principle is shown to hold. Alternative forms
for the Hamiltonian are explored and it is shown that, within this theoretical con-
text, the deBB theory is not unique. The theory potentially provides an alternative
way of obtaining the classical limit.

PACS 03.65 – Quantum mechanics.

1. – Introduction

In the preceding paper [1] (paper I) we have developed a Hamiltonian formalism
describing the interaction of a particle with the Schrödinger field and an additional
(complex) field. Representing the system by the phase space coordinates (q, ρ(q′), S(q′), p,
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c© Società Italiana di Fisica 1143



1144 PETER HOLLAND

πρ(q′), πS(q′)), the total Hamiltonian is given by the expression

(1.1) Htot = H +
∫ {

− πρ

(
1
m

∂

∂q′i

(
ρ
∂S

∂q′i

))
− πS

(
1
2m

∂S

∂q′i

∂S

∂q′i
+Q+ V

)}
d3q′,

where

(1.2) H(ρ, q, p, t) =
1
2m

pipi + V (q, t) +Q(ρ(q))

and

(1.3) Q(q, t) = − h̄2

2m
√
ρ

∂2√ρ

∂q2
i

=
h̄2

4mρ

(
1
2ρ

(
∂ρ

∂qi

)2

− ∂2ρ

∂q2
i

)

is the quantum potential. Hamilton’s particle equations are

(1.4) q̇i =
1
m
pi,

(1.5) ṗi = − ∂

∂qi

[
V (q, t) +Q(ρ(q))

]
,

and the field equations are

(1.6) ρ̇(q′, t) = − 1
m

∂

∂q′i

(
ρ(q′)

∂S(q′)
∂q′i

)
,

(1.7) Ṡ(q′, t) = − 1
2m

∂S(q′)
∂q′i

∂S(q′)
∂q′i

− V (q′, t)−Q(ρ(q′)),

(1.8) π̇ρ(q′, t) = − 1
m

∂πρ(q′)
∂q′i

∂S(q′)
∂q′i

+
δ

δρ(q′)

∫
πS(q′′)Q(ρ(q′′))d3q′′ − δQ(ρ(q))

δρ(q′)
,

(1.9) π̇S(q′, t) =
1
m

∂

∂q′i

(
ρ(q′)

∂πρ(q′)
∂q′i

− πS(q′)
∂S(q′)
∂q′i

)
.

Equations (1.6) and (1.7) are equivalent to Schrödinger’s equation. Equations (1.4)
and (1.5) exhibit the influence of the wave on the particle through the quantum potential,
and the last two coupled equations contain a particle source term in (1.8). We showed
in subsect. 5.1(I) (numbers of sections and equations in the first paper will be followed
by (I)) that for a pure quantum state the particle obeys its own Liouville equation,

(1.10)
∂f

∂t
+

∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi
= 0,
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which with (1.2) gives

(1.11)
∂f

∂t
+

pi

m

∂f

∂qi
− ∂

(
V (q, t) +Q(ρ(q, t))

)
∂qi

∂f

∂pi
= 0.

The general solution of this equation compatible with the q-projected distribution ρ is
given by

(1.12) f(q, p, t) = fδ(q, p, t) + θ(q, p, t),

where

(1.13) fδ(q, p, t) = ρ(q, t)δ
(
p− ∂S(q, t)

∂q

)

and θ is subject to a series of conditions. The solution (1.13) implies the following
constraint on the system phase space:

(1.14) pi =
∂S(q, t)
∂qi

.

In conjunction with Hamilton’s equation (1.4), (1.14) gives the de Broglie-Bohm (deBB)
guidance equation

(1.15) m
dqi(t)
dt

=
∂S(qi, t)

∂qi

∣∣∣∣
qi=qi(t)

, i = 1, 2, 3.

The particle trajectory may be computed from (1.15) or from Hamilton’s equations (1.4)
and (1.5) subject to the constraint (1.14) on the initial coordinates.
The principal aims of the present paper are to examine the second question posed

in paper I, that is, the relation of the deBB theory to Hamilton-Jacobi (HJ) theory, to
give an explicit solution for the additional field which includes the particle back-reaction
term, and to explore further the issue of the uniqueness of the particle law of motion
within the Hamiltonian framework. We start by establishing the HJ theory for the total
system, and derive a HJ equation just for the particle (which comes out as (1.9)(I))
(sect. 2). This enables trajectories to be computed algebraically using Jacobi’s method.
Using Liouville’s equation (1.11) in the HJ representation, we find the restriction on the
Jacobi solutions which implies the quantal distribution. This gives a first method for
interpreting the deBB theory in HJ terms. A second method proceeds via an explicit
solution of the field+particle HJ equation. Both methods imply that the quantum phase
may be interpreted as a component of an (incomplete) integral of the HJ equation for the
total system. Using these results and those of the first paper it is shown how Schrödinger’s
equation can be represented in Liouvillian terms, and vice versa (sect. 3). The general
theory of canonical transformations that represent quantum unitary transformations is
given (sect. 4), and it is shown in principle how the trajectory theory may be expressed
in other quantum representations. Using the solution found for the total HJ equation, an
explicit solution for the additional field containing a term representing the particle back-
reaction is found (sect. 5). The conservation of energy and momentum in the model is
established, and a weak form of the action-reaction principle is shown to hold. Alternative
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forms for the Hamiltonian are explored and it is shown that, within the theoretical context
discussed here, the deBB theory is not a unique solution to the problem of formulating a
deterministic substructure for quantum mechanics (sect. 6). The paper concludes with
a discussion of the results obtained, and it is pointed out that the theory potentially
provides an alternative way of obtaining the classical limit (sect. 7).

2. – The Hamilton-Jacobi theory for the wave-particle system

2.1. Jacobi’s laws of motion. – We consider canonical transformations on the total
phase space, generalizing the canonical theory of fields (e.g., [2]) to include the particle
variables. The quantity W [q, ρ, S, p̄, π′

ρ, π
′
S , t], which is a function of the particle coordi-

nates and a functional of the fields, generates a canonical transformation from the set of
phase space coordinates (q, ρ, S, p, πρ, πS) to a new set (q̄, ρ′, S′, p̄, π′

ρ, π
′
S) if

pidqi +
∫ (

πρ(q′)δρ(q′) + πS(q′)δS(q′)
)
d3q′ −Htotdt =(2.1)

= −q̄idp̄i −
∫ (

ρ′(q′)δπ′
ρ(q

′) + S′(q′)δπ′
S(q

′)
)
d3q′ −H ′

totdt+ dW,

where H ′
tot is the transformed Hamiltonian. Here

dW =
∂W

∂t
dt+

∂W

∂qi
dqi +

∂W

∂p̄i
dp̄i +

∫ (
δW

δρ(q′)
δρ(q′) +

δW

δS(q′)
δS(q′)

)
d3q′+(2.2)

+
∫ (

δW

δπ′
ρ(q′)

δπ′
ρ(q

′) +
δW

δπ′
S(q′)

δπ′
S(q

′)
)
d3q′,

which, on comparing with (2.1), gives

(2.3)




q̄i = ∂W
∂p̄i

, ρ′(q′) = δW
δπ′

ρ(q′) , S′(q′) = δW
δπ′

S(q′) ,

pi = ∂W
∂qi

, πρ(q′) = δW
δρ(q′) , πS(q′) = δW

δS(q′) ,

H ′
tot = Htot + ∂W

∂t .

The first two rows in (2.3) are the equations of motion in Jacobi’s form. We have chosen
the generating functionW to be a function of the old coordinates and the new momenta (a
generalization of the function F2 of Goldstein [3]) because of the requirements of unitary
invariance to be examined later (see sect. 4). Choosing H ′

tot = 0, Hamilton’s equations
imply that the new variables are constant in time. Then W generates a transformation
that trivializes the motion, and from the last relation in (2.3) and (1.1) it obeys the HJ
equation:

∂W

∂t
+

1
2m

∂W

∂qi

∂W

∂qi
+ V (q, t) +Q(ρ(q))+(2.4)

+
∫ {

− δW

δρ(q′)

(
1
m

∂

∂q′i

(
ρ(q′)

∂S(q′)
∂q′i

))
−

− δW

δS(q′)

(
1
2m

∂S(q′)
∂q′i

∂S(q′)
∂q′i

+Q(ρ(q′)) + V (q′, t)
)}

d3q′ = 0.
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The total energy of the system is now represented by (−∂W/∂t).
More generally, we shall treat W as a complete integral that is a function of a set

of arbitrary non-additive constants: W [qi, ρ(q′), S(q′), αi, Aρ(q′), AS(q′), t]. The Jacobi
equations of motion from which we may calculate the time dependence of the coordinates
are then

(2.5) βi =
∂W

∂αi
, Bρ(q′) =

δW

δAρ(q′)
, BS(q′) =

δW

δAS(q′)
.

In order to invert these relations to find explicit expressions for the coordinates, we must
assume that the Hessian matrix,

(2.6) hij(q, q′, q′′, q′′′) =




∂2W

∂qi∂αj

δ2W

∂qiδAρ(q)
δ2W

∂qiδAS(q′)

δ2W

δρ(q′′)∂αj

δ2W

δρ(q′′)δAρ(q)
δ2W

δρ(q′′)δAS(q′)

δ2W

δS(q′′′)∂αj

δ2W

δS(q′′′)δAρ(q)
δ2W

δS(q′′′)δAS(q′)




,

is invertible: deth �= 0 (h is a square matrix; if we think for a moment of the argument
of each field as having n values, there are 3+2n rows and columns). Having solved (2.5)
for the coordinates, the momenta may be found by substituting into the three relations
in the second row of (2.3).
The Hamilton equations (1.6) and (1.7) for the fields ρ and S are independent of the

particle variables and the conjugate field momenta. Hence we must be able to derive from
the transformation equations (2.5) a closed solution for the field coordinates. This will
happen since, as we shall see in sect. 4, when we restrict to transformations corresponding
to quantum unitary transformations W is linear in π′

ρ(= Aρ) and π′
S(= AS). The last

two equations in (2.5) are thus equivalent to the Schrödinger equation. This closure
of ρ and S is preserved under canonical transformations which correspond to unitary
transformations (see sect. 4).
To check the validity of Jacobi’s equations, we now derive Hamilton’s equations from

them by extending the well known techniques of particle mechanics [4] to include the
fields. To obtain Hamilton’s equations for the coordinates, we differentiate each of the
Jacobi equations (2.5) in turn with respect to time. For the first (particle) equation, say,
we obtain

0 = β̇j =
(
∂

∂t
+ q̇i

∂

∂qi
+

∫
d3q′

(
ρ̇(q′)

δ

δρ(q′)
+ Ṡ(q′)

δ

δS(q′)

))
∂W

∂αj
(2.7)

=
(
− 1

m
pi + q̇i

)
∂2W

∂qi∂αj
+

∫ (
ρ̇+

1
m

∂

∂q′′i

(
ρ
∂S

∂q′′i

))
δ2W

δρ(q′′)∂αj
d3q′′+

+
∫ (

Ṡ +
1
2m

∂S

∂q′′′i

∂S

∂q′′′i

+Q+ V

)
δ2W

δS(q′′′)∂αj
d3q′′′

where we have substituted for ∂W/∂t from (2.4) and replaced ∂W/∂qi by pi. Doing the
same for the other (field) Jacobi equations (2.5) we can employ the Hessian (2.6) to write
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the complete set of time-differentiated Jacobi equations in matrix form as follows:
(
− 1

mpi+q̇i

∫
d3q′′

(
ρ̇+ 1

m
∂

∂q′′
i

(
ρ ∂S

∂q′′
i

)) ∫
d3q′′′

(
Ṡ + 1

2m
∂S

∂q′′′
i

∂S
∂q′′′

i
+Q+V

))
×(2.8)

×hij(q, q′, q′′, q′′′) = 0.

Post-multiplying this equation by h−1
jk (q̃, q̃

′, q, q′) and summing over (j, q, q′), we deduce
that the row vector vanishes; Hamilton’s equations then follow. Likewise, we can differen-
tiate the momentum relations (the second row in (2.3)) with respect to time and recover
the second (momentum) set of Hamilton’s equations (for examples see subsects. 2.3 and
2.4).
We saw in sect. 5(I) that the ensemble of particle motions implied by Hamilton’s

equations (corresponding to varying the initial values) is too broad to give the quantal
distribution. We now show how this largesse is represented in the HJ formalism, and
see how the ensemble may be suitably restricted to give the correct distribution. In the
process, we shall confirm the result of sects. 5(I) and 6(I) that more general laws than
that of deBB are possible. We will describe two ways in which the latter may be regarded
as fitting into the HJ description.

2.2. Hamilton-Jacobi equation for the particle. – When computing a single system
trajectory using the HJ method we are employing a description that involves the entire
ensemble of potential trajectories, i.e., the lines orthogonal to the surfaces of constant
W . Here, in order to examine compatibility with the quantum distribution, we want
to restrict attention to just the particle component of the ensemble. To arrive at this
description, we use the fact that the ρ, S fields form a closed system whose dynamics
is independent of the particle. Hence, if we suppose that we have available a solution
for the fields (by directly solving Hamilton’s equations, say), so that they are fixed as
explicit functions of q and t,

(2.9) ρ = ρ
(
q, t, ρ0(q)

)
, S = S

(
q, t, S0(q)

)
,

we may consistently insert these in the HJ equation to leave an equation whose variables
pertain solely to the particle. Another way of saying this is that the non-additive con-
stants (Aρ, AS , Bρ, BS), which correspond to the initial actual values that are assumed
for the wave function and the field momenta, are fixed once and for all. This is analogous
to the insertion of a field solution in Liouville’s equation in subsect. 5.1(I). The remaining
(particle) degrees of freedom are contained in the function

(2.10) σ(q, α, t) =W
[
q, ρ(q′, t), S(q′, t), α,Aρ(q′), AS(q′), t

]
.

We have

(2.11)
∂σ

∂t
=

∂W

∂t
+

∫
d3q′

(
ρ̇(q′)

δW

δρ(q′)
+ Ṡ(q′)

δW

δS(q′)

)
,

∂σ

∂q
=

∂W

∂q
.

Substituting for the time derivatives of the fields from Hamilton’s equations (1.6) and
(1.7), the HJ equation (2.4) therefore becomes

(2.12)
∂σ

∂t
+

1
2m

∂σ

∂qi

∂σ

∂qi
+Q(q, t) + V (q, t) = 0.
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The canonical equations of motion ((2.5) and the second row of (2.3)) are now

(2.13) pi =
∂σ(q, α, t)

∂qi
, βi =

∂σ(q, α, t)
∂αi

.

We thus recover from our theory of the interacting wave-particle system the HJ equa-
tion (1.9)(I) associated with the putative particle Hamiltonian (1.7)(I) (i.e., (1.2)). How-
ever, whereas (1.9)(I) was simply postulated, we have derived it here in a way that takes
full account of the interaction of the particle with the wave, and thus have demonstrated
its consistency. Moreover, we understand how the equation is to be interpreted: it is a
reduced form of the HJ equation for the total wave-particle system. The function σ is
Hamilton’s principal function which generates a transformation trivializing the particle
motion. The equations (2.12) and (2.13) therefore constitute a genuine HJ theory of the
particle, where the possible particle paths are orthogonal to the surfaces σ = constant.
The particle energy is given by (−∂σ/∂t), as expected from the first relation in (2.11).
Given a solution to (2.12), we can solve for the particle motion using (2.13) by al-

gebraic means, just as in classical HJ theory. There may be circumstances where it is
easier to solve (2.12) if the quantum effects are expressed through the phase rather than
the quantum potential. To obtain this form, it proves convenient to write

(2.14) σ(q, α, t) = S(q, t) + σ′(q, α, t).

Subtracting (2.12) from Hamilton’s equation (1.7) for S we then get

(2.15)
∂σ′

∂t
+

1
2m

∂σ′

∂qi

∂σ′

∂qi
+
1
m

∂S

∂qi

∂σ′

∂qi
= 0

and the quantum effects are contained in the last term.

2.3. Ensembles compatible with the quantum distribution —the de Broglie-Bohm the-
ory . – The equation (2.12) has the form of the Hamilton equation (1.7) for S but it
admits more general solutions, including multivalued ones. Since this theory is just the
HJ version of Hamilton’s particle equations (1.4) and (1.5), we know from sect. 5(I) that
the Jacobi equations (2.13) imply an ensemble of motions that is generally incompatible
with the distribution ρ. We now examine the nature of the restriction that must be
imposed on the solutions to ensure compatibility.
To see that the ensemble of motions implied by (2.13) for arbitrary HJ functions σ is

in general too broad, we return to Liouville’s equation (1.11) which we express in the HJ
language (see the Appendix). We are working now in the space of the mixed coordinates
(q, α) which link the two phase space coordinate systems (q, p) and (α, β). In this space,
(1.11) becomes (see eq. (A.13))

(2.16)
∂Γ
∂t
+
1
m

∂

∂qi

(
Γ
∂σ

∂qi

)
= 0,

where Γ is the probability density in the space (q, α). Equation (2.16) together with the
HJ equation (2.12) are equivalent to Liouville’s equation in the form (1.10) together with
Hamilton’s particle equations (1.4) and (1.5). Clearly, the q-projected density will not
generally reproduce ρ, and we must restrict it in some way.
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Following the argument of subsect. 5.2(I), the q-projected equations implied by (2.16)
must yield just implications of the Schrödinger equation. We can follow the method of
that section to find the general form of Γ consistent with this requirement. As before,
our basic requirement is that the spatial density is the quantum expression:

(2.17) ρ(q, t) =
∫

f(q, p, t)d3p =
∫
Γ(q, α, t)d3α.

The momentum moments (5.36)(I) become

(2.18) pi1 . . . pin
(q, t) =

∫
∂σ

∂qi1

. . .
∂σ

∂qin

Γd3α

/
ρ.

Repeating the analysis of subsect. 5.2(I), the result for Γ will be (1.12) rewritten in the
HJ formalism. Hence, only a Γ so restricted will reproduce the ρ-distribution.
We shall give the form of Γ that corresponds to the special solution fδ, (1.13). Sub-

stituting (1.13) into (A.3) and using (A.11), we obtain

(2.19) Γδ(q, α, t) = D(q, α, t)ρ(q, t)δ
(
∂σ(q, α, t)

∂q
− ∂S(q, t)

∂q

)
,

whereD is the modulus of the determinant of the Hessian (see (A.10)). Here σ is regarded
as a prescribed function (as are ρ and S) obtained as a solution of (2.12). This expression
implies that the motion as represented in (q, α)-space is confined to the moving curve
defined by the equations

(2.20)
∂σ(q, α, t)

∂qi
− ∂S(q, t)

∂qi
= 0, i = 1, 2, 3.

This equation is to be interpreted as a relation specifying the range of admissible values
of α as functions of q and t (determined by the q-turning points of the function σ − S).
To find this explicitly, we note that we can invert the first Jacobi equation (2.13) to get
α = α(q, p, t) which is a single-valued function of q and p (the condition for this is D �= 0
for all q, α). Substituting p = ∂S/∂q in this expression we obtain the solution of (2.20):

(2.21) α = α(q, p = ∂S/∂q, t) = α0(q, t),

which, because p is uniquely fixed by q, is a single-valued function of q. This is the
HJ analogue of the relation p = ∂S/∂q in the phase space coordinates, which gives the
admissible values of p corresponding to q. And, just as we solve Hamilton’s particle
equations for independent q and p and then restrict to the subset of initial conditions
obeying p = ∂S/∂q, so here we solve Jacobi’s equation β = ∂σ/∂q and restrict to the
subset of initial qs obeying ∂σ/∂q = ∂S/∂q.
Using the formula

(2.22) δ3(gi(α)) =
∑

n

d−1
n δ3(αi − αni), gi(αn) = 0, dn =

∣∣∣∣ det ∂gi

∂αj

∣∣∣∣
α=αn

�= 0,
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the dependence of Γδ on α may be expressed more simply. Since equations (2.20) have
only a single root α0, we obtain using (2.22)

(2.23) Γδ(q, α, t) = ρ(q, t)D(q, α, t)D−1(q, α, t)|α=α0(q,t)δ(α− α0(q, t)),

since by assumption D �= 0. This is the HJ representation of fδ. Clearly, (2.23) implies
the relation (2.17).
We may instead regard (2.20) as defining q as a (generally multivalued) function of

α and t. We can under certain circumstances (namely, when the relevant determinants
corresponding to the dns in (2.22) are non-zero) then write (2.19) in terms of a sum of
delta-functions of q (a similar procedure may be applied to the phase space function (1.13)
when det(∂2S/∂qi∂qj) �= 0).
It is readily checked that, via (2.18), (2.19) gives the correct momentum moments

(5.41)(I) with all X-tensors zero. In particular, substituting in (2.16) and integrating
over α, we obtain Hamilton’s equation (1.6) for ρ. Similarly, multiplying (2.16) by ∂σ/∂qi,
integrating over α, using (2.12), and dividing by ρ, we get the q-derivative of Hamilton’s
equation for S. Hence, when we assume a distribution Γδ, Liouville’s equation (2.16) and
the HJ equation (2.12) together imply results consistent with Schrödinger’s equation.
Just as in the original phase space representation (see sect. 3), we do not get more than
this from the HJ theory of course. For example, multiplying (2.12) by Γδ, integrating,
and dividing by ρ, we might hope to derive Hamilton’s equation for S rather than just
its derivative, so that the q-projections of (2.12) and (2.16) together would be equivalent
to the Schrödinger equation. In fact, we obtain

(2.24)
∂S

∂t
+

1
2m

∂S

∂qi

∂S

∂qi
+Q+ V + c(t) = 0,

where c(t) is undetermined, and this just restates that the q-derivative of Hamilton’s
equation for S vanishes.
To prove that the constraint (2.20) is consistent, we show that we indeed obtain the

deBB theory from Jacobi’s equations (2.13) when (2.20) holds, using the technique of
subsect. 2.1. First, we differentiate the second Jacobi relation with respect to time to
obtain

(2.25) 0 = β̇i =
(
∂

∂t
+ q̇j

∂

∂qj

)
∂σ

∂αi
=

(
− 1

m

∂σ

∂qj
+ q̇j

)
∂2σ

∂qj∂αi
,

where we have substituted from (2.12). Since the determinant of the Hessian is non-zero,
we deduce that

(2.26) mq̇i =
∂σ(q, α, t)

∂qi

∣∣∣∣
q=q(t)

.

Using the first Jacobi equation, (2.26) becomes

(2.27) mq̇i = pi.

Next, we differentiate the first Jacobi relation with respect to time:

(2.28) ṗi =
(
∂

∂t
+ q̇j

∂

∂qj

)
∂σ

∂qi
=

(
− 1

m

∂σ

∂qj
+ q̇j

)
∂2σ

∂qj∂qi
− ∂(V +Q)

∂qi
,
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where again we have used (2.12). Employing the relation (2.26) then gives

(2.29) ṗi = −∂(V +Q)
∂qi

∣∣∣∣
q=q(t)

.

Thus, we recover in (2.27) and (2.29) Hamilton’s particle equations. Finally, combin-
ing (2.26) with (2.20) we obtain the deBB law (1.15), and from (2.27) the constraint in
the form p = ∂S/∂q.
We are now in a position to clarify the relation between the deBB theory and HJ

theory. To begin with, we see that ∂σ/∂q = ∂S/∂q, being a rewording of the relation
p = ∂S/∂q, has the interpretation we gave in sect. 6(I), namely, it is a relation between
the field coordinate S and the particle variables (here α and q). And as in sect. 6(I), it
may also be viewed as a relation between just the particle variables. We are thus able
to interpret the phase space constraint in HJ theory. However, we have an additional
possibility of interpretation here. For, instead of seeking a complete integral of (2.12),
suppose all we have available is an incomplete integral so that σ does not depend on any
non-additive constants: σ = σ(q, t). Then, of course, we cannot develop the ensemble
theory we have given above or use Jacobi’s equations to solve for the motion. The latter
reduce just to the first relation in (2.13),

(2.30) pi =
∂σ(q, t)
∂qi

,

and we must invoke Hamilton’s equation pi = mq̇i to find the particle motion using (2.30).
Introducing the constraint p = ∂S/∂q of the deBB theory, (2.30) implies that

(2.31)
∂σ(q, t)
∂qi

− ∂S(q, t)
∂qi

= 0.

Since q is arbitrary, we must have

(2.32) σ(q, t) = S(q, t) + c.

Hence, up to a constant c, the choice of incomplete solution is uniquely fixed to be S.
Conversely, we may use (2.32) to interpret S: the quantum phase may be regarded as
a (incomplete) integral of a HJ equation, namely (2.12), the latter coinciding with part
of Schrödinger’s equation. Since, using (2.32), the Jacobi equation (2.30) is just the
deBB constraint p = ∂S/∂q, we see that it is legitimate to regard the latter as a genuine
HJ relation in the sense just stated. This answers the second of the questions posed in
sect. 1(I): S may be regarded as a HJ function, but it is incomplete so does not generate a
canonical transformation. In particular, the independence of S from a set of non-additive
constants is not evidence of its non-HJ nature. Moreover, this interpretation is consistent
with the partial dependence of Q in the HJ equation on S. One of the field Hamilton
equations thus coincides with the HJ equation for the particle.
So far in this sub-section we have considered the implications of Γδ. We observe

that, if we could construct non-trivial solutions for Γ involving the X-tensors, the con-
straint (2.20) will be replaced by some other condition and the particle equations (2.13)
determining motions that are compatible with ρ will generally differ from that of deBB.
We thus recover in a different way the result of sect. 5(I) and sect. 6(I) that the deBB
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theory is not unique. In this more general case, because the constants α appear in (2.13),
solving for the motion generally requires specifying both q0 and p0.

2.4. A second method of deriving the deBB theory . – There is an alternative method
of arriving at the deBB theory from the HJ theory which uses in a different way the
technique of inserting a solution to Schrödinger’s equation. This starts from a particular
solution of the total HJ equation which reduces the latter to the HJ equation for just the
field. The method thus complements that of subsects. 2.2 and 2.3 where the total HJ
equation reduced to the HJ equation for just the particle. The solution used turns out
to have great significance as it enables us to find a solution of Hamilton’s equations for
the conjugate field momenta, which involve the particle source term (see sect. 5).
Instead of seeking a complete integral of (2.4) and solving for the system trajectory

algebraically using Jacobi’s method, we can solve for the motion using an incomplete solu-
tion if we appeal to Hamilton’s equations to supply the necessary differential equation(s)
corresponding to the missing constants (as has already been illustrated in subsect. 2.3).
To this end, let us suppose that the constants α do not appear in W , and let us separate
out the q-dependence and attribute it to just the coordinate S:

(2.33) W
[
qi, ρ(q′), S(q′), Aρ(q′), AS(q′), t

]
= w

[
ρ(q′), S(q′), Aρ(q′), AS(q′), t

]
+ S(q).

Then

(2.34)
∂W

∂qi
=

∂S(q)
∂qi

,
δW

δρ(q′)
=

δw

δρ(q′)
,

δW

δS(q′)
=

δw

δS(q′)
+ δ(q − q′)

and the transformation equations (2.3) and (2.5) become

(2.35)




pi =
∂S(q)
∂qi

, πρ(q′) = δw
δρ(q′) , πS(q′) = δw

δS(q′) + δ(q − q′),

Bρ(q′) = δw
δAρ(q′) , BS(q) = δw

δAS(q) .

Note that the determinant of the Hessian (2.6) vanishes so this transformation is not
canonical according to the usual definition [5]. However, with respect to transforma-
tions of just the field variables the relevant Hessian (the lower right-hand square matrix
in (2.6)) has non-vanishing determinant (this will be demonstrated in sect. 4 where the
explicit form for a w which generates unitary transformations is given). This means that
we may invert the field Jacobi equations in (2.35) to solve for the field coordinates as
functions of time.
Inserting the relations (2.34) in the HJ equation (2.4), we see that the particle variables

cancel to leave an equation involving just the field variables (recall that in this context
the function S is simply a coordinate and so independent of time):

(2.36)
∂w

∂t
+

∫ {
− δw

δρ(q′)

(
1
m

∂

∂q′i

(
ρ
∂S

∂q′i

))
− δw

δS(q′)

(
1
2m

∂S

∂q′i

∂S

∂q′i
+Q+V

)}
d3q′ = 0.

This is the HJ equation of the pure Schrödinger field, corresponding to the field part of the
Hamiltonian (1.1). An interesting property of (2.36) is that it is linear in the functional
w. We may therefore construct a general solution to (2.36) by linearly superposing
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complete solutions w corresponding to different values of the non-additive constants Aρ

and AS .
Since the solution (2.33) is incomplete in the constants α the first Jacobi equation

in (2.5) can no longer be used to solve for the particle motion and is replaced by Hamil-
ton’s equation (1.4):

(2.37) pi = mq̇i.

To find the particle path we proceed as follows. We insert in the last two relations in (2.35)
a complete integral obeying (2.36) and solve for the field coordinates as functions of the
time. This gives us a solution of Schrödinger’s equation. We then substitute the S(q, t)
so found into the first relation. This establishes the relation between p and S discussed
in sect. 6(I). Combining this with (2.37) then allows us to find the particle trajectory by
solving the differential equation

(2.38)
∂S

∂qi
= mq̇i.

We thus recover once again the deBB equation of motion (1.15). This method thus implies
a similar interpretation to that found in subsect. 2.3: the relation p = ∂S/∂q is one of
Jacobi’s equations evaluated for a given field solution S corresponding to an incomplete
integral of the total HJ equation (in subsect. 2.3 S corresponds to an incomplete integral
of the particle HJ equation).
We have one final task to perform: to prove that (2.33) is a valid solution by showing

that the transformation equations (2.35) and the field HJ equation (2.36) imply Hamil-
ton’s equations for the particle and field (apart from (2.37) which, as noted, must be
assumed). We do this by following the method of subsect. 2.1. To begin with, we dif-
ferentiate the last two equations in (2.35) with respect to time and find an equation
analogous to (2.8) where only the last two terms in the row matrix are present and the
Hessian is just the (invertible) lower right-hand square matrix in (2.6). Hamilton’s equa-
tions for the fields ρ and S then follow. Next, we differentiate the first three equations
in (2.35) with respect to time. For the particle momentum:

(2.39) ṗi =
(
q̇j

∂

∂qj
+

∫
d3q′Ṡ(q′)

δ

δS(q′)

)
∂S(q)
∂qi

= q̇j
∂2S

∂qj∂qi
+

∂

∂qi
Ṡ(q).

Substituting for Ṡ from Hamilton’s equation (1.7) and using (2.38), we obtain Hamilton’s
equation (1.5) for the particle momentum. For the field momentum πρ we get

π̇ρ(q′) =
(
∂

∂t
+

∫
d3q′′

(
ρ̇(q′′)

δ

δρ(q′′)
+ Ṡ(q′′)

δ

δS(q′′)

))
δw

δρ(q′)
(2.40)

=
∫
d3q′′

(
δw

δρ(q′′)
δ

δρ(q′)
1
m

∂

∂q′′i

(
ρ
∂S

∂q′′i

)
+

δw

δS(q′′)
δQ(ρ(q′′))
δρ(q′)

)
,

where we have substituted for ∂w/∂t from (2.36) and for ρ̇ and Ṡ from Hamilton’s
equations. Replacing the derivatives of w from the second and third relations in (2.35)
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then gives

(2.41) π̇ρ(q′) = − 1
m

∂πρ(q′)
∂q′i

∂S(q′)
∂q′i

+
∫

πS(q′′)
δQ(ρ(q′′))
δρ(q′)

d3q′′ − δQ(ρ(q))
δρ(q′)

,

which is Hamilton’s equation (1.8). Finally, for the field momentum πS we find using
the same substitutions

π̇S(q′) =
(
∂

∂t
+ q̇j

∂

∂qj
+

∫
d3q′′

(
ρ̇(q′′)

δ

δρ(q′′)
+ Ṡ(q′′)

δ

δS(q′′)

))(
δw

δS(q′)
+ δ(q − q′)

)(2.42)

=
∫
d3q′′

(
δw

δρ(q′′)
δ

δS(q′)
1
m

∂

∂q′′i

(
ρ
∂S

∂q′′i

)
+

δw

δS(q′′)
δ

δS(q′)

(
1
2m

∂S

∂q′′i

∂S

∂q′′i

))
+

+ q̇j
∂

∂qj
δ(q − q′)

=
1
m

∂

∂q′i

(
ρ(q′)

∂πρ(q′)
∂q′i

− πS(q′)
∂S(q′)
∂q′i

)
+
1
m

∂

∂q′i

(
δ(q − q′)

∂S(q′)
∂q′i

)
+

+ q̇j
∂

∂qj
δ(q − q′).

The q-dependent terms cancel (multiply by a test function µ(q′) and integrate over q′)
and we get Hamilton’s equation (1.9). We conclude that the solution (2.33) is consistent
with Hamilton’s equations for the combined system.

3. – Liouville’s equation and Schrödinger’s equation

3.1. Liouvillian form of the Schrödinger equation. – The analysis of sect. 5(I) indicates
that there is an intimate connection between the Schrödinger and Liouville equations.
Indeed, as we now briefly describe, up to an undetermined factor the former can be
expressed in the form of the latter. In principle this provides an alternative method of
calculating the wave function (up to a time-dependent addition to the phase).
To begin with, we note that we have shown in sect. 5(I) that the Schrödinger equation

implies that the function (1.13),

(3.1) f(q, p, t) = fδ(q, p, t) = ρ(q, t)δ
(
p− ∂S(q, t)

∂q

)
,

obeys Liouville’s equation (1.11),

(3.2)
∂f

∂t
+

pi

m

∂f

∂qi
− ∂(V +Q)

∂qi

∂f

∂pi
= 0.

We may assert a partial converse of this result: assuming f has the form (3.1), we
may deduce from (3.2) Hamilton’s equation (1.4) for ρ and the derivative of Hamilton’s
equation (1.5) for S. Hence, if the distribution function has the form (3.1) initially,



1156 PETER HOLLAND

we can construct from the solution to Liouville’s equation a solution to Schrödinger’s
equation, up to a time-dependent factor, using the following formulas:

ρ(q, t) =
∫

f(q, p, t)d3p,(3.3)

S(q, t) =
∫ q (∫

pif(q′, p, t)d3p∫
f(q′, p, t)d3p

)
dq′i + c(t),(3.4)

where c(t) is an undetermined function of t. To solve Liouville’s equation we first sub-
stitute (3.3) into the quantum potential (1.3) so that (3.2) is expressed purely in terms
of f . It is evident that this is a highly nonlinear integro-differential equation in f so this
method is unlikely to be a practical aid to finding solutions to the wave equation. To
complete the solution, we can fix the function c(t) by substituting (3.3) and (3.4) into
Hamilton’s equation for S, as pointed out by Takabayasi [6] in a similar context (see [7]
for the analogous reconstruction of ψ from the Wigner function).

3.2. Liouville’s equation in Schrödinger form. – Using the HJ representation developed
in sect. 2, we can go in the opposite direction and write Liouville’s equation in a form
closer to Schrödinger’s equation. Defining the complex function

(3.5) φ(q, α, t) =
√
Γ(q, α, t) exp[iσ(q, α, t)/h̄],

Liouville’s equation in the form (2.16) and the associated HJ equation (2.12) can be
combined into a single Schrödinger-like equation:

(3.6) ih̄
∂φ

∂t
= − h̄2

2m
∂2φ

∂q2
i

+ V φ+ (Q− Q̃)φ.

Here

(3.7) Q̃(q, α, t) = − h̄2

2m
√
Γ
∂2

√
Γ

∂q2
i

is a “quantum potential” constructed from the distribution function (2.19):

(3.8) Γ(q, α, t) = Γδ(q, α, t) = D(q, α, t)ρ(q, t)δ
(
∂σ(q, α, t)

∂q
− ∂S(q, t)

∂q

)
.

As in subsect. 3.1, eq. (3.6) subject to (3.8) implies Schrödinger’s equation up to a factor.
Since we can express ρ in Q in terms of Γ via the relation (2.17),

(3.9) ρ =
∫
Γ(q, α, t)d3α,

eq. (3.6) may be expressed purely in terms of Γ and σ (the analogue of expressing (3.2)
in terms of f). Solving (3.6) for φ and extracting Γ and σ, we can then construct the
wave function, up to a factor, via the formulas (3.9) and

(3.10) S(q, t) =
∫ q (∫

(∂σ(q′, α, t)/∂qi)Γ(q′, α, t)d3α∫
Γ(q′, α, t)d3α

)
dq′i + c(t).
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4. – Canonical and unitary transformations

So far we have worked in a set of phase space coordinates in which the Hamiltonian
takes the form (1.1). In that frame we have supplemented the Hamiltonian with a
constraint which ensures that the flow of the particle component of the wave-particle
system coincides with the density ρ. In sect. 2 we considered a canonical transformation
which maps into constant coordinates in this frame. We now develop the general theory
of canonical transformations to arbitrary frames on the phase space, and explore the
connection between these and quantum unitary transformations. An eventual aim of
this work is to allow computation of the particle trajectories in other representations (so
far we have worked in the position representation), but here we shall confine attention
to developing the general formalism with some simple applications, and only indicate in
principle how to pass to other representations. It will be shown within this formalism
how a transformation can be chosen so that the particle component of the Hamiltonian
is transformed away (as was shown in subsect. 2.4; the solution of the HJ equation which
is used in this demonstration will be of use in sect. 5). In addition, we throw further
light on our HJ treatment of sect. 2.
In order to connect the formalism with the linear unitary transformations, it will be

convenient to use ψ and ψ∗ as independent field coordinates in place of ρ and S, for
it is in terms of these that the linearity is most naturally expressed. We introduce in
addition corresponding canonical field momenta πψ and πψ∗ . This replacement is a time-
independent canonical transformation with respect to which the Hamiltonian is a scalar,
given by

(4.1)




ρ = ψ∗ψ, S = h̄
2i log

ψ
ψ∗ ,

πρ = 1
2ψ∗ψ (ψπψ + ψ∗πψ∗), πS = 1

ih̄ (ψ
∗πψ∗ − ψπψ),

q = q̄, p = p̄.

It is readily checked using the formulas for a canonical transformation,

(4.2) ψ =
δW

δπψ
, ψ∗ =

δW

δπψ∗
, πρ =

δW

δρ
, πS =

δW

δS
, q̄ =

∂W

∂p̄
, p =

∂W

∂q
,

that the substitution is generated by the functional

(4.3) W
[
q, ρ, S, p̄, πψ, πψ∗

]
= qip̄i +

∫ (
πψ

√
ρ exp[iS/h̄] + πψ∗

√
ρ exp[−iS/h̄]

)
d3q′.

Using the new variables the Hamiltonian (1.1) is

Htot = H(q, p, ψ, ψ∗) +
∫ {

πψ(q′)
ih̄

(
− h̄2

2m
∂2ψ(q′)
∂q

′2
i

+ V (q′)ψ(q′)
)
−(4.4)

− πψ∗(q′)
ih̄

(
− h̄2

2m
∂2ψ∗(q′)
∂q

′2
i

+ V (q′)ψ∗(q′)
)}

d3q′.

Hamilton’s equations yield the Schrödinger equation (1.1)(I) for ψ and, as anticipated
in sect. 4(I), the canonical momentum πψ satisfies the complex conjugate Schrödinger
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equation modified by an additional source term:

(4.5) −ih̄
∂πψ(q′)

∂t
=

(
− h̄2

2m
∂2

∂q
′2
i

+ V (q′)
)
πψ(q′) + ih̄

δQ
(
ψ(q), ψ∗(q)

)
δψ(q′)

∣∣∣∣
q=q(t)

.

The fields ψ∗ and πψ∗ obey the complex conjugate equations. It will be useful to write
the Hamiltonian in the form

Htot = H(q, p, ψ, ψ∗) + (ih̄)−1×(4.6)

×
∫ (

πψ(q′)Ĥ(q′, q′′)ψ(q′′)− πψ∗(q′)Ĥ∗(q′, q′′)ψ∗(q′′)
)
d3q′d3q′′,

where

(4.7) Ĥ(q′, q′′) =
(
− h̄2

2m
∂2

∂q
′2
i

+ V (q′)
)
δ(q′ − q′′).

It is well known that unitary transformations in quantum mechanics can be repre-
sented as canonical transformations in the phase space defined by the wave function coef-
ficients [8]. Translating this construction into our phase space, and generalizing to include
the particle variables, we consider a transformation between two sets of phase space coor-
dinates (q, p, ψ(q′), ψ∗(q′), πψ(q′), πψ∗(q′)) and (q̄, p̄, ψ′(a), ψ′∗(a), πψ′(a), πψ′∗(a)). Here
we allow for the possibility that the argument (a) of the transformed field phase space
functions does not coincide with the space of the particle coordinates (q̄). A unitary
transformation U(a, q) establishes a (linear) relation between the old and new field coor-
dinates (we assume that the arguments q and a of the functions are both 3-d continuous
variables):

(4.8) ψ′(a) =
∫

U(a, q′)ψ(q′)d3q′,

where

(4.9)
∫

U(a, q′)U∗(a, q′′)d3a = δ(q′ − q′′),
∫

U(a, q′)U∗(a′, q′)d3q′ = δ(a− a′)

and likewise for the complex conjugate coordinate. Hence, because the old and new
coordinates are functionally related we shall assume that the canonical transformation
which generates the unitary transformation is a function of the old coordinates and the
new momenta [9]. Considering the field coordinates alone, a unitary transformation is
generated by the functional

(4.10) w
[
ψ,ψ∗, πψ′ , πψ′∗ , t

]
=

∫ (
πψ′(a)U(a, q′)ψ(q′)+πψ′∗(a)U∗(a, q′)ψ∗(q′)

)
d3ad3q′,

where the possible time dependence of w comes from U . Including the particle variables
the complete generator will be

(4.11) w
[
q, ψ, ψ∗, p̄, πψ′ , πψ′∗ , t

]
= w

[
ψ,ψ∗, πψ′ , πψ′∗ , t

]
+ F (q, ψ, ψ∗, p̄, t),
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where it is allowed that F may depend on (local functions of) the old field coordinates
but not on the new field momenta since this would modify the relation (4.8). For, by the
equations of a canonical transformation, we have

ψ′(a) =
δW

δπψ′(a)
=

∫
U(a, q′)ψ(q′)d3q′,(4.12)

ψ′∗(a) =
δW

δπψ′∗(a)
=

∫
U∗(a, q′)ψ∗(q′)d3q′,(4.13)

πψ(q′) =
δW

δψ(q′)
=

∫
πψ′(a)U(a, q′)d3a+

δF

δψ(q′)
,(4.14)

πψ∗(q′) =
δW

δψ∗(q′)
=

∫
πψ′∗(a)U∗(a, q′)d3a+

δF

δψ∗(q′)
,(4.15)

pi =
∂W

∂qi
=

∂F

∂qi
,(4.16)

q̄i =
∂W

∂p̄i
=

∂F

∂p̄i
,(4.17)

and so the relation (4.8) is recovered. The mapping (4.11) is the most general possible in
this theory that is compatible with quantum unitary transformations. We have not yet
specified F but we expect this will generally depend on U . Adapting the definition (2.6)
to the new variables and using the transformation equations (4.12)–(4.17), the Hessian
matrix is

(4.18) hij(a, a′, q′′, q′′′) =




∂2F

∂qi∂p̄j
0 0

δ2F

δψ(q′′)∂p̄j
U(a, q′′) 0

δ2F

δψ∗(q′′′)∂p̄j
0 U∗(a′, q′′′)




.

The condition for the transformation to be canonical, deth �= 0, will be obeyed if the
determinant of the upper left-hand term is non-zero.
Let us apply this transformation to the Hamiltonian (4.6). The transformed Hamil-

tonian is given by

(4.19) H ′
tot = Htot +

∂W

∂t
,

which we must express in terms of the new variables. Substituting (4.12)–(4.15), we get

(4.20) H ′
tot = H ′+(ih̄)−1

∫ (
πψ′(a)Ĥ ′(a, a′)ψ′(a′)−πψ′∗(a)Ĥ ′∗(a, a′)ψ′∗(a′)

)
d3ad3a′
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where

(4.21) Ĥ ′(a, a′) =
∫

U(a, q′)
(
Ĥ(q′, q′′)U∗(a′, q′′)−ih̄

∂U∗(a′, q′′)
∂t

δ(q′−q′′)
)
d3q′ d3q′′

is the usual transformed Hamiltonian operator, and

H ′ = H + (ih̄)−1×(4.22)

×
∫ {

δF

δψ(q′)
Ĥ(q′, q′′)ψ(q′′)− δF

δψ∗(q′)
Ĥ∗(q′, q′′)ψ∗(q′′)

}
d3q′ d3q′′ +

∂F

∂t

where we must substitute the new coordinates for ψ,ψ∗, q and p using (4.12), (4.13),
(4.16) and (4.17).
As a first application of these formulas we show that a judicious choice of F reduces the

transformed total Hamiltonian to just the field component. Substituting for p from (4.16)
and introducing the function Ψ =

√
ρ exp[iF/h̄], we can express the original particle

component H as

H =
1
2m

∂F

∂qi

∂F

∂qi
+Q+ V(4.23)

=
1

2Ψ∗(q)Ψ(q)

∫ (
Ψ∗(q)Ĥ(q, q′′)Ψ(q′′) + Ψ(q)Ĥ∗(q, q′′)Ψ∗(q′′)

)
d3q′′.

Choosing F to have the (time-independent) form

(4.24) F (q) = (h̄/2i) log(ψ/ψ∗)(= S),

so that Ψ = ψ, and substituting into (4.22), then implies that H ′ = 0 which proves the
assertion. Thus we rederive the result of subsect. 2.4. Note that this transformation is
not canonical according to the usual definition [5] as F is independent of p̄.
Next, we consider the case where the unitary transformation is the time evolution of

the system, with ψ′ being constant in time and a = q′. Then U∗ obeys the Schrödinger
equation so that from (4.21) Ĥ ′ = 0. Choosing F as in (4.24) then implies from (4.20)
that H ′

tot = 0 and from (4.19) we recover the HJ equation (2.4). The generator of time
evolution for the total system is then

(4.25) W = w + (h̄/2i) log(ψ/ψ∗),

where w obeys the field HJ equation (2.36).
The formalism developed here allows us, in principle, to determine the particle tra-

jectories in any representation connected with the original q-representation by the con-
tinuous relation (4.8). We can compute the trajectories in the transformed frame in two
ways. First, by solving the transformed Hamilton equations which must then be sup-
plemented with constraints which ensure that the flow of the particle component of the
wave-particle system coincides with the quantal distribution in the relevant representa-
tion. Second, by inserting a trajectory that is already known in the (q, p) coordinates
into the transformation equations (4.16) and (4.17) and inverting. Both methods require
knowing F (in particular as a function of p̄). The determination of this will be considered
elsewhere.
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5. – Particle back-reaction and the action-reaction principle

5.1. Explicit solution for the particle back-reaction. – In subsect. 2.4 we found a
solution of the total HJ equation, (2.33), which implies the deBB law of motion. We
showed that the field canonical momenta implied by this function satisfy Hamilton’s
equations (1.8) and (1.9), the latter exhibiting a particle source term. The second and
third equations in (2.35) give this solution as

(5.1) πρ(q′, t) = π̄ρ(q′, t), πS(q′, t) = π̄S(q′, t) + δ
(
q(t)− q′

)
,

where π̄ρ and π̄S obey the pure field equations ((1.8) and (1.9) without the source term).
It is easy to check by direct substitution that (5.1) indeed obeys (1.8) and (1.9). Using the
transformation equations (4.1) this solution may be written in terms of the ψ variables
as

(5.2) πψ(q′, t) = π̄ψ(q′, t)− ih̄

2ψ(q′, t)
δ
(
q(t)− q′

)
,

where π̄ψ obeys the complex conjugate Schrödinger equation. Again, it is readily checked
that this function satisfies the field equation (4.5). Note that in (5.2) the δ-function term
is indeterminate at nodes (ψ = 0), for the trajectory does not pass there. To complete
the solution we have to specify π̄ψ and insert an explicit solution q = q(q0, t) of the deBB
law as determined by ψ. The initial function π̄ψ0 is arbitrary so we can in principle
choose for π̄ψ any solution of the complex conjugate Schrödinger equation in the given
potential V .
Of all possible functions, we can choose π̄ψ proportional to ψ∗. In fact, it will be

shown below that this choice, together with a certain choice of proportionality constant,
is a natural one. Specifically, we choose the solution

(5.3) πψ(q′, t) =
ih̄

2

(
ψ∗(q′, t)− 1

ψ(q′, t)
δ
(
q(t, q0)− q′

))
.

The additional field πψ may thus be represented up to a proportionality factor as the
complex conjugate wave function ψ∗ superposed with a δ-function singularity which fol-
lows one (fixed by q0) of the particle orbits determined by ψ via the deBB law, modulated
by the inverse of ψ. In this case the field πψ is no longer an independent degree of freedom
and the system consists of just the wave function together with the particle.

5.2. Energy and momentum of the field-particle system. – Our total physical system
comprises two complex fields (ψ and πψ) and a particle (q). This is what we mean
in this theory by “a quantum system”. In order to justify this appellation, we have
to ensure that certain basic properties of the composite system coincide with key ones
that are relevant to the conventional concept of a quantum system. Up to now we have
concentrated on ensuring concordance for one such property, the probability distribution
of the particle component. We now examine the energy and momentum. We shall be
concerned with establishing the conservation laws obeyed by these quantities, and their
connection with the corresponding quantum-mechanical values.
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We consider first the rate of change of energy. Since the PB ofHtot with itself vanishes
we have, using (1.1),

(5.4)
dHtot

dt
=

∂Htot

∂t
=

∂V (q, t)
∂t

−
∫

πS(q′)
∂V (q′, t)

∂t
d3q′.

We immediately conclude that the total energy is conserved when the external potential
is time-independent, the usual condition for conservation in quantum mechanics.
We pass now to the momentum. Returning to the Lagrangian (4.2)(I) the total

momentum of the composite system is given by

ptoti =
∂Ltot

∂q̇i
−

∫ (
δLtot

δρ̇

∂ρ

∂q′i
+

δLtot

δṠ

∂S

∂q′i
+

δLtot

δġρ

∂gρ

∂q′i
+

δLtot

δġS

∂gS

∂q′i

)
d3q′(5.5)

= mq̇i −
∫ (

gρ
∂ρ

∂q′i
+ gS

∂S

∂q′i

)
d3q′.

Converting to phase space variables, we have

(5.6) ptoti = pi −
∫ (

πρ
∂ρ

∂q′i
+ πS

∂S

∂q′i

)
d3q′ = pi −

∫ (
πψ∗

∂ψ∗

∂q′i
+ πψ

∂ψ

∂q′i

)
d3q′,

using the transformation equations (4.1). Using Schrödinger’s equation for ψ, the field
equation (4.5) for πψ, and Hamilton’s equation (1.5) for p, it is straightforward to calcu-
late the rate of change of the momentum:

dptoti

dt
= −∂V (q, t)

∂qi
+

∫
1
ih̄

(
ψ∗πψ∗ − ψπψ

)
∂V (q′, t)

∂qi
d3q′(5.7)

= −∂V (q, t)
∂qi

+
∫

πS(q′)
∂V (q′, t)

∂qi
d3q′.

We therefore see that the total momentum is conserved when the external potential is
space-independent, once again the usual condition for conservation in quantum mechan-
ics.
We have thus established agreement between the theory of the composite system

and quantum mechanics as regards the conditions under which energy and momentum
are conserved. These results hold for the unconstrained Hamiltonian system and are
obviously valid also when the constraint p = ∂S/∂q is imposed. We now consider the
additional implications of the latter condition.
While agreeing with quantum mechanics in their conservation properties, the (uncon-

strained) values of the total energy and momentum are arbitrary and do not generally
coincide with the corresponding quantum values. A natural constraint on our “quantum
system” is that the total energy and momentum be just those which quantum mechanics
defines as the total energy and momentum of a physical system. In the latter all we have
is the ψ-field and the total energy and momentum of the field are given by (equal to the
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mean values)

〈
Ĥ

〉
=

∫
ψ∗(q′)Ĥ(q′, q′′)ψ(q′′)d3q′ d3q′′,(5.8)

〈
p̂i

〉
= −ih̄

∫
ψ∗(q′)

∂

∂q′i
ψ(q′)d3q′.(5.9)

Consider the case where p = ∂S/∂q and the independent components of our quantum
system reduce to just ψ and the particle, with πψ given by (5.3). Then it is easy to see that
in the expression (4.4) for the total energy the particle component cancels out and the
resulting field energy is the quantum expression (5.8). Likewise, the particle contribution
to the total momentum (5.6) drops out and what remains is the total quantum field
momentum (5.9). Thus, under these conditions,

(5.10) Htot =
〈
Ĥ

〉
, ptoti = 〈p̂i〉.

The constraint p = ∂S/∂q characterizing the deBB theory therefore implies not only the
quantum-mechanical distribution for the particle, but also agreement with the quantum
values for energy and momentum. This may be regarded as a justification for adopting
the solution (5.3), in which definite choices were made for π̄ψ and the proportionality
constant.

5.3. The action-reaction principle. – One of the distinctive aspects of the deBB theory
in its conventional presentation is that, in acting on the particle, the quantum wave
suffers no back-reaction. This is not a logical problem as there is no principle of physics
which requires such reaction in all cases (and there are other examples in science where
it is not obeyed, e.g., catalysis) but in this regard it is quite unlike other theories of
field-particle interaction. By placing the theory of quantum particle motion in a wider
Hamiltonian framework, we have seen that the absence of reaction is only apparent due
to the incompleteness of the usual description of the deBB theory. To be sure, the
Schrödinger field itself continues to suffer no reaction—we constructed the theory with
this aim in mind in order to preserve the usual predictions of quantum mechanics—
but the equations obeyed by the additional field πψ, whose presence is necessitated by
this construction, do include action by the particle. The question then is whether this
two-way action is of such a kind that we can claim the action-reaction principle is obeyed.
While the independence of ψ precludes implementation of a full version of the action-

reaction principle, which requires mutual action of all interacting entities [10], we can
establish the validity of a weaker form. Making precise the notion of an equal action be-
tween two qualitatively dissimilar systems is a subtle affair, e.g., deciding at what level
the mutual actions should be analysed, or quantifying their relative strengths. It may be
argued that a key component of the action-reaction principle is that the total energy and
momentum of an isolated coupled system are conserved [10]. Within these terms, the
demonstration above that the total energy and momentum of our composite quantum
system are conserved when the external potential is suitably restricted establishes the
validity of at least this component of the principle in this theory. In the conventional
presentation of the deBB theory this component is violated because the particle simply
responds to the field, through the quantum potential, as if the latter were just an ad-
ditional external potential. The energy and momentum of the particle in isolation are
not conserved when the external potential obeys the usual conditions for conservation.
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In contrast, when the particle is treated as a component of an interacting field-particle
system of the kind we have described, the trade-off between the mutual actions is of just
the right measure to ensure conservation.
In fact, the description introduced here has the potential for modification so as to

include a reaction of the particle on ψ as well if we so desired, thus allowing a fuller
implementation of the action-reaction principle. In the analogous model described in
sect. 3(I) this would be effected by changing the functional dependence of U in (3.1)(I).
This possibility will be discussed elsewhere.

6. – Alternative choices for the Hamiltonian

We started by assuming a Hamiltonian (1.1) which expresses the quantum effects on
a particle through the quantum potential Q, and have shown how the flow it generates
will be consistent with ρ if it is supplemented by the condition p = ∂S/∂q which implies
the deBB equation of motion (1.15). In view of what we already knew about the deBB
theory, in particular the key role it implies for the quantum potential, this result is not
surprising. Indeed, the choice of the quantum potential as the agent of quantum actions
on the particle was suggested in the first place by the deBB law. However, given that
the latter is simply a postulate, representing the quantum effects through the quantum
potential is somewhat arbitrary. Would other choices for the Hamiltonian imply flows
that are compatible with the ρ spatial distribution? And if so, what is their relation to
the deBB theory? We shall investigate these questions for two classes of Hamiltonian, the
second a generalization of the first. We find that we may indeed adopt other Hamiltonian
descriptions, and that the accompanying laws of motion generally differ from that of
deBB.
First, we show that Hamiltonians of the type

(6.1) H =
1
2m

p2 + V (q, t) +Q′(q, t),

where Q′ �= Q, can in principle be compatible with the quantal distribution, and that
the only admissible potentials for which the distribution is fδ, i.e., (1.13) (and hence
the deBB equation holds), are those that differ from Q by at most an undetermined
additive function of time (in accord with the discussion in sect. 3). Here it is assumed
that Q′ may be some function of q, ρ and S but not of p or the conjugate field momenta.
This ensures that Hamilton’s equation (1.4) for the particle, and Schrödinger’s equation,
are unmodified. This H is to be inserted into the total Hamiltonian (1.1), and we may
repeat the analysis of subsect. 5.1(I) to arrive at the Liouville equation (1.10) for the
particle distribution. Hamilton’s equations (1.4)-(1.9) for the combined system are the
same except that Q → Q′ and both field momentum equations now have source terms.
To establish the first result, we examine the momentum moments defined in sub-

sect. 5.2(I). For the Hamiltonian (6.1) the particle Liouville equation (1.10) becomes

(6.2)
∂f

∂t
+

pi

m

∂f

∂qi
− ∂(V +Q′)

∂qi

∂f

∂pi
= 0.

In this case, the evolution equations for the momentum moments are (5.37)(I) with Q
replaced by Q′, while the equations (5.39)(I) deduced from the Schrödinger equation
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remain the same. Subtracting these two sets of equations, the equations (5.40)(I) for the
X-tensors (defined as before by (5.51)(I)) are replaced by

∂Xi1...in−1

∂t
+
1
m

∂Xi1...in

∂qin

=−
∑
P

Xi1...in−2

∂(V +Q′)
∂qin−1

−(6.3)

− ρ
∑
P

∂S

∂qi1

. . .
∂S

∂qin−2

∂(Q′ −Q)
∂qin−1

.

The distribution function will have the same form (1.12) as before,

(6.4) f(q, p, t) = fδ(q, p, t) + θ(q, p, t),

except that it is now subject to (6.3). To see whether this satisfies (6.2), we substitute
the characteristic function M from (5.44)(I) (also unchanged) into the left-hand side
of the modified characteristic function equation (5.50)(I), where Q is replaced by Q′.
Using (5.39)(I) and (6.3) the result is
(6.5)

lhs = iρeiλi(∂S/∂qi)λj
∂(Q′ −Q)

∂qj
− ρ

∞∑
n=1

in

n!
λi1 . . . λin

∑
P

∂S

∂qi1

. . .
∂S

∂qin−1

∂(Q′ −Q)
∂qin

.

Expanding the exponential and gathering terms this expression is zero, and hence (6.4)
is a solution of (6.2) (and is indeed the most general solution compatible with the
Schrödinger equation). However, unlike the case originally considered in subsect. 5.2(I)
(where Q′ = Q) the functions fδ and θ are not solutions separately. Here, if Q′ �= Q, only
the total f is a solution. It may appear odd that we have managed to find the general
solution to Liouville’s equation without needing to specify Q′, but it must be borne in
mind that this solution is valid only to the extent that we can construct solutions for the
X-tensors that obey (6.3), and that imply a non-negative f , and these requirements will
impose constraints on Q′. To the extent that this construction is possible, an ensem-
ble of (non-deBB) motions obeying Hamilton’s particle equations (1.4) and (1.5) (with
Q → Q′) will reproduce the quantum flow if the coordinates are distributed according
to (6.4).
An example which apparently supports this result is a non-negative solution to (6.2)

(for a particular choice of Q′) presented by Sutherland [11] which is not of the form fδ

and for which the zeroth and first momentum moments are the quantum expressions
(so that Xi = 0). However, if one calculates Xij by computing the second momentum
moment of this solution, this does not obey (6.3) when n = 2. Hence this solution is not
consistent with the Schrödinger equation.
If we insist on fδ being a solution to (6.2), this means that the first term in (6.5) is

zero so that

(6.6)
∂(Q′ −Q)

∂qi
= 0 or Q′(q, t) = Q(q, t) + ε(t),

where ε(t) is arbitrary, which proves our second assertion regarding the Hamiltonian (6.1).
We pass now to the second class of Hamiltonians and show that the distribution fδ

can be valid even though the deBB law of motion is not. This we do by generalizing the



1166 PETER HOLLAND

Hamiltonian (6.1) to include a vector potential A:

(6.7) H =
1
2m

(p−A(q, t))2 + V (q, t) +Q′(q, t).

Here Q′ and A may depend on ρ and S but not on πρ or πS . The particle Hamilton
equations are now

mq̇i = pi −Ai(q, t),(6.8)

ṗi = − ∂

∂qi
(V +Q′) +

1
m

(
pj −Aj

)∂Aj

∂qi
.(6.9)

The Liouville equation (1.10) holds with this H. In this case we shall not derive the
most general distribution that is compatible with the Hamiltonian but only enquire
whether (6.7) is compatible with the distribution fδ (which we know generates the correct
q-projected flow). The particle equations (6.8) and (6.9) are then subject to the subsidiary
condition p = ∂S/∂q so that

(6.10) mq̇i =
(
∂S

∂qi
−Ai

)∣∣∣∣
q=q(t)

.

Hence, if fδ is indeed a solution, the law (6.10) implies motions different from that of
deBB.
To show that fδ is a solution if the free functions appearing in (6.7) obey certain

constraints, we use the characteristic equation which is now

(6.11)
∂M

∂t
− 1
m

(
i
∂

∂λj
+Aj

)
∂M

∂qj
+
1
m

∂Aj

∂qk

(
i
∂

∂λj
+Aj

)
(iλkM)+iλj

∂(V +Q′)
∂qj

M=0.

Substituting the characteristic function corresponding to fδ, M = ρeiλj(∂S/∂qj), this
obeys (6.11) if the following four (real) conditions hold:

∂

∂qi
(ρAi) = 0,(6.12)

1
m
Aj

(
1
2
Aj − ∂S

∂qj

)
+Q′ −Q = ε(t),(6.13)

where ε(t) is arbitrary. If we can construct a solution for A obeying the first equation,
the second equation defines Q′. When these relations are obeyed, we can write the
Schrödinger equation (1.4) and (1.5) as

∂ρ

∂t
+
1
m

∂

∂qi

(
ρ

(
∂S

∂qi
−Ai

))
= 0,(6.14)

∂S

∂t
+

1
2m

(
∂S

∂qi
−Ai

)(
∂S

∂qi
−Ai

)
+ V +Q′ + ε = 0.(6.15)

Given that we can find a suitable solution for A, the law (6.10) then implies non-deBB
motions.
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As pointed out in subsect. 5.3(I) the non-relativistic quantum-mechanical current is
determined only up to a divergenceless vector field, and the law of motion (6.10) with
the condition (6.12) is an expression of this non-uniqueness. We thus bring within the
scope of our analysis previous discussions of the latitude in choices for the particle law of
motion that exploit the underdetermination in the current [12,13] (possible forms for A
have been examined by Deotto and Ghirardi [13]). Hamiltonians of the type (6.7) have
also been considered by Roy and Singh [14] who have developed a trajectory theory in
which the phase space distribution (which differs from fδ) has position and momentum
partial distributions which both coincide with the quantal expressions.
One could continue this investigation and consider yet more general (particle) Hamil-

tonians but there does not seem to be much virtue in the effort. It does not seem that
this is a useful method if our aim is to limit the possibilities for theoretically valid particle
laws of motion since these seem to proliferate the more complex the Hamiltonian gets,
and there does not seem to be any principle limiting the possible forms of the latter (it
is possible that requiring the energy to coincide with the mean quantum energy as in
subsect. 5.2 may be useful in this regard). A more oblique attack on this problem may
be fruitful. As mentioned in subsect. 5.3(I) it has been shown that relativistic consid-
erations fix uniquely the form of the non-relativistic quantum-mechanical current for a
spin-(1/2) particle [15] (this differs from the deBB equation). Although that particular
argument does not apply directly to the spin-0 case considered here, it may be possible
to develop similar arguments to restrict the X-tensors.

7. – Discussion

The conventional presentation of the deBB theory implies several novel features in the
theory of quantum waves and particles in comparison with classical theories of interacting
fields and particles. The question arises whether these features are genuinely new insights
in physics or just artefacts of the original description of the deBB theory, in particular its
possible incompleteness. For example, we have shown in sect. 5 that the action-reaction
principle, disobeyed according to the usual approach, is in fact obeyed, at least in a weak
form, in the wider Hamiltonian framework.
Another example of a possibly misleading implication is the notion, fostered by the

conventional presentation based on (1.15), that the deBB theory (fundamentally) differs
from classical dynamics in being essentially a “first-order” (in time) theory (e.g., [16]).
By placing the theory in a Hamiltonian environment, we have shown that this distinction
is not compelling — the particle Hamilton equations (1.4) and (1.5) imply a second-order
expression for the position. To be sure, we have imposed on the solutions to Hamilton’s
equations the relation p = ∂S/∂q but this merely selects a set of admissible initial
coordinates (see sect. 6(I)) and in this regard at least does not imply a qualitatively new
notion of dynamics. The first-order law mq̇ = ∂S/∂q can certainly be employed as an
alternative way of calculating the paths but, as shown in sect. 6(I), it is dynamically
equivalent to Hamilton’s equations. Moreover, the first-order law can be employed in
classical theory as well; given the classical HJ function as a function of position, all we
need to solve for the trajectories is the initial position. Finally, as we have shown, in
the Hamiltonian theory (using both the original Hamiltonian (1.1) and for more general
Hamiltonians) laws other than that of deBB can be used and it is, in general, Hamilton’s
equations that must be solved in the first instance (see below) (and indeed, in the case
of spin-(1/2) particles, the deBB law is incorrect if it is to be regarded as the limit of the
relativistic theory [15]).
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In connection with this point, it is not suggested that bringing the deBB theory within
the orbit of Hamiltonian theory gives a “classical” theory of a quantum system. Rather,
our aim is to complete the deBB theory, thereby removing some of its artificial features
and bringing out more sharply how the quantum and classical theories differ. And indeed
the new model does exhibit highly nonclassical features, the principal one being that the
description of the state of a matter system is not exhausted by the state of the particles
but includes something (ψ) which has its own independent dynamics (and which gives
rise in particular to nonlocality in the extension of the theory to many bodies).
A further question that touches the issue of which features displayed by the deBB

theory constitute new insights rather than artefacts is its uniqueness. The problem
that motivated this investigation is the rather arbitrary way in which the deBB law has
been traditionally appended to quantum mechanics, without any theoretical justification
other than its compatibility with the |ψ|2 distribution. The aim was to remove some of
this arbitrariness by embedding the theory in a consistent Hamiltonian approach, thus
giving it an interpretation therein, and also clarifying its connection with HJ theory.
These aims have been achieved but in the process we have discovered that Hamiltonian
theories can be formulated that admit particle laws of motion different from that of
deBB. Two types of non-uniqueness in the particle law have been found. The first source
of underdetermination is that, given the Hamiltonian (1.1) in which quantum effects on
the particle are attributed to the quantum potential, the most general particle phase
space distribution that generates |ψ|2, (1.12), is compatible with motions derived from
Hamilton’s particle equations that differ from those implied by the deBB equation. The
latter corresponds to the case where the momentum p at each point q is fixed. Given
the latter restriction we can solve for the motion using the deBB law or, imposing the
restriction on the initial conditions, by solving Hamilton’s equations. For the general
distribution on the other hand we may have many p’s associated with each q and we
must use Hamilton’s equations to find the paths. The resulting trajectories generally
differ from those of deBB. The second source of underdetermination in the particle law
of motion is that we may choose a different particle component for the Hamiltonian of
the total system (sect. 6). Again, we may have a distribution of momenta at each space
point (e.g., (6.4)) and hence non-deBB motions.
The possibility of having non-deBB Hamiltonian flows may have a bearing on the

problem of deriving (the valid part of) classical physics as a limiting case of quantum
mechanics. As has been discussed elsewhere [17] this is problematic in the deBB theory
because of the stringent restriction implied by a single-valued momentum, which persists
in any limit (a version of a deBB-type theory with crossing q-projected trajectories has
been proposed [18] but there the wave propagates in the particle phase space which
implies a more abstract interpretation). In contrast, as just pointed out, in the case of
the more general phase space distributions considered here this restriction is relaxed and
we generally obtain an ensemble of trajectories whose q-projections cross. An advantage
of the present approach over the original deBB theory is that we may carry out the
limiting process for these trajectories at the level of Hamilton’s equations. In the case
of the theory based on the Hamiltonian (1.1) the appropriate criterion for the classical
limit is that the quantum force is negligible compared to he classical force:

(7.1)
∣∣∣∣∂Q∂qi

∣∣∣∣ 

∣∣∣∣∂V∂qi

∣∣∣∣.
When this condition is obeyed the particle is fully decoupled dynamically from the wave
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ψ and is subject to just the classical equations. Apart from satisfying the condition (7.1),
the limiting wave function remains essentially quantum-mechanical in its properties. Note
that this criterion is not sufficient to decouple the quantum system (as we have defined
it) entirely from the particle since the latter still enters as a source term in the field
equation (4.5) for the conjugate field momentum πψ. Some additional condition on the
functional derivative of Q is required to ensure a full decoupling, which then implies
that the field momentum obeys the Schrödinger equation (note that this condition is not
necessary to achieve classical motion for the particle). Note that these limiting results
cannot be obtained merely by assuming that Q is numerically small in comparison with
the other energies in Htot, for such a condition has no bearing on the magnitude of the
derivatives of Q. However, although this procedure implies classical motion for individual
particles, we will not recover from this approach the general theory of classical ensembles
since in the latter the distribution function is arbitrary while here we obtain only a
limiting form of the distribution (1.12).
Similar results may be obtained for the classical limit of the more general Hamil-

tonians considered in sect. 6. In this connection, the Hamiltonian theory may provide
an alternative approach to the treatment of chaos in the quantum particle motions. It
may also imply a technique to treat “hybrid quantum-classical systems”, where a classi-
cal particle that acts on a quantum system is subject to a quantum back-reaction (see,
e.g., [19]). Indeed, it is conceivable that some variant of this approach could provide
a means to answer another related problem [17], that of transcending the classical and
quantum theories so that each is a special case of a wider enveloping theory. These
questions will be investigated elsewhere.
We have seen that, within the framework of Hamiltonian theories, the deBB theory

is but one of a wide class of trajectory interpretations. Actually, the underdetermination
problem is even deeper for there exists at least one other deterministic trajectory the-
ory [12] which does not fall within the class considered here (a Hamiltonian formulation
of this is yet to be investigated). The essential problem is that the basic condition of
compatibility of these theories with quantum mechanics, that the space-projection of the
Hamiltonian flow generates |ψ|2, is too weak. What is needed now are some physical
principles to underpin the mathematical speculation.

Appendix

Liouville’s equation in the Hamilton-Jacobi representation

We derive here the form of Liouville’s equation (1.11) for the particle,

(A.1)
∂f

∂t
+

pi

m

∂f

∂qi
− ∂(V +Q)

∂qi

∂f

∂pi
= 0,

when we transform from the phase space (q, p) to the mixed system of coordinates (q, α)
using the first transformation equation (2.13):

(A.2) pi =
∂σ(q, α, t)

∂qi
.
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The phase space distribution becomes a function of the mixed coordinates:

(A.3) F (q, α, t) = f

(
q, p =

∂σ(q, α, t)
∂q

, t

)
.

We have

(A.4)
∂F

∂t
=

∂f

∂t

∣∣∣∣
q,p

+
∂pi

∂t

∣∣∣∣
q,α

∂f

∂pi

∣∣∣∣
q,t

,
∂F

∂qi
=

∂f

∂qi

∣∣∣∣
p,t

+
∂pj

∂qi

∣∣∣∣
α,t

∂f

∂pj

∣∣∣∣
q,t

,

where we substitute (A.2). Substituting (A.2), and for the derivatives of f from (A.4),
in (A.1), we get

(A.5)
∂F

∂t
+
1
m

∂σ

∂qi

∂F

∂qi
−

(
∂2σ

∂t∂qi
+
1
m

∂σ

∂qj

∂2σ

∂qj∂qi
+

∂(V +Q)
∂qi

)
∂f

∂pi

∣∣∣∣
q,t

= 0.

Taking the q-derivative of the particle HJ equation (2.12),

(A.6)
∂σ

∂t
+

1
2m

∂σ

∂qi

∂σ

∂qi
+Q(q, t) + V (q, t) = 0,

we see that the term in brackets in (A.5) vanishes and hence Liouville’s equation becomes

(A.7)
∂F

∂t
+
1
m

∂σ

∂qi

∂F

∂qi
= 0.

This is not yet the final desired form, for F is not the probability density in (q, α)-space.
To obtain the latter, we use the relation (A.2) for fixed q to change variables from p to
α in the normalization condition. Then

(A.8) dpi =
∂2σ

∂qi∂αj
dαj

and the normalization condition becomes

(A.9) 1 =
∫

f(q, p, t)d3q d3p =
∫

F (q, α, t)D d3q d3α,

where

(A.10) D(q, α, t) =
∣∣∣∣ det ∂2σ

∂qi∂αj

∣∣∣∣
is the modulus of the Jacobian of the transformation, which is here the determinant of the
Hessian matrix (the latter is the Van Vleck determinant in the analogous classical case
(where Q = 0)). By assumption D �= 0. The domain of integration of αi corresponding to
pi ∈ (−∞,∞) is determined by (A.2). The probability density in (q, α)-space is therefore
given by the function

(A.11) Γ(q, α, t) = F (q, α, t)D(q, α, t).
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To obtain the law of evolution obeyed by this function, we need to know the equation
satisfied by D. Remarkably, the HJ equation (A.6) implies that D obeys the conservation
equation

(A.12)
∂D

∂t
+
1
m

∂

∂qi

(
D

∂σ

∂qi

)
= 0

(this has been shown for the classical HJ equation [20] and the inclusion of Q in (A.6)
does not alter the proof). Multiplying (A.12) by F and (A.7) by D and adding, we
obtain finally the equation satisfied by the distribution Γ:

(A.13)
∂Γ
∂t
+
1
m

∂

∂qi

(
Γ
∂σ

∂qi

)
= 0.

Equation (A.13) is Liouville’s equation written in the HJ language. It is equivalent
to (A.1) since, assuming (A.6), we may start from (A.13) and retrace our steps to de-
rive (A.1). Since in addition we may derive the particle Hamilton equations from the HJ
equation (A.6) (see subsect. 2.3), we conclude that the set of Liouville’s and Hamilton’s
equations (A.1), (1.4) and (1.5) is equivalent to the set of equations (A.13) and (A.6),
and we may use the latter to study the behaviour of ensembles. The two descriptions
are linked by Jacobi’s equations (2.13). In particular, the partial q-distribution has the
two expressions

(A.14) ρ(q, t) =
∫

f(q, p, t)d3p =
∫
Γ(q, α, t)d3α.

Two points about (A.13) are noteworthy: First, the external potential V + Q does not
appear explicitly —information on this is carried by the HJ function σ (obeying (A.6))
which we must first obtain in order to solve for Γ. Second, no derivatives of the non-
additive constants α appear so that, for each choice of the α’s, (A.13) is a conservation
equation in q-space.
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