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Testing Wavefunction Collapse

  P.R. Holland

Abstract

The technique of measuring the wavefunction of a single system
suggests a method for distinguishing between epistemological interpretations
of quantum mechanics which postulate wavefunction collapse and ontological
interpretations such as that of de Broglie and Bohm in which no collapse
occurs.
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In quantum mechanics it is convenient to divide interpretations of the
wavefunction into the purely epistemolgical and the ontological. The first
views the wavefunction as just a repository of statistical information on a
physical system. The other sees the wavefunction primarily as an element of
physical reality (while generally retaining the epistemological interpretation as
a secondary property). A drawback of the epistemological interpretation is that
it entails the hypothesis that the wavefunction ‘collapses’ at some stage in a
measurement process, a notion that has engendered numerous paradoxes. It is
known that there exist alternative ontological interpretations which dispense
with the collapse hypothesis (one such consistent theory is described in ref.
[1]) but as yet no empirical evidence has been forthcoming to decide between
the two. This paper addresses that issue.

The measurement problem of quantum mechanics arises when one
attempts to attribute definite outcomes to processes devoted to discovering
some information on a quantum system [2]. The measurement of an operator  ̂A 
associated with a system of coordinate x is customarily modelled by an
impulsive interaction generated by the Hamiltonian   H = f  ̂A −ih∂ / ∂z( )  where z
is the coordinate of the apparatus and f is a constant. At first the system and
apparatus are non-interacting so the total initial state is Ψ0 x, z( ) = ψ 0 x( )φ0 z( )
whereψ 0 x( ) = caψ a

a
∑ x( ) is a superposition of eigenstates of  ̂A , and φ 0 z( )  is

the initial apparatus state (assumed to be a localized packet). The impulsive
interaction acts as a beam splitter in configuration space generating a spectrum
of macroscopically distinct apparatus states correlated with individual
eigenfunctions. If the period of interaction is T we obtain

Ψ x, z, T( ) = caψ a
a
∑ x,T( )φ a z, T( )                                                                   (1)

where φ a z,T( ) = φ 0 z − faT( )  represents a set of non-overlapping outgoing
apparatus packets. In order to extract a definite result from this superposition in
the epistemological interpretation, the hypothesis is invoked that the state (2)
collapses into one of the summands, say the ath, with probability ca

2 :

c ′ a ψ ′ a 
′ a 
∑ x, T( )φ ′ a z, T( )→ψ a x, T( )φa z, T( )                                                      (2)

(after normalization). This transformation is not described by the evolutionary
law of quantum mechanics (Schrödinger’s equation) and suggestions for how it
might come about have ranged from the intervention of an observer who
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becomes aware of the outcome to modifications of the Schrödinger equation.
But even if it is assumed that it does actually take place, the notion of collapse
does not in itself solve the measurement problem. For to infer the outcome of
the measurement the pointer of the apparatus must be assigned a location
whose variation during the interaction can be unambiguously determined. In
contrast, according to its usual interpretation the wavefunction attributed to the
apparatus determines just the statistical frequency of measurement results. The
wavefunction does not itself offer a description of an autonomous object. One
may attempt to address this difficulty by invoking the feature of φ 0 z( )  that it is
sharply peaked about a spacetime orbit, that is by making some kind of literal
identification of the packet with the particle. Then one is tacitly shifting the
interpretation of the wavefunction towards an ontological view, but not in a
clearly consistent way - the eventual diffusion of the packet, or the possibility
of splitting it into disjoint parts, means the ‘particle’ does not remain localized,
for instance.

The other option is that the projection (2) does not take place. Rather,
the correct wavefunction remains (1) so that all terms in the superposition
continue to be finite but one is selected as representing the outcome of the
measurement because it carries some special attribute. An example of a theory
which solves the measurement problem in this way is due to de Broglie and
Bohm [1]. Here the quantum state is defined by a set of point particles moving
along spacetime tracks, as well as by the wavefunction. The primary role of the
latter is to guide the particles according to a precise law of motion. In an
ensemble of particle systems the probability density of presence in the initial
state (from which the Born probability formula of observation follows) is
Ψ0 x, z( ) 2 . Then in the measurement one of the outgoing summands is singled
out because the de Broglie-Bohm system point (x,z) enters it. From the
standpoint of the particles the transformation (2) does therefore in effect occur,
even though the other ψ as and φ as are still finite (they will be called empty).
Within this approach the entire measurement process may be treated by
applying the usual linear, unitary Schrödinger equation, and the single concept
of particle trajectory enables one to both avoid the collapse postulate and to
solve the problem of the definiteness of the pointer (and object) position.
Moreover, this ontological interpretation has the advantage of being
unambiguous in application and of not assigning any special role to the
consciousness of the observer. As far as we know it is free of paradoxes.

For historical rather than scientific reasons the de Broglie-Bohm
proposal has been dismissed as an ad hoc metaphysical hypothesis and little
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consideration given to either its conceptual clarity and the insight it provides
into the novelty of quantum mechanics, or to the possibility of subjecting it to
an empirical test. Bohm [3] took the view that for the present it is not possible
to distinguish the various interpretations because they are contrived to
reproduce the same set of quantal predictions. This conviction may be unduly
pessimistic because there exist what appear to be physically meaningful
questions, such as the time taken for systems to move across spatial domains,
for which the standard quantum formalism and hence the interpretations which
regard it as complete do not give unambiguous answers, whereas the de
Broglie-Bohm model does give clear results (in virtue of its particle law of
motion). The ill-defined collapse hypothesis is an area where the de Broglie-
Bohm theory may lead to alternative empirical predictions.

Previously suggested techniques for empirically investigating the empty
wave concept have been found to be unsatisfactory [4]. The quite different
method discussed here stems from a technique suggested recently for
measuring the wavefunction of a single system [5-7] (this is not to be confused
with the well known possibility of reconstructing the wavefunction from a
statistical ensemble of measurements [8]). Aharonov and coworkers have
shown how using suitably adapted interactions described by quantum
mechanics (called ‘protective’ measurements) one can gain information about
the wavefunction of an individual system without appreciably disturbing it.
Adopting the positivistic attitude that (only) what is measurable is real, one
may then infer from this procedure that the wavefunction is an element of
physical reality. Let the initial moment of time be t = T , the wavefunction to
be measured be α x,T( ), and the initial wavefunction of the corresponding
measuring apparatus be β y, T( ) . Then in the protective interaction envisaged
by Aharonov and coworkers the combined initial state
Φ x, y,T( ) = α x,T( )β y,T( )  has evolved at time t into:

  
Φ x, y,t( ) = α x,t( )β y, t( )exp − i / h( ) g t( )y  ̂B dt

T

t

∫
 

 
 
 

 

 
 
 
.                                       (3)

Here g(t) is a function characterising the interaction, α x, t( )  and β y, t( ) are the
wavefunctions obtained under free evolution of the two systems, and  ̂B  is an
operator associated with the system measured. It will be observed that this is
still a product state in that the variables x and y have not become entangled.
Because it is the expectation value  ̂B  of  ̂B  in the initial state Φ x, y,T( )  that
appears in the exponent in (3), information on the state α x,T( ) can be read off
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from the apparatus by measuring the change in its momentum. For example,
we can choose  ̂B  = x0 x0  so that  ̂B  = α x0 , T( ) 2  and the shift in
momentum is proportional to the square of the wave amplitude at the point x0.
It is possible that the Hamiltonian needed to generate the protective interaction
depends on the wavefunction being measured which would imply that we must
first know the wavefunction before we can measure it. This difficulty does not
impinge on the use we make of the protective technique below where the
important issue is that the wavefunction of interest has a discernible influence
on a non-reactive measuring device (we might prepare the wavefunction in
advance by some state preparation procedure).

We apply this method to the wavefunction (1) in the case where the
collapse (2) does not occur, that is, when (1) comprises the set of empty waves
generated by the measurement interaction in addition to the one corresponding
to the actual outcome. Our initial wavefunction is then the function (1); this is
the wavefunction to be measured (so that we replace x in the previous
paragraph by x and z). Let us suppose that the configuration point (x,z) of the
de Broglie-Bohm model lies in the ath summand of Ψ x, z, T( ) and that we can
determine this fact, and hence the location of corpuscle x, whenever we choose
by observing z. Then as stated, in the de Broglie-Bohm theory the other
summands are finite but empty from the moment the summands separate and
remain so independently of whether or when we become aware of the location
of x. Hence, if we apply the technique of Aharonov et al. we should be able to
measure the finite, empty components of the total wavefunction and
demonstrate empirically their reality. To this end, fix attention on the ′ a th
component, ′ a ≠ a , choose a point x0 , z0( )∈ψ ′ a x, T( )φ ′ a z, T( )≠ 0  (so that
ψ ′ ′ a x0 ,T( )φ ′ ′ a z0 , T( ) = 0  for all ′ ′ a ≠ ′ a ), and measure the operator  ̂B  =
z0 x0 x0 z0  according to the above method. Then  from (3) we obtain

  

Φ x, y, z, t( ) = caψ a
a
∑ x,t( )φa z,t( )
 

 
 

 

 
 β y,t( )

× exp − i / h( ) g t( )y ψ
′ a x0 ,T( )φ ′ a z0 , T( )

2
dt

T

t

∫
 

 
 
 

 

 
 
 

                            (4)

To test whether in the first measurement the wavefunction has really collapsed
simply requires observing the momentum of the detector y which in the
ontological interpretation has been shifted by an amount depending on the
finite amplitude of the empty wave ψ ′ a x , T( )φ ′ a z,T( ) . This may be achieved
by a conventional momentum measurement which entails extending the



6

configuration space to include the coordinates of the momentum-measuring
apparatus.

Successful realisation of this experiment would provide justification for
ontological interpretations of quantum mechanics according to which
wavefunction collapse does not occur.
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