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Abstract 
 

Hidden variables are usually presented as potential completions of the quantum description. 
We describe an alternative role for these entities, as aids to calculation in quantum mechanics. 
This is illustrated by the computation of the time-dependence of a massless relativistic spinor 
field obeying Weyl’s equation from a single-valued continuum of deterministic trajectories 
(the “hidden variables”). This is achieved by generalizing the exact method of state 
construction proposed previously for spin 0 systems to a general Riemannian manifold from 
which the spinor construction is extracted as a special case. The trajectories form a non-
covariant structure and the Lorentz covariance of the spinor field theory emerges as a kind of 
collective effect. The method makes manifest the spin 1/2 analogue of the quantum potential 
that is tacit in Weyl’s equation. This implies a novel definition of the “classical limit” of 
Weyl’s equation. 
 
KEY WORDS: hidden variables; spinor; quantum hydrodynamic trajectories; Weyl’s 
equation; Riemannian geometry; classical limit; Lorentz covariance. 
 
PACS: 03.65.Ta.                                                                              
 
 
1. INTRODUCTION 
 
Broadly speaking, hidden variables are quantities that complete the quantum description by 
determining, in conjunction with the state vector, the outcomes of all possible measurements 
(with their attendant distributions) that are relevant to the domain of the quantum theory 
considered(1,2). The historical discussion surrounding hidden variables has tended to 
concentrate on their existence and properties as theoretical entities underpinning the quantum 
formalism and their benefits are perceived primarily in terms of the insight they provide into 
quantum reality. Less consideration has been given to the possible practical value of hidden 
variables in solving technical problems in quantum mechanics. For example, one may enquire 
whether these variables could assist in solving the Schrödinger equation in a way analogous 
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to, say, the computation of thermodynamic relations from microstates in statistical mechanics. 
Apart from the potential benefits to quantum mechanics, this could prove a fruitful avenue of 
investigation within the hidden-variable programme for, should the additional variables play 
such an efficacious role, this may provide alternative evidence of their consistency with the 
quantum formalism. Indeed, such an approach may provide the basis of an alternative picture 
of quantum mechanics in the technical sense of transformation theory. 

In this article we shall describe such a possibility. Specifically, we present an exact 
scheme to calculate the time-dependent wavefunction for a massless relativistic spin 1/2 
system obeying Weyl’s equation from a single-valued continuum of deterministic trajectories 
(the (ensemble of) “hidden variables”). This extends the method described recently for spin 
0(3) and spin 1(4) systems. 

In the previous papers it was argued that a natural language for the theory is offered by 
the hydrodynamic analogy, in which wave mechanics corresponds to the Eulerian picture and 
the trajectory theory to the Lagrangian picture. The Lagrangian model for the quantum fluid 
may be developed from a variational principle, and the Euler-Lagrange equations imply a 
fourth-order nonlinear partial differential equation to calculate the trajectories of the fluid 
particles as functions of their initial coordinates and the initial wavefunction. Restricting the 
admissible solutions to those consistent with quasi-potential flow, the wavefunction is 
computed via the standard map between the Lagrangian coordinates and the Eulerian fields. 
The key step in the computation is to express the initial coordinates as functions of space and 
time. The map supplies the analogue in this model of Huygens’ principle in wave mechanics,  
the effect of the superposition principle being represented by a nonclassical force on each 
fluid element. The theory provides a picture of quantum processes complementary to wave 
mechanics, and shows that the deterministic trajectory concept may be regarded as a basic 
component of the quantum description (and potentially of other wave theories) and not just of 
one of its interpretations (e.g., the de Broglie-Bohm model).  In order to include spin, the 
hydrodynamic model is extended so that the fluid particles acquire internal rotational 
freedoms in addition to translational ones.  

An Eulerian hydrodynamic picture for Weyl’s equation has been developed  
previously(5), along the lines of earlier methods used for spin 1/2 systems (for references see 
(6)). However, in connection with our programme,  it is not clear how to develop a suitable 
Lagrangian-coordinate version of the standard hydrodynamic model. A natural definition of 
the flow lines would be the integral curves of the space components of the current divided by 
the density. It appears that an ensemble of such paths would not contain sufficient information 
to construct the four real field components in the 2-spinor according to the method set out in 
(3).  

This problem may be circumvented by noting that the standard approach works with a 
(angular momentum) representation of the quantum theory in which the rotational freedoms 
appear as discrete indices in the wavefunction (6). The local fluid quantities (density, velocity, 
spin vector,…) are defined by “averaging” over these indices, which implies a loss of 
information and reproducing through them all the information in the wavefunction requires 
introducing ever more complex quantities and combinations of quantities. The alternative 
procedure advocated in (6) and used here is to start from the angular coordinate representation 
in which the spin freedoms are represented as continuous parameters α  (Euler angles) in the 
wavefunction, on the same footing as the spatial variables x: ψ x,α , t( ). This implies a 
physically clearer and simpler hydrodynamic-like model, in both its Eulerian and Lagrangian 
guises. The phase S of the wavefunction is immediately identifiable and the equations for the 
fluid paths are defined in terms of the gradients of S with respect to the coordinates, obvious 
generalizations of the spin 0 theory. The approach also provides a natural framework to study 
vortices, and it has the merit of locating spin analogues of the spin 0 quantum potential, as we 
shall see. 
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The final advantage of the angular coordinate approach is that it allows us to extend our 
method of wavefunction construction to the spin 1/2 field. This is achieved by generalizing 
the theory of (3) to a general Riemannian manifold from which the spinor construction is 
extracted as a special case. The Lagrangian-coordinate model presented here is not 
relativistically covariant and we shall see that the Lorentz covariance of the (Eulerian) field 
theory can be derived from the non-covariant theory as a kind of collective effect. 
 
 
2. HYDRODYNAMIC FORMULATION OF WEYL’S EQUATION 
 
2.1. Continuous representation of Weyl’s equation 
 
It turns out that the massless spin 1/2 theory may be developed applying the method used for 
the massless spin 1 case(4) with only minor changes. Weyl’s equation in Schrödinger form is 
 

  
i=∂χ a

∂t
= −i=c σ i( )ab∂iχ b                                                                                                    (1) 

 
where χ a  is a 2-component spinor, a, b = 1, 2, and 
 

σ1( )ab =
0 1
1 0
 

 
 

 

 
 , σ2( )ab =

0 −i
i 0
 

 
 

 

 
 , σ3( )ab =

1 0
0 −1
 

 
 

 

 
 ,                                                   (2)      

 
are the Pauli matrices. Summation over repeated indices is always assumed. To pass to the 
angular coordinate representation, we use the definition of the Euler angles α r( )= α ,β,γ( ),  r 
= 1,2,3, and conventions of (6). The angular momentum components become differential 
operators: 
 

  

ˆ M 1 = i= cosβ∂α − sinβcotα∂β + sinβcosecα∂γ( )
ˆ M 2 = i= -sinβ∂α −cosβcotα∂β + cosβcosecα∂γ( )
ˆ M 3 = i=∂β

 

 
  

 
 
 

                                                          (3)    

 
where ∂α =∂ ∂α  etc. Weyl’s equation (1) becomes 
 

  
i=

∂ψ x,α( )
∂t

= −2ic ˆ M i∂iψ x,α( )                                                                                         (4)       

 
or, introducing the real operator  

ˆ λ i = ˆ M i −i=( ), 
 

  
i=∂ψ

∂t
= −2c= ˆ λ i∂iψ                                                                                                            (5)         

 
where ψ is a function on the manifold M = ℜ 3 ⊗ SU 2( ) whose points are labelled by x,α( ). 
In this representation the wavefunction may be expanded in terms of an orthonormal set of 
spin 1/2 basis functions ua α( )(6): 
 

ψ x,α , t( )= χ a x,t( )ua α( ), a =1,2,                                                                                 (6)  
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where  
 

u1 α( )= 2 2π( )−1
cos α 2( )e−i β +γ( ) 2 , u2 α( )= −i 2 2π( )−1

sin α 2( )ei β−γ( ) 2,                      (7)      
 
with 
 

ua
∗ α( )∫ ub α( )dΩ =δab , dΩ = sinαdαdβdγ, α ∈ 0,π[ ], β ∈ 0,2π[ ], γ ∈ 0,4π[ ].       (8)  

 
It is readily checked that 
 

  ua
∗ α( ) ˆ M i∫ ub α( )dΩ = = 2( ) σ i( )ab                                                                                   (9) 

 
and multiplying (4) by ua

* α( ) and using (8) we recover (1).  
In this formalism the field equation (4) comes out as a second-order partial differential 

equation, and summation over a is replaced by integration over α r. For example,  for the 
components of the 4-current cχ a

* σµ( )ab
χ b  we have the alternate expressions 

 
cχ a

*χ a = c ψ x,α( )∫ 2
dΩ                                                                                                 (10)    

 

  
cχ a

* σ i( )ab χ b = 2c
=

ψ∗ x,α( ) ˆ M i∫ ψ x,α( )dΩ.                                                                    (11)  

 
To obtain the hydrodynamic model we follow Madelung(7) and express the 

wavefunction in polar form:   ψ = ρ exp iS =( ). Splitting the wave equation (5) into real and 
imaginary parts then gives the relations 
 

  
∂S
∂t

+ 2c
=

ˆ λ iS∂iS + Q = 0                                                                                                  (12)  

 

  
∂ρ
∂t

+ 2c
=

∂i ρˆ λ iS( )+ 2c
=

ˆ λ i ρ∂iS( )= 0                                                                               (13)  

 
where 
 

  
Q = −2c=

ˆ λ i∂i ρ
ρ

.                                                                                                          (14) 

 
These two equations are equivalent to Weyl’s equation (1), subject to the proviso that ρ  and S 
obey certain conditions inherited from ψ . In particular, the single-valuedness of the 
wavefunction requires 
 

  
∂iSdxi +∂rSdα rC0

∫ = nh, n ∈ Z ,                                                                                (15)                  

 
where C0 is a closed curve in M. In the hydrodynamic model the number n  is interpreted as 
the net strength of the vortices contained in C. These occur in nodal regions (ψ = 0) where S 
is singular. 
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Comparing (13) with the Eulerian continuity equation corresponding to a fluid of 
density ρ  with translational and rotational freedoms, 
 

∂ρ
∂t

+∂i ρvi( )+ ˆ λ i ρωi( )= 0,                                                                                            (16)                     

 
we shall make the following identifications for the velocity and angular velocity fields1: 
 

  vi = 2c =( )ˆ λ iS, ωi = 2c =( )∂iS.                                                                                    (17)   
 
Clearly, we obtain a kind of potential flow (strictly, quasi-potential in view of (15)), the 
potential being   2c =( )S. Note, however,  the unorthodox connections between the potential 
and the hydrodynamic quantities – vi (ωi) is a gradient with respect to the angular (spatial) 
variables. The quantity Q in (12) is the analogue for Weyl’s equation of the quantum potential 
that appears in the polar decomposition of the Schrödinger equation for a massive particle. As 
we shall see in Sec. 4, Q has the classic form "−∇ 2 ρ ρ " when the appropriate metric on 
M is identified.  

From the Bernoulli-like (or Hamilton-Jacobi-like) equation (12) we may obtain the 
analogue(s) of Euler’s force law for the spin 1/2 fluid. Applying first ∂i, rearranging and using 
(17) we get 
 

  

∂
∂t

+ v j∂ j +ω j
ˆ λ j

 
 
 

 
 
 ωi = −2c

=
∂iQ.                                                                                   (18)             

 
Next, applying ˆ λ i  and using ˆ λ i, ˆ λ j[ ]= −εijk

ˆ λ k  gives 
 

  

∂
∂t

+ v j∂ j +ω j
ˆ λ j

 
 
 

 
 
 vi =εijkω jvk − 2c

=
ˆ λ iQ                                                                        (19)    

 
which contains a precession-type term in addition to the quantum contribution.  

An alternative representation of the internal angular motion is in terms of the velocity 
fields vr x,α ,t( ) conjugate to the Euler angles. These are connected to the components of the 
vector angular velocity field by the relations 
 

ωi = A−1( )ir
vr, vr = Ariωi, i,r =1,2,3,                                                                         (20)    

 
where  
 

Air =
−cosβ sinβcotα −sinβcosecα
sinβ cosβcotα −cosβcosecα

0 −1 0

 

 

 
  

 

 

 
  
, A−1( )ir

=
−cosβ 0 −sinαsinβ
sinβ 0 −sinαcosβ

0 −1 −cosα

 

 

 
  

 

 

 
  
.     (21)  

 
Relations (3) may be written ˆ λ i = Air∂r  and it is easy to show using the result A−1( )ir

Ais =δrs 

that ω j
ˆ λ j = vr∂r . In terms of the conjugate velocities Euler’s equations (18) and (19) become, 

on substituting (20), 
                                                 
1 The uniqueness of this identification needs careful discussion. For examination of some of the issues 
involved see(8,9). 
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∂
∂t

+ v j∂ j + vr∂r

 
 
 

 
 
 vs + Asi∂r A−1( )iq

vqvr = −2c
=

Asi∂iQ, q,r,s =1,2,3,                             (22)          

 

  

∂
∂t

+ v j∂ j + vr∂r

 
 
 

 
 
 vi +εijk A−1( )kr

v jvr = −2c
=

ˆ λ iQ.                                                            (23)            

 
We shall see in Sec. 4 that the last terms on the left-hand sides of these equations may be 
attributed a geometrical interpretation.   
 
2.2. Fluid paths 
 
The paths x = x x0,α 0,t( ),α =α x0,α 0, t( ) of the fluid particles in M are obtained from the 
Eulerian velocity functions by solving the differential equations 
 

vi x,α ,t( )= ∂xi

∂t
, vr x,α , t( )= ∂α r

∂t
.                                                                                (24)   

 
Combining these formulas with (17) and (20) we have 
 

  
∂xi

∂t
= 2c

=
Air∂rS, ∂α r

∂t
= 2c

=
Ari∂iS, i,r =1,2,3,                                                             (25)   

 
where we substitute x = x x0,α 0,t( ),α =α x0,α 0,t( ) on the right-hand sides. These relations 
generally imply a complex coupling between the translational and angular freedoms. Note that 
the connection between the fields and the paths embodied in (24) breaks relativistic 
covariance, for this is not a Lorentz covariant system of equations (e.g., vi is not a Lorentz 3-
vector (i.e., ≡ ui u0  where uA  is a 4-vector)).  
 
2.3. Classical limit 
 
There are circumstances where Q is both sufficiently small numerically and slowly varying 
with respect to the (six) coordinates that it and its gradients may be neglected in (12), (18) and 
(19). We shall term this situation the “classical limit” of Weyl’s equation. The motion of a 
fluid particle in this case can be expressed as a geodesic for a suitably chosen metric (see 
(35)). According to (18) and (19) along a fluid path the angular velocity is constant and the 
translational velocity is either constant or precesses about the angular velocity vector.  Thus, 
the limiting spatial flow is composed of linear or helical orbits. It may be shown that the 
classical model as defined here can be “quantized” according to the usual rules to get back the 
massless wave equation(10). 
 
2.4. The nonzero mass case 
 
In the continuous representation, the Dirac equation for a massive spin 1/2 particle may be 
expressed as(11) 
 

  
i=

∂φ x,α( )
∂t

= −4ic
=

ˆ ′ M 1 ˆ M i∂iφ x,α( )+ 2mc 2

=
ˆ ′ M 3φ x,α( )                                                             (26) 
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where the operators ˆ ′ M i  obey the anomalous angular momentum commutation relations. This 
is a third-order differential equation and the trajectory technique for computing the Weyl 
spinor we describe below does not extend readily to this case. We shall discuss this problem 
elsewhere.  
 
 
3. LAGRANGIAN-COORDINATE CONSTRUCTION OF THE WAVEFUNCTION IN 
A RIEMANNIAN MANIFOLD 
 
3.1. Newton’s law for a fluid element 
 
We here review the method of constructing the wavefunction from hydrodynamic trajectories 
in arbitrary coordinates xµ  in an N-dimensional Riemannian manifold M with (static) metric 
gµν x( ), µ,ν ,...=1,...,N .(4) In this space, the history of the fluid is encoded in the positions 
ξ ξ 0,t( ) of the distinct fluid elements at time t, each particle being distinguished by its position 
ξ 0 at t = 0. We assume that the mapping between these two sets of coordinates is single-
valued and differentiable with respect to ξ 0 and t to whatever order is necessary, and that the 
inverse mapping ξ 0 ξ ,t( ) exists and has the same properties.  

Let P0 ξ 0( ) be the initial density of some continuously distributed quantity in M and 
g = det gµν . Then the quantity in an elementary volume dNξ 0 attached to the point ξ 0 is given 

by P0 ξ 0( ) −g ξ 0( )dNξ 0 . The conservation of this quantity in the course of the motion of the 
fluid element is expressed through the relation 
 

P ξ ξ 0, t( )( ) −g ξ ξ 0,t( )( )dNξ ξ 0, t( )= P0 ξ 0( ) −g ξ 0( )dNξ 0                                                (27) 
 
or 
 

P ξ 0, t( )= D−1 ξ 0, t( )P0 ξ 0( )                                                                                              (28)    
 
where 
 

D ξ 0, t( )= g ξ( ) g ξ 0( )J ξ 0, t( ), 0 < D < ∞,                                                                    (29)   
 
and J is the Jacobian of the transformation between the two sets of coordinates: 
 

J = 1
N!

εµ1 ...µN
εν 1 ...ν N

∂ξ µ1

∂ξ 0
ν 1

...∂ξ µN

∂ξ 0
ν N

.                                                                                   (30)  

 
We assume that the Lagrangian for the set of fluid particles comprises a kinetic term 

and an internal potential that represents a certain kind of particle interaction: 
 

L = P0 ξ 0( ) 1
2 gµν ξ( )∂ξ µ

∂t
∂ξ ν

∂t
− 1

2 c 2l2gµν ξ( ) 1
P 2

∂P
∂ξ µ

∂P
∂ξ ν

 

 
 

 

 
 −g ξ 0( )dNξ 0∫ .                    (31)  

 
Here P0  and gµν  are prescribed functions, ξ =ξ ξ 0,t( ), l is a constant with the dimension of 
length, and we substitute for P  from (28) and write 
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∂
∂ξ µ = J−1Jµ

ν ∂
∂ξ 0

ν                                                                                                            (32)  

 
where 
 

Jµ
ν = ∂J

∂ ∂ξ µ ∂ξ 0
ν( )                                                                                                           (33) 

 
is the cofactor of ∂ξ µ ∂ξ 0

ν . The latter satisfies 
 

∂ξ µ

∂ξ 0
ν Jµ

σ = Jδν
σ .                                                                                                                (34) 

 
It is assumed that P0  and its derivatives vanish at infinity, which ensures that the surface 
terms in the variational principle vanish. It is remarkable that the internal potential in (31) 
applies to both systems with and without spin, the cases being distinguished by the choice of 
coordinates and the functional dependences of the metric and initial density.  

Varying the coordinates, the Euler-Lagrange equations of motion for the ξ 0th fluid 
particle moving in the “field” of the other particles take the form of Newton’s second law in 
general coordinates: 
 

∂ 2ξ µ

∂t 2 +
µ

νσ
 
 
 

 
 
 

∂ξ ν

∂t
∂ξσ

∂t
= −2cl

=
gµν ∂Q

∂ξ ν                                                                           (35)  

 
where νσ

µ{ } = 1
2 gµρ ∂gσρ ∂ξ ν +∂gνρ ∂ξσ −∂gνσ ∂ξ ρ( ) and  

 

  
Q = −=cl

−gP
∂

∂ξ µ −ggµν ∂ P
∂ξ ν

 

 
 

 

 
 .                                                                                     (36)             

 
We have written the force term on the right-hand side of (35) in condensed form and 
substituting for P  from (28) and for the derivatives with respect to ξ  from (32) we obtain a 
highly complex fourth order (in ξ 0) local nonlinear partial differential equation. We shall see 
that from the solutions ξ =ξ ξ 0,t( ), subject to specification of ∂ξ 0

µ ∂t  whose determination is 
discussed next, we may derive solutions to Schrödinger’s equation.  
 
3.2. Quasi-potential flow 
 
To obtain a flow that is representative of Schrödinger evolution we need to restrict the initial 
conditions of (35) to those that correspond to what we term “quasi-potential” flow. This 
means that the initial covariant components of the velocity field are of the form (we introduce 
the factor   2cl =  with an eye to the spin application) 
 

  
gµν ξ 0( )∂ξ 0

µ

∂t
= 2cl

=
∂S0 ξ 0( )

∂ξ 0
ν                                                                                              (37)         

 
but the flow is not irrotational everywhere because the potential S0 ξ 0( ) obeys the quantization 
condition 
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∂S0 ξ 0( )
∂ξ 0

µ
C
∫ dξ 0

µ = nh, n ∈ Z ,                                                                                        (38)    

 
where C is a closed curve composed of fluid particles. The requirement (38) evidently 
restricts the circulation of the covariant components of the initial velocity (37). If it exists, the 
vorticity occurs in nodal regions (where the density vanishes) and it is assumed that C passes 
through a region of “good” fluid, where P0 ≠ 0. It can be shown that the quasi-potential 
property is preserved by the dynamical equation (35). That is, at time t, we have 
  

  
gµν

∂ξ ν

∂t
= 2cl

=
∂S
∂ξ µ , S ξ 0 ξ , t( ), t( )= S0 + =

4cl
gµν

∂ξ µ

∂t
∂ξ ν

∂t
−Q

 

 
 

 

 
 0

t∫ dt.                           (39)  

 
and 
 

∂
∂t

gµν
∂ξ ν

∂tC t( )
∫ dξ µ = 0                                                                                                     (40)     

 
where C t( ) is the evolute of the fluid particles that compose C. We conclude that each 
particle retains forever the quasi-potential property if it possesses it at any moment. 
 
3.3. Derivation of Schrödinger’s equation 
 
The fundamental link between the particle (Lagrangian) and wave-mechanical (Eulerian) 
pictures is defined by the following expression for the Eulerian density: 
 

P x,t( ) −g x( ) = δ x −ξ ξ 0, t( )( )∫ P0 ξ 0( ) −g ξ 0( )dNξ 0 .                                                  (41)   
 
The corresponding formula for the Eulerian velocity is contained in the expression for the 
current: 
 

P x,t( ) −g x( )vµ x, t( )=
∂ξ µ ξ 0, t( )

∂t
δ x −ξ ξ 0,t( )( )∫ P0 ξ 0( ) −g ξ 0( )dNξ 0 .                        (42)    

 
Evaluating the integrals, (41) and (42) are equivalent to the following local expressions 
 

P x,t( ) −g x( ) = J−1

ξ 0 x,t( )
P0 ξ 0 x,t( )( ) −g ξ 0 x,t( )( )                                                         (43)                   

 

vµ x, t( )=
∂ξ µ ξ 0, t( )

∂t
ξ 0 x,t( )

.                                                                                               (44)                 

 
These formulas enable us to translate the Lagrangian flow equations into Eulerian 

language. Differentiating (41) with respect to t and using (42) we deduce the continuity 
equation 
 

∂P
∂t

+ 1
−g

∂
∂xµ P −gvµ( )= 0.                                                                                       (45)  
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Next, differentiating (42) and using (35) and (45) we get the analogue of Euler’s classical 
equation: 
 

  

∂vµ

∂t
+ vν ∂vµ

∂xν +
µ

νσ
 
 
 

 
 
 
vν vσ = −2cl

=
gµν ∂Q

∂xν ,                                                                    (46)  

 
where Q is given by (36) with ξ  replaced by x. Finally, the quasi-potential condition (39) 
becomes 
 

  
vµ = 2cl

=
gµν ∂S x,t( )

∂xν .                                                                                                      (47)   

 
Formulas (43) and (44) give the general solution of the coupled continuity and Euler 
equations (45) and  (46) in terms of the paths and initial density. 

To establish the connection between the Eulerian equations and Schrödinger’s equation 
we note that, using (47), (46) can be written 
 

  

∂
∂xµ

∂S
∂t

+ cl
=

gνσ ∂S
∂xν

∂S
∂xσ + Q

 
 
 

 
 
 = 0.                                                                                (48)   

 
The quantity in brackets is thus a function of time. Since the addition of a function of time to 
S does not affect the velocity field, we may absorb the function in S, i.e., set it to zero. Then 
 

  
∂S
∂t

+ cl
=

gνσ ∂S
∂xν

∂S
∂xσ + Q = 0.                                                                                          (49)  

 
Combining (49) with (45) (where we substitute (47)) we find that the function 

  ψ x, t( )= Pexp iS =( ) obeys the free Schrödinger equation in general coordinates: 
 

  
i=∂ψ

∂t
= −=cl

−g
∂

∂xµ −ggµν ∂ψ
∂xν

 
 
 

 
 
                                                                                    (50)   

 
(for a system of “mass”   = 2cl). We have deduced the wave equation from the collective 
particle motion obeying the Lagrangian path equation (35) subject to the quasi-potential 
requirement. The quantization condition (40) becomes here 
 

  

∂S x, t( )
∂xµ

C0

∫ dxµ = nh, n ∈ Z ,                                                                                         (51)    

 
where C0 is a closed curve fixed in space that does not pass through nodes. This is a 
consistent subsidiary condition on solutions since it is easy to see using (48) that the value of 
(51) is preserved in time as long as nodes do not cross C0. 
 
 
4. CONSTRUCTION OF THE SPINOR FIELD FROM THE TRAJECTORIES 
 
We specialize the treatment of the last section to the manifold M = ℜ 3 ⊗ SU 2( ) with 
coordinates xµ = xi,α r( ), metric 
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gµν =
0 l−1Air

l−1Ari 0

 

 
 

 

 
 , gµν =

0 l A−1( )ir

l A−1( )ri
0

 

 
 
 

 

 
 
 , i,r =1,2,3,                                      (52)   

 
where Air  is given by (21), and density P = ρ l3 . Using, in particular, the results 
∂r −ggir( )= 0 and lgir ∂r = ˆ λ i, and inserting the latter in the relations ˆ λ i, ˆ λ j[ ]= −εijk

ˆ λ k  which 

gives gir ∂sgrj −∂rgsj( )= l−1εijkgsk , we find that the relation (47) becomes the electromagnetic 
Eulerian relations (17), (45) becomes (13), (46) becomes (22) and (23), (36) (with ξ  replaced 
by x) becomes (14), (49) becomes (12), (50) becomes (5), and (51) becomes (15). 

The results of the previous section therefore provide us with the desired algorithm to 
compute the spinor field from the Lagrangian trajectories. Writing ξ µ = qi,θr( )for the 
Lagrangian coordinates, the Lagrangian (31) becomes 
 

L = lρ0 q0 ,θ0( ) A−1( )ir

∂qi

∂t
∂θr

∂t
−c 2Air

1
ρ2

∂ρ
∂qi

∂ρ
∂θr

 

 
 

 

 
 sinθ01d

3θ0∫ d3q0.                              (53)   

 
Newton’s law (35) reduces to the coupled relations 
 

  

∂ 2qi

∂t 2 +εijk A−1( )kr

∂q j

∂t
∂θr

∂t
= −2c

=
Air

∂Q
∂θr

                                                                         (54)    

 

  

∂ 2θs

∂t 2 + Asi
∂

∂θr

A−1( )iq

∂θq

∂t
∂θr

∂t
= −2c

=
Asi

∂Q
∂qi

                                                                  (55)  

 
where Air  is given by (21) with α r replaced by θr q0,θ0, t( ) and we substitute 
 

ρ q0,θ0, t( )= D−1 q0,θ0, t( )ρ0 q0,θ0( )                                                                                 (56)    
 
into 
 

  
Q = −2c=Air

1
ρ

∂ 2 ρ
∂θr∂qi

                                                                                                 (57)          

 
with  
 

∂
∂qi

= J−1 Jij
∂

∂q0 j

+ Jis
∂

∂θ0s

 

 
  

 

 
  ,

∂
∂θr

= J−1 Jrj
∂

∂q0 j

+ Jrs
∂

∂θ0s

 

 
  

 

 
  .                                        (58)    

 
Given the initial wavefunction  ψ0 x,α( )= χ 0a x( )ua α( )= ρ0exp iS0 =( ) we can compute 

the wavefunction for all x,α , t, up to a global phase, as follows. First, solve (54) and (55) 
subject to the initial conditions   ∂q0i ∂t = 2c =( )Air θ0( )∂S0 ∂θ0r  and 

  ∂θ0r ∂t = 2c =( )Ari θ0( )∂S0 ∂q0i  to get the set of trajectories for all q0,θ0, t . Next, invert these 
functions and substitute q0 x,α , t( ) and θ0 x,α, t( ) in the right-hand side of (56) to find 
ρ x,α , t( ) and in the right-hand sides of the equations  
 



 

 

12

  
∂rS = =

2c
A−1( )ir

∂qi

∂t
, ∂iS = =

2c
A−1( )ri

∂θr

∂t
, i,r =1,2,3,                                               (59)            

 
to get S up to an additive function of time,  =f t( ). To fix this function, apart from an additive 
constant, use (12). We obtain then the following formula for the wavefunction: 
 

ψ x,α , t( )= D−1ρ0( )q0 x,α , t( )
θ 0 x,α , t( )

×exp i
2c

A−1( )ir
∂qi ∂t q0 x,α , t( )

θ 0 x,α , t( )
dα r + A−1( )ri

∂θr ∂t q0 x,α , t( )
θ 0 x,α , t( )

dxi∫ + if t( )
 

 
 

 

 
 .

      (60) 

 
Finally, the components of the time-dependent spinor field may be read off from the formula 
(inverse of (6)) 
 

χ a x,t( )= ψ x,α , t( )ua
* α( )dΩ∫ .                                                                                      (61)               

 
Note that the trajectories depend on the basis set ua α( ) (which enter the calculation 

through the initial wavefunction) and would be different if a different choice to (7) were 
made. This will not affect the field values found from (61). 
 
 
5. HIDDEN-VARIABLE THEORY 
 
The theory of the Lagrangian paths is not in itself a hidden-variable theory, as that term was 
defined in the first sentence. It provides the groundwork for such a theory, however, and we 
need only take a simple further step. Thus, we suppose that a single one of the ensemble of 
paths associated with each set of Eulerian fields (i.e., χ ) is selected as special, or labelled, so 
that the outcome of a measurement is uniquely determined by this additional information 
together with χ  (we assume that we are in a sufficiently low energy regime for this to be 
meaningful). The distribution of the hidden variables, i.e., the labels, is given by the position 
density ρ = χ +χ . In the de Broglie-Bohm theory(6) of massive systems it is postulated that a 
massive corpuscle occupies one of the paths and the hidden variable is its position, but of 
course this type of labelling is not available here.  However the selection is made, the set of 
Lagrangian coordinates is just the complete set of hidden variables that may potentially be 
associated with the quantum system. Our deduction of the time variation of the wavefunction 
from the set of paths may therefore be regarded as evidence of the consistency of this hidden 
variable theory. Indeed, as argued elsewhere(3) , the Lagrangian coordinates constitute an 
alternative picture of quantum mechanics. 

The paths are of the kind introduced in the de Broglie-Bohm theory but there are 
significant differences between that approach and the Lagrangian model(3). A fundamental 
methodological distinction is that, while in both models the ensemble of trajectories generates 
ρ  given ρ0, in the de Broglie-Bohm theory the orbits are found by first solving the 
Schrödinger equation. In the hydrodynamic model this procedure may be reversed and the 
orbits made the basis of the description. 

It is noteworthy that the hydrodynamic paths do not form a Lorentz covariant structure.  
That we can derive the Lorentz covariant spin theory from a non-covariant model is not 
surprising. The absence of the fluid paths in the basic Eulerian equations suggests that ρ x( ) 
and S x( ) (and hence χ ) may be regarded as “collective coordinates” – functions that describe 
the bulk properties of the system without depending on the complex details of the particulate 
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substructure. Features peculiar to the Eulerian picture, such as Lorentz covariance, may 
therefore be viewed as collective rather than fundamental properties. This result calls into 
question an assumption that pervades much of the discourse on hidden variables where it has 
generally been felt that a Lorentz covariant model is a necessary objective. 
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