Invited review

Secular change and the onset of plate tectonics on Earth

Richard M. Palina,a,⁎, M. Santoshb,c, Wentao Caod, Shan-Shan Lib, David Hernández-Uribe,e, Andrew Parsonsad

a Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
b School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China
c Department of Earth Science, University of Adelaide, Adelaide, SA 5005, Australia
d Department of Geology & Environmental Sciences, State University of New York at Fredonia, Fredonia, NY 14063, USA
e Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA

ARTICLE INFO

Keywords:
Archean
Subduction
Plate tectonics
Geodynamics
Metamorphism

ABSTRACT

The Earth as a planetary system has experienced significant change since its formation c. 4.54 Gyr ago. Some of these changes have been gradual, such as secular cooling of the mantle, and some have been abrupt, such as the rapid increase in free oxygen in the atmosphere at the Archean–Proterozoic transition. Many of these changes have directly affected tectonic processes on Earth and are manifest by temporal trends within the sedimentary, igneous, and metamorphic rock record. Indeed, the timing of global onset of mobile-lid (subduction-driven) plate tectonics on our planet remains one of the fundamental points of debate within the geosciences today, and constraining the age and cause of this transition has profound implications for understanding our own planet's long-term evolution, and that for other rocky bodies in our solar system. Interpretations based on various sources of evidence have led different authors to propose a very wide range of ages for the onset of subduction-driven tectonics, which span almost all of Earth history from the Hadean to the Neoproterozoic, with this uncertainty stemming from the varying reliability of different proxies. Here, we review evidence for paleo-subduction preserved within the geological record, with a focus on metamorphic rocks and the geodynamic information that can be derived from them. First, we describe the different types of tectonic/geodynamic regimes that may occur on Earth or any other silicate body, and then review different models for the thermal evolution of the Earth and the geodynamic conditions necessary for plate tectonics to stabilize on a rocky planet. The community's current understanding of the petrology and structure of Archean and Proterozoic oceanic and continental crust is then discussed in comparison with modern-day equivalents, including how and why they differ. We then summarize evidence for the operation of subduction through time, including petrological (metamorphic), tectonic, and geochemical/isotopic data, and the results of petrological and geodynamical modeling. The styles of metamorphism in the Archean are then examined and we discuss how the secular distribution of metamorphic rock types can inform the type of geodynamic regime that operated at any point in time. In conclusion, we argue that most independent observations from the geological record and results of lithospheric-scale geodynamic modeling support a global-scale initiation of plate tectonics no later than c. 3 Ga, just preceding the Archean–Proterozoic transition. Evidence for subduction in Early Archean terranes is likely accounted for by localized occurrences of plume-induced subduction initiation, although these did not develop into a stable, globally connected network of plate boundaries until later in Earth history. Finally, we provide a discussion of major unresolved questions related to this review's theme and provide suggested directions for future research.

1. Introduction

Without doubt, one of the most important unresolved questions in the geosciences concerns when plate tectonics began to operate on Earth at a global scale (Stern, 2005; Condie and Kröner, 2008; Shirey et al., 2008; Hawkesworth et al., 2010; Korenaga, 2013; Turner et al., 2014; Condie, 2018; Palin and Dyck, 2018). Understanding the causes and consequences of initiation of this geodynamic regime, and identifying what alternative(s) may have existed beforehand also has significant implications for studying the evolution of other rocky planets in our solar system (Head and Solomon, 1981; Phillips et al., 1981; Sleep, 1994; Solomatov and Moresi, 1996; O'Neill et al., 2007; Watters...
and Nimmo, 2010; Wade et al., 2017; Stern et al., 2018) and beyond (Van Heck and Tackley, 2011; Foley et al., 2012; Noack and Breuer, 2014). The hallmark of modern-day plate tectonics on Earth is the independent horizontal motion of lithospheric plates, facilitated at divergent plate boundaries by seafloor spreading, at transform plate boundaries by strike-slip fault motion, and at convergent plate boundaries by one-sided subduction (Tao and O‘Connell, 1992; King, 2001; Bercovici, 2003; Gerya et al., 2008). This tectonic ‘conveyor belt’ allows oceanic lithosphere to be efficiently recycled back into the mantle from whence it originated (Sleep, 1975; Kirby et al., 1991), with the gravitational pull of subducting slabs now understood to be the dominant driving force for surface plate motion (Forsyth and Uyeda, 1975; Conrad and Lithgow-Bertelloni, 2002; Schellart, 2004; Weller et al., 2019). Consequently, proving the existence of plate tectonics at any point in geological time requires proving operation of the Wilson Cycle, or else independent plate motion and rotation (Van der Voo, 1982).

In this contribution, we review the current state of understanding of the veracity of various lines of evidence proposed to support or refute the operation of plate tectonics since the Earth’s formation at c. 4.54 Ga (Patterson, 1956). Papers published in the past few decades have suggested ages of onset that encompass almost all of geological time (Fig. 1), beginning in the Hadean (c. 4.2–4.0 Ga: Hopkins et al., 2008; Ernst, 2017a; Maruyama et al., 2018), through the Eoarchean (c. 3.9–3.6 Ga: Komiya et al., 1999; Nutman et al., 2002; Turner et al., 2014) and Mesoarchean (c. 3.2–3.0 Ga: Cawood et al., 2006; van Kranendonk et al., 2007; Condie and Kröner, 2008; Shirley and Richardson, 2011; Tang et al., 2016), to the Neoarchean (c. 1.0–0.8 Ga; Stern, 2005; Hamilton, 2011; Stern et al., 2016). Further, while some studies do not directly interpret the age of initiation, they provide valuable minimum age constraints on the operation of subduction, as interpreted from Mesoarchean rocks of the Barberton Terrane, South Africa (Moyen et al., 2006), the Kola Peninsula, Russia (Mints et al., 2010), and Paleoproterozoic rocks from the West African Craton (Ganne et al., 2011), Tanzania (Möller et al., 1995), and the Trans-Hudson orogen, Canada (Weller and St-Onge, 2017).

Before performing detailed analysis of these geological indicators, it is important to firstly define key terms used to describe different tectonic regimes that may form on rocky planets with convecting mantles, and to provide a brief introduction to the thermal history of the Earth. A wide range of nomenclature has been introduced in recent years to describe different tectono-magmatic states, with the boundaries between each having become somewhat blurred. Subsequently, various lines of geological evidence for the operation of plate tectonics throughout Earth history are discussed, with an emphasis on metamorphic processes and products as indicators of the occurrence of subduction. Finally, we outline several issues related to this general topic that remain unanswered today and provide suggestions for future directions of study that would offer the best chances to resolve these matters.

1.1. Styles of tectonic regimes that characterize rocky planets

Rocky planets that are massive enough to allow solid-state convection in their mantles can exhibit a variety of geodynamic regimes at their surfaces, which may readily transition between different states over the thermal lifetime of the parent body (Petersen et al., 2015). All discussion of ‘plates’ in this work and related literature refers specifically to discrete masses of a planet’s lithosphere (Barrell, 1914: Fig. 2), which defines the uppermost solid layer of the Earth, and is distinguished from the underlying asthenosphere by changes in the...
dominant mode of heat flow, chemical composition, and/or rheology at the interface (Anderson, 1995; Fischer et al., 2010; Green et al., 2010). From a thermal perspective, heat flow through the lithosphere is dominated by conduction, whereas the asthenosphere and lower mantle cool primarily via convection (Pollack and Chapman, 1977). These different modes and length scales of heat transfer cause Archean and Proterozoic lithosphere to exhibit distinctly different geochemical and isotopic signatures to the underlying asthenosphere, which may compositionally homogenize over geological time (Lenoir et al., 2000; O’Reilly and Griffin, 2010). Nonetheless, discrete geochemical domains are thought to have persisted over hundred-million or billion-year timescales in the lower mantle (Hofmann, 1997), indicating that it is not as well mixed. Rheologically, the lithosphere acts in a rigid manner, whereas the underlying asthenosphere is much weaker/less viscous (Eaton et al., 2009; Burov, 2011) with a Rayleigh number that predicts vigorous convection (Korenaga and Jordan, 2003). The lithosphere may alternatively be referred to as a “lid” as it represents a strong thermal boundary layer separating hot planetary interiors from the cold hydrosphere and surrounding vacuum of space. Finally, it should be emphasized that discussion in this study refers only to rocky planets with silicate crusts and mantles (Fig. 2), although lithosphere–asthenosphere nomenclature may be equally applied to ice-rich bodies with solid outer shells situated above subsurface liquid oceans (e.g. Roberts and Nimmo, 2008).

Two fundamental end-member geodynamic regimes may exist on large silicate bodies, such as the Earth: mobile and stagnant lids. Mobile lids are characterized by active yielding of the lithosphere, which allows substantial horizontal motion and mass and energy exchange with the planet’s interior (asthenosphere/lower mantle) (Moresi and Solomatov, 1998). In mobile-lid regimes, the surface velocity of the lid is around 0.8–1.8 times that of the internal velocity (Weller and Lenardic, 2018). These criteria are all satisfied by plate tectonics, which is the archetypal form of a mobile-lid tectonic regime (Tackley, 2000). For example, subduction of oceanic lithosphere at convergent plate margins allows geochemical recycling between the Earth’s interior and exterior (Othman et al., 1989; Scholl and von Huene, 2007; Rapp et al., 2008; Weller et al., 2016; Hernández-UrIBE and Palin, 2019a), and the velocities of plate motion are typically within an order of magnitude of convection within the upper mantle (Ogawa, 2008). By contrast, stagnant-lid regimes exhibit severely limited horizontal surface motions, with no active yielding, although different forms of vertical mass transport allow limited mixing between surface and interior (cf. Fig. 3). In these cases, surface velocities are typically around 100–1000 times more sluggish than internal velocities (Weller and Lenardic, 2018). With all other planetary characteristics being equal, thermo-mechanical modeling has shown that stagnant-lid regimes have thicker boundary layers, lower heat fluxes, and higher internal temperatures than equivalent mobile-lid regimes (O’Neill et al., 2007). A simplistic, but useful, distinction between mobile- and stagnant-lid tectonics is that the entire lithosphere is involved in convection in the former, whereas only the warmer, weaker (basal) part of the lid is responsive to convection in the latter (Stevenson, 2003). In this latter case, material may be lost from the lid’s underside and returned to the planet’s interior by dripping off or delamination (Fischer and Gerya, 2016a, 2016b; Piccolo et al., 2019), as discussed below.

Fig. 3 summarizes the conceptual tectono-magmatic evolution of large silicate bodies, such as Earth, soon after initial formation. Note that mobile-lid regimes (e.g. plate tectonics) are not illustrated here, as they likely represent a special case in geodynamic parameter space (cf. Section 1.3). Both theory and some observations imply the occurrence
of magma ponds or oceans in the early evolution of all terrestrial pla-
nets in our solar system (Rubie et al., 2003; Elkins-Tanton, 2012;
Hamano et al., 2013), which form due to heat provided by decay of
radiogenic nuclides, accretion and metal–silicate differentiation, and
bolide impacts (Sasaki and Nakazawa, 1986; Abe, 1997). As such, this
behaviour can be considered a starting condition from which all possible tectonic
regimes can evolve (Fig. 3). The initial thickness of a magma ocean
depends on the planet's radius, which controls the rate of pressure in-
crease, and so the depths at which an adiabat intersects the peridotite
solidus and liquidus (Elkins-Tanton, 2012). Further, large planets with
relatively low surface area-to-volume ratios cool at slower rates than
small planets with relatively high surface area-to-volume ratios, and so
the former are expected to retain a magma ocean for longer timescales.
First-order estimations provided by integrated petrological–thermal
modeling of the Hadean Earth predict a partially molten shallow
magma ocean (or crystal-rich mush) to a depth of ~150–300 km below
the surface (Hofmeister, 1983; Ohtani, 1985; Elkins-Tanton, 2012);
however, numerical simulations of a giant impact thought to have
formed the Earth–Moon system suggests that over 50 vol% of the
Earth’s mantle could have melted, indicating a magma ocean at least
600 km depth (Canup, 2012; Ćuk and Stewart, 2012; Nakajima and
Stevenson, 2015). Because of this uncertainty, the extent of a magma
ocean on the very early Earth is debated, but even in the most extreme
scenarios, complete solidification likely occurred within 1–10 Myr of
inception (Elkins-Tanton, 2008; Monteux et al., 2016).

Terrestrial pseudo-analogues of the tectonic processes expected to
occur on the surface of a magma ocean were described during the
Mauna Ulu eruption at Kilauea volcano, Hawaii, by Duffield (1972).
There, a crust-veneered lava column in the central eruptive vent was
oberved to exhibit a wide range of plate-like characteristics, including
fragmentation and independent motion of crustal blocks, as well as
their eventual sinking back into the underlying lava lake. Such features
were suggested to represent a scaled-down model of primary crust
formation and evolution on a magma ocean world. Upon near-terminal
magma ocean crystallization, increasingly refractory melts would be
expelled from crystal mush domains towards a planet’s surface due to
strong buoyancy contrasts with surrounding mantle residua (e.g. Turner
et al., 2000). If such magmas can make their way to the planet’s surface,
they may erupt and crystallize as volcanic lava flows onto a thin pri-
mordial crust, which thickens over time – a stagnant-lid scenario called
heat-pipe tectonics (Fig. 3). Such a regime is suggested to have occurred on Earth during the Hadean Eon (Fig. 1: Moore and Webb, 2013) and implies that volcanism dominates over intrusive magmatism, although this is not the case for subsequent stagnant-lid modes (Rozel et al., 2017). Little is known about the veracity or likely duration of heat-pipe tectonics on the early Earth, although similar heat-pipe tectonics are thought to operate today on Jupiter’s innermost satellite, Io (Kankanamge and Moore, 2019), driven by tidal heating. Future exploration of the Jovian system is likely to provide critical constraints on the parameter space in which heat-pipe tectonics may develop for extended periods of time on large planetary bodies.

Heat-pipe tectonics is an inherently short-lived form of stagnant-lid tectonics (Stern et al., 2018), as repeated eruption of lava and burial of older flows ultimately thickens the crust and so impedes magma ascent to the surface (Kankanamge and Moore, 2016). Old basaltic lava flows at the base of the crust that experience continued burial should transform to relatively dense garnet granulite at ~40 km, and even denser eclogite at ~60–80 km, depending on ambient temperature and fluid content (cf. Fukao et al., 1983; Anderson and Bass, 1986; Ellis and Maboko, 1992; Foley et al., 2003; Palin et al., 2016a, 2016b). Short-wavelength, density-driven downwells (Rayleigh–Taylor instabilities), or “drips,” provide a mechanism to return lithospheric material into the underlying mantle (Housen et al., 1981; van Thienen et al., 2004; Fischer and Gerya, 2016a). Return-flow is expected in the form of mantle plume activity (Fig. 3), with enhanced magmatic activity occurring over these complementary regions of upwelling (e.g. Piccolo et al., 2019). By contrast with the heat-pipe model, intrusive magmatism is expected to dominate over volcanic eruption in such thick crust (Rozel et al., 2017), and tonalite–trondhjemite–granodiorite (TTG) partial melts that stalled during ascent above these plumes likely formed nuclei for Earth’s granodiorite (TTG) partial melts that stalled during ascent above these described as a drip-and-plume regime, which represents an intermediate (Rudnick, 1995; Martin, 1993; Smithies et al., 2003; Moyen, 2011; Taylor in-

1.2. Geodynamic conditions allowing plate tectonics

Given the rarity of plate tectonics in our solar system (cf. Stern et al., 2018), much research has been conducted into constraining the ranges of petrological and geodynamic parameter space that allow mobile-lid tectonic regimes to initiate and survive on large rocky planets, such as Earth. Numerical modeling performed by Weller et al. (2015a) and O’Neill et al. (2016), which focused on the influence of degree and rate of internal heating, showed that initially hot planetary-scale convective systems strongly promote stagnant-lid tectonic regimes. As these heat sources wane, for example due to the continued decay of radiogenic heat-producing elements, a window of opportunity for mobile-lid tectonics appears (Weller and Lenardic, 2018) by changing the effective viscosity contrast across the lithosphere–asthenosphere boundary (Korenaga, 2010, 2013), allowing yielding.

If planetary size and internal heat production allow lid fragmentation and independent plate motion, the buoyancy contrast between oceanic lithosphere and underlying asthenospheric mantle then becomes a critical factor in determining whether subduction may occur (cf. Davies, 1992). It has been shown empirically on the modern-day Earth that oceanic plate thickness and depth are proportional to age (Sclater et al., 1971; Parsons and McKenzie, 1978; Crosby et al., 2006), thus, young oceanic lithosphere is hotter and more buoyant than older, thicker, and colder equivalents (Klein et al., 2017).

If subduction could initiate on the early Earth, either locally or globally, what petrophysical and/or geodynamic conditions are required for it to be sustainable? Thermo-mechanical numerical models of convergent margin systems show that stable, one-sided subduction requires a discrete low-strength zone existing between two strong plates (Hassani et al., 1997; Sobolev and Babeyko, 2005; Tagawa et al., 2007), quantitatively defined as an effective coefficient of friction at the plate interface of < 0.1. Experimental values for dry rocks significantly exceed this cutoff, such that aqueous fluids appear to be required at the plate interface, essentially acting as lubrication (Hall et al., 2003; Gerya et al., 2008). While seawater may readily infiltrate trench openings at the Earth’s surface (Peacock, 1990), water must also be continuously supplied at depth in order to maintain a weak plate interface and permit self-sustainability. Experimental petrology and thermodynamic phase equilibrium modeling has shown that aqueous fluids may be released from many components of subducted oceanic lithosphere, including surficial sediments (e.g. mudstone, carbonate ooze; Johnson and Plank, 2000; Kerrick and Connolly, 2001), hydrothermally altered oceanic crust (Liu et al., 1996; Prouteau et al., 2001; Hernández-Uribe et al., 2020), and metasomatized mantle lithosphere (Faccenda et al., 2008). These lithologies dehydrate during prograde metamorphism, releasing abundant H2O and/or CO2 at both fore-arc and sub-arc depths (Iwamori, 1998; Connolly, 2005; van Keken et al., 2011; Hernández-Uribe and Palin, 2019a, 2019b). As such, the presence of surface water on a terrestrial planet may be a critical factor in determining whether plate tectonics may initiate and sustain itself over million-year timescales (Regenauer-Lieb et al., 2001; Lécuyer, 2013; Wade et al., 2017).

1.3. Thermal evolution of the Earth’s mantle

As the Earth’s internal heat budget fundamentally controls the window of opportunity for initiation of mobile-lid tectonics (Section 1.2), there have been many efforts to constrain our planet’s thermal evolution through time (e.g. MacDonald, 1959; McKenzie and Weiss, 1975; Korenaga, 2006; Labrosse and Jaupart, 2007; Jaupart et al., 2007; Davies, 2009; Herzberg et al., 2010). However, discussion about secular changes in temperature can be complicated by the lack of a consistent reference frame. For example, the crust, the mantle, and the core all have different absolute temperatures and have likely cooled at different rates since planetary differentiation. As temperature decreases vertically through the modern-day mantle at ~0.3 °C/km, and the absolute depth of the lithosphere–asthenosphere boundary varies laterally
According to tectonic setting, it is convenient to consider the mantle potential temperature \(T_P \) instead of the absolute temperature at any depth within the Earth. Mantle \(T_P \) is the adiabatic extrapolation of the mantle geotherm to the Earth’s surface and reflects the balance between (1) heat lost by convective mantle cooling and conduction through the Earth’s lithosphere, and (2) heat gained by radioactive decay in the mantle and conductive heating at the core–mantle boundary (e.g. Anderson, 2000; Korenaga, 2011).

The magnitude and rate of change of mantle \(T_P \) since the Earth’s formation can be constrained in numerous ways. Thermal modeling and extrapolation backwards in time of the present-day ratios of heat production to heat loss – the convective Urey ratio \(Ur = 0.23 \pm 0.15 \) – was shown by Korenaga (2008a, 2008b) to produce a concave-upwards thermal-evolution curve for mantle \(T_P \), which peaked in the Meso-Archean (~2.8–3.2 Ga) (Fig. 4). This treatment interprets an ambient liquidus temperature for 33 non-arc basalts of various ages (shown in Fig. 4), defining a more subdued secular cooling rate of ~30–50 °C/Gyr. While seemingly small \(\Delta T \approx 150 °C \), the differences in interpreted Archean mantle \(T_P \) have significant implications for thermal-mechanical models of early Earth geodynamics, the viability of subduction, and continental crust formation. As mantle \(T_P \) is a controlling factor on the structure and composition of oceanic lithosphere created from it (see Section 2.1; McKenzie and Bickle, 1988; Takahashi and Brearley, 1990), several studies following the Herzberg et al. (2010) paradigm of a hot Archean mantle have demonstrated that oceanic lithosphere was too buoyant to subduct (Van Hunen and van den Berg, 2008; van Hunen and Moyen, 2012), whereas oceanic lithosphere formed from a relatively cool Archean mantle would have a larger density and viscosity contrast across the lithosphere–asthenosphere boundary. Based solely on these thermo-petrological arguments, subduction initiation may therefore be interpreted to have become viable at an earlier point in geological time than previously assumed. Recent geodynamic models have also recognized the importance of this re-evaluation of Archean mantle \(T_P \) for crust-forming mechanisms in stagnant-lid environments (Section 4.4; Piccolo et al., 2019), and time will tell whether it is necessary to revise the results and interpretations of earlier studies if the conclusions of Ganne and Feng (2017) and Condie et al. (2016) are proven correct.

2. Petrology and architecture of Archean crust

The Archean rock record is represented by 35 fragments of continental lithosphere (Bleeker, 2003) that cover ~5% of the Earth’s surface (Artemieva, 2006). These regions are dominated by tonalite–trondhjemite–granodiorite (TTG) granitoids (Jahn et al., 1981; Moyen and Martin, 2012; White et al., 2017) and mafic-to-ultramafic volcanic rocks (Nisbet et al., 1977; Wilson et al., 1978; Xie et al., 1993), with rare supracrustal rocks (Moorbath et al., 1977; Boak and Dynek, 1982; Jackson et al., 1994). Many of these mafic/ultramafic volcanioclastic sequences are metamorphosed to greenschist-facies pressuré–temperature (\(P-T \)) conditions, and so are often referred to as “greenstone” belts (Condie, 1981; Powell et al., 1995; Polat and Hofmann, 2003). By contrast, many TTG magmas are highly deformed with well-defined foliations (Fripp et al., 1980; Chardon et al., 1996; Marshak, 1999) and so likely experienced intense post-emplacement amphibolite- and granulite-facies metamorphism and recrystallization. For this reason, they are often referred to as “gray gneisses” (e.g. McGregor, 1979; Gao et al., 2011; White et al., 2017). These Archean bi-modal lithological associations are sometimes described as “granite–greenstone” terranes (e.g. Dziggel et al., 2002; van Kranendonk et al., 2004), although TTGs are not granitic sensu stricto in composition or mineralogy (Streckeisen, 1974; Le Bas et al., 1986), and so this term is not used herein. In addition, whether greenstone terranes represent obducted and metamorphosed fragments of ancient oceanic crust is a topic of current debate (Bickle et al., 1994; Furnes et al., 2014a), although Archean gray gneisses are unequivocally thought to be components of Earth’s earliest continents (Adam et al., 2012; Hastie et al., 2016; Wiemer et al., 2018). As such, discussion below concerning the petrology and architecture of oceanic crust focuses primarily on theoretical considerations and the results of thermal–petrological
2.1. Oceanic crust

Oceanic crust produced at mid-ocean ridge spreading centers on Earth today varies in structure and thickness depending on the rate of spreading at the central ridge (Bown and White, 1994; Dilek and Furnes, 2011, 2014). Specifically, very slow (< 2 cm/yr) and slow (< 5.5 cm/yr) spreading ridges have deep median rift valleys and thin oceanic crust at the spreading axis (Michael et al., 2003), whereas intermediate (> 5.5 cm/yr) and fast (> 10 cm/yr) spreading ridges have more subdued topography at the ridge axis and generate relatively thicker crust (Chen, 1992). In the classical Penrose ophiolite model, which is representative of intermediate- and fast-spreading ridges, the crustal section is ~6–7 km thick (Fig. 5), has an average bulk MgO content of ~10 wt%, and crystallizes from small mantle melt fractions (F) of 0.08–0.10 (Sleep, 1975; McKenzie and Bickle, 1988; Herzberg et al., 2010). This architecture has been deduced from direct examination of fragments obducted onto continental margins – ophiolites (e.g. Miyashiro, 1975) – and by in-situ seismic reflection and refractivity studies (Spudich and Orcutt, 1980), and deep-sea drilling programs (Humphris et al., 1995). Immediately beneath a thin sedimentary veneer, the uppermost portion of the solid crust (mid-ocean ridge basalt – MORB) is comprised of pillow basalts with an MgO content of ~7 wt% (White and Klein, 2014). This horizon varies in thickness according to the spreading rate of the parent mid-ocean ridge (Nicolas et al., 1994; Carbotta and Scheirer, 2004), but spans, on average, 500–1000 m (Anderson et al., 1982; Girardeau et al., 1985). Below this extrusive horizon is a thicker sheeted dike complex (Fig. 5) that facilitates eruptions at the surface, and is underlain itself by coarser-crystalline gabbroic rocks that may be isotropic or layered (Pallister, 1981; Quick and Denlinger, 1993). Ultramafic olivine- and pyroxene-rich cumulate horizons occur at the base of the crust (Kay and Kay, 1985; Natland and Dick, 2001).

A necessary petrological result of a hotter Archean mantle T_p is deeper and more voluminous melting of peridotite (F = 0.25–0.45) during adiabatic decompression, which is expected to produce a thicker (~25–40 km) crust (McKenzie and Bickle, 1988) with a higher bulk MgO content of ~18–24 wt% (Fig. 5: Abbott et al., 1994; van Thienen et al., 2004; Herzberg et al., 2010). As such, with mantle cooling over time, the structure and bulk composition of oceanic lithosphere is likely to have showed continual change. Experimental modeling of primary magmas produced from assumed mantle protolith compositions, T_p values, and higher F predict that the uppermost, MORB-like portions of such a primitive crust Archean oceanic crust would have bulk MgO contents in the range ~11–15 wt% (e.g. Ziaja et al., 2014). In support of these experimental results, Weller et al. (2019) recently performed thermodynamic calculations simulating isentropic fractional melting of Archean mantle by using petrological phase equilibrium modeling, yielding similar MgO ranges. Integrated mass-balance calculations showed that oceanic crusts generated at conservative mantle T_p values of 1425 and 1550 °C (cf. Ganne and Feng, 2017; Fig. 4) must have had minimum thicknesses of 13.8 and 24.3 km, respectively (Table 1). Both depth-integrated mantle-melt compositions were picritic, with MgO contents of 14.3 and 17.4 wt% for these isentropes (Table 1).

A schematic model of the general chemistry and structure of Archean oceanic crust and underling mantle lithosphere is presented in Fig. 5 (after Palin and Dyck, 2018), based in part on the results of these experiments and models. Secular cooling of the mantle over time thus requires that the maficity of primary mantle-derived oceanic lithosphere to have decreased since the Meso-Archean, regardless of the magnitude of change (cf. Section 5.2). Nonetheless, identification of fragments of primary oceanic crust in Archean cratons is fraught with
Difficulty (Helmstaedt et al., 1986; Bickle et al., 1994; Kusky et al., 2001; Zhai et al., 2002; Zhao et al., 2007) as a range of non-equilibrium processes (e.g. fractional crystallization and/or magma mixing during ascent) are likely to have affected the mineralogy and composition of the resultant crustal products (O’Hara, 1977; Grove et al., 1992; Morgan and Chen, 1993). Advances in modeling of mantle melting beneath ridge systems and the multi-scale magmatic processes of melt ascent and crystallization are likely to open new avenues of research in this field in the future (Kinzler and Grove, 1992; Presnall et al., 2002).

The proposal that the bulk composition of oceanic crust has evolved continuously since the Meso-Archean has been a topic of surprisingly intense debate in recent years, despite much evidence from the geological record supporting the results of experiments and thermal-petrological models. While nearly all basalts in the Precambrian rock record have undergone some degree of metamorphism (Gill, 1979), many trace-element ratios used to discriminate intraplate vs. plate margin environments of magma genesis are insensitive to thermal alteration (e.g. Floyd and Winchester, 1978; Monecke et al., 2002; Payne et al., 2010; Sheraton, 1984; Winchester and Floyd, 1976). As such, it is possible to differentiate plume-derived magmas, which are typically picritic or komatiitic in nature owing to elevated mantle Tp at plume heads, from plate-margin magmas (e.g. MORBs) and assess the secular compositional evolution of each independently.

Analyses of geochemical databases of (meta)basalt major-, minor-, and trace-element compositions have been attempted by several authors, with the key findings of each summarized in Table 2. Early workers focused on differences in trace-element ratios between relatively small numbers of Phanerozoic and Archean examples, and made comparisons of rock chemistry with a common Mg# (=100 × Mg/(Mg + Fe2+)) (e.g. Gill, 1979). Subsequent studies have utilized datasets that provide extensive spatial and temporal coverage of the global geological record, alongside applying statistical tests to quantify the significance of trends identified. For example, Furnes et al. (2014a) analyzed metabasalt compositions with depleted mantle incompatible trace element ratios from all major Precambrian greenstone belts worldwide and reported a statistically significant decrease in bulk-rock MgO content from ~15 wt% at 3.5 Ga to ~7 wt% today. A similar study by Condie et al. (2016) reported a that basalts older than 3 Ga were only slightly more mafic than Phanerozoic examples, with a mean MgO content of ~9 wt%. Importantly, however, neither study considered spatiotemporal data clustering, such that these calculated mean compositions could simply reflect sampling bias in their respective databases.

Such preservation and/or sampling issues was addressed directly by Keller and Schoene (2012) and Ganne and Feng (2017), who integrated a Monte Carlo re-sampling procedure into their geochemical analysis in order to minimize spatiotemporal bias. Keller and Schoene (2012) reported a clear secular decrease in MgO content from the Archean to the Phanerozoic within the intrusive and extrusive mafic rock record, but did not discriminate between likely environments of formation for each sample. Ganne and Feng (2017) repeated this analysis on extrusive mafic magmas only and reported successful primary magma solutions for Archean primary melt fractions that had an average MgO content of ~20 wt%, and equivalent interpreted basalt compositions with a mean MgO content of ~13 wt%. This high-MgO content exceeds that reported for modern-day MORB (White and Klein, 2014) and correlates with field evidence of strongly mafic pillow lavas (> 12 wt% MgO) with MORB-like geochemical trace element ratios that are present in many Archean greenstone belts (e.g. Isua; Komiya et al., 2004; Pilbara; Ohta et al., 1996). However, in the absence of verified fragments of Archean oceanic crust within the geological record (Bickle et al., 1994), the results of Big Data analysis, experimental petrology, and thermodynamic modeling will always remain inconclusive.

2.2. Continental crust

Interpreting the structure and composition of Archean continental crust is theoretically much simpler than for oceanic crust, as remnants of the former are readily preserved in the geological record (De Wit et al., 1992; Martin, 1994). However, unlike the oceanic crust, which experienced a simple and predictable change in thickness and bulk composition due to secular mantle cooling, the formation and continued growth of the continents is a more stochastic process that is incompletely understood even on the modern-day Earth (Arndt and Goldstein, 1987; Bohlen and Mezger, 1989; Hacker et al., 2011; Spencer et al., 2017).

Present-day structure of the continental crust is generally stratified based on seismic velocities and heat flow. Regardless of whether a three-layer (upper, middle, and lower crust; e.g. Christensen and Mooney, 1995; Rudnick and Fountain, 1995; Rudnick and Gao, 2003, 2014) or two-layer (upper and lower crust; Hacker et al., 2011, 2015) model is assumed, a good agreement exists for the granodioritic composition of the upper continental crust (Rudnick and Gao, 2014 and references therein). The composition of the lower continental crust is

Table 1

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>CaO</th>
<th>MgO</th>
<th>FeO</th>
<th>Na2O</th>
<th>Fe2O3</th>
<th>CaO</th>
<th>Mg#</th>
<th>Thickness (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tp = 1300 °C crust</td>
<td>48.11</td>
<td>15.63</td>
<td>13.29</td>
<td>12.11</td>
<td>8.16</td>
<td>1.98</td>
<td>0.48</td>
<td>0.24</td>
<td>0.73</td>
<td>7.5</td>
</tr>
<tr>
<td>Tp = 1425 °C crust</td>
<td>47.69</td>
<td>13.33</td>
<td>12.96</td>
<td>14.31</td>
<td>9.28</td>
<td>1.64</td>
<td>0.50</td>
<td>0.31</td>
<td>0.73</td>
<td>13.8</td>
</tr>
<tr>
<td>Tp = 1550 °C crust</td>
<td>47.59</td>
<td>10.71</td>
<td>11.89</td>
<td>17.40</td>
<td>10.20</td>
<td>1.33</td>
<td>0.55</td>
<td>0.33</td>
<td>0.75</td>
<td>24.3</td>
</tr>
<tr>
<td>Tp = 1300 °C residual mantle</td>
<td>44.48</td>
<td>1.76</td>
<td>1.59</td>
<td>43.59</td>
<td>7.92</td>
<td>0.06</td>
<td>0.27</td>
<td>0.33</td>
<td>0.91</td>
<td>48.5</td>
</tr>
<tr>
<td>Tp = 1425 °C residual mantle</td>
<td>44.43</td>
<td>1.72</td>
<td>1.26</td>
<td>44.25</td>
<td>7.70</td>
<td>0.06</td>
<td>0.26</td>
<td>0.32</td>
<td>0.91</td>
<td>70.9</td>
</tr>
<tr>
<td>Tp = 1550 °C residual mantle</td>
<td>44.30</td>
<td>1.80</td>
<td>0.97</td>
<td>44.90</td>
<td>7.41</td>
<td>0.06</td>
<td>0.24</td>
<td>0.32</td>
<td>0.92</td>
<td>96.8</td>
</tr>
<tr>
<td>KLB-1 fertile mantle</td>
<td>44.94</td>
<td>3.52</td>
<td>3.08</td>
<td>39.60</td>
<td>7.95</td>
<td>0.30</td>
<td>0.30</td>
<td>0.32</td>
<td>0.90</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Increase</th>
<th>Decrease</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tholeiite basalt</td>
<td>Al, Ti, Zr, P</td>
<td>Cr, Ni, Go</td>
<td>Gill (1979)</td>
</tr>
<tr>
<td>Tholeiite basalt</td>
<td>Al</td>
<td>Cr, Ni, Go</td>
<td>Condie (1985)</td>
</tr>
<tr>
<td>Basalt</td>
<td>K, Na</td>
<td>Mg, Cr, Ni</td>
<td>Keller and Schoene (2012)</td>
</tr>
<tr>
<td>Basalt/greenstone</td>
<td>Al, Ti, Zr</td>
<td>Mg, Ni</td>
<td>Furnes et al., 2014b</td>
</tr>
<tr>
<td>Depleted mantle (DM)</td>
<td>Na, Ti, Mg</td>
<td>Fe, Mn</td>
<td>Condie et al. (2016)</td>
</tr>
<tr>
<td>Depleted mantle (DM)</td>
<td>Al</td>
<td>Mg</td>
<td>Ganne and Feng (2017)</td>
</tr>
</tbody>
</table>

still under debate, and is proposed to vary from a middle crust of amphibolite-facies metamorphic rocks and a predominantly mafic lower crust (Rudnick and Gao, 2014 and references therein) to a lower crust with only 10–20% mafic materials and a large proportion of rocks of 49–62 wt% SiO₂ (Hacker et al., 2015; Zhang et al., 2020).

The original composition and formation of early continental crust remains enigmatic due to poor preservation of primary components, which have been frequently overprinted by subsequent geological processes (e.g. metamorphism or partial melting). Only a small percentage of preserved continental crust is Archean in age (Goodwin, 1996). Although arguably present in a mafic section in the Nuvvuagittuq belt, Superior Province, Canada (O'Neil et al., 2008, 2011; O'Neil and Carlson, 2017), Hadean crust has not been found at the present-day Earth's surface, which may be due to its expected high density due to having an ultramafic or mafic composition, which may have caused it to be recycled back into the mantle (Kröner, 1985). Currently, the oldest known coherent crust occurs within the c. 3.8 Ga Acasta gneiss complex in the Northwest Territories of Canada (Bowring and Williams, 1999), and is composed of gabbroic and granitoid gneisses (e.g. Iizuka et al., 2007). Reimink et al. (2018) recently showed that the Acasta gneisses were derived from partial melting of hydrated Hadean mafic crust in an Iceland-like mantle plume-related setting (see also Reimink et al., 2014), not due to bolide impacts, as suggested by some studies (e.g. Johnson et al., 2018). The volumetrically dominant lithology in Archean terranes – TTG gneisses – is typically interpreted as formed through partial melting of amphibolite or eclogite due to dip tectonics (Nebel et al., 2018) or subduction of oceanic plateaus (e.g. Martin et al., 2014; Hastie et al., 2016).

Geochemical methods have been used to augment the interpretation of early continental crust composition. Dhuime et al. (2015) examined a large number (>13,000) of samples with Nd model ages from the Hadean to the Phanerozoic, and back-calculated Rb/Sr ratios of their original crustal sources. The calculated Rb/Sr ratios significantly increase at ~3 Ga, which they interpreted as the continental crust having become more felsic in composition based on positive correlation between Rb/Sr ratio and SiO₂ contents in modern-day igneous rocks. Using Ni/Co and Cr/Zn ratios, which are positively correlated with transition from highly mafic (>11 wt% MgO) at 3.0 Ga to felsic (~4 wt % MgO) at 2.5 Ga. This transition also marks the calculated increase of granites sensu lato from 10 to 40% to over 80%, and the decrease of basalt and komatiite to less than 20% in upper continental crust. These lines of evidence indicate that the upper continental crust became dominantly felsic in the Late Archean (Rollinson, 2017). Late studies also suggested that the composition of the Archean middle continental crust changed from being dominated by sodic TTG suites to having a more potassic granitoid composition from 3.0–2.5 Ga (e.g. Nebel et al., 2018), which has been interpreted as the evidence for the onset of plate tectonics in the Late Archean (Laurent et al., 2014).

The changing growth rate of continental crust through time is a long-standing debate (e.g. Condie and Aster, 2010; Dhuime et al., 2012; Roberts and Spencer, 2015 and references therein). Numerous models have been proposed, ranging from very early growth (Armstrong, 1981), to pulsed growth (e.g. Condie and Aster, 2010) and late growth (Goodwin, 1996). Readers are directed to detailed reviews by Kemp and Hawkesworth (2014) and Hawkesworth et al. (2017) for more information, the detail of which is beyond the scope of this review. However, one emerging approach to highlight here is the use of Big Data analysis of global zircon achieve to retrieve the continental growth (e.g. Dhuime et al., 2012; Roberts and Spencer, 2015). Fig. 6 displays the correlation of global zircon U–Pb ages (Roberts and Spencer, 2015) with timing the supercontinent formation. One key feature of this dataset is the abundance of zircon ages at 3.0–2.5 Ga, which has been suggested by some studies to have implications for changing geodynamic regimes. However, it has been noted that such U–Pb datasets cannot fully track continental growth, as some ages record crustal reworking and isotopic resetting; therefore, EFH model ages and oxygen isotope correction methods have been proposed to limit the bias from reworked zircon. Using such corrected data, Dhuime et al. (2012) yielded a volumetric growth curve (Fig. 6) for continental crust, which indicates a faster growth rate prior to c. 2.9 Ga and a slower rate afterward. This inflection point may indicate that a significant change of Earth’s geodynamic processes occurred at this time (Dhuime et al., 2012).

The large-scale emergence of the continents from being dominantly submarine to dominantly subaerial is also thought to have dramatically influenced the evolution of life, and thus also has implications for exobiology and the search for habitable planets (see Section 7.1; Flamant et al., 2008). The Great Oxigenation Event (GOE) at 2.45–2.22 Ga (Bekker et al., 2004; Guo et al., 2009; Gumsley et al., 2017) marks the rapid appearance of free oxygen in the Earth’s atmosphere (Anbar et al., 2007; Sessions et al., 2009), and has been variably related to the rise of multicellular oxygen-producing cyanobacteria (Schrömeister et al., 2013), loss of hydrogen from the atmosphere (Catling et al., 2001), a gradual change in the redox state of volcanic gases during the Late Archean, (Holland, 2002), or a geologically abrupt period of mantle overturn and/or intense plume activity near the Archean–Proterozoic transition (Kump et al., 2001; Ciboowski and Kerr, 2016). Alongside these propositions, some authors suggest that the GOE was a direct result of changing tectonic processes on Earth across the Archean–Proterozoic boundary. For example, Lenten et al. (2004) suggested that oxygenation was driven by the global appearance of shallow-shelf seas, where reduced organic carbon could be deposited and buried. Further, Campbell and Allen (2008) correlated spikes in atmospheric oxygen concentration during episodes of supercontinent formation. In this scenario, widespread continental uplift during collisional orogenesis is supposed to have increased the rate and volume of erosion, which in turn released nutrients into the ocean to feed photosynthetic cyanobacteria. Similar feedback mechanisms between tectonic activity and climate are well documented in the Phanerozoic rock record (e.g. Macdonald et al., 2019), so likely also occurred in the geological past.

3. Evidence for the operation of subduction throughout Earth history

The wide range of interpretations presented in Fig. 1 for the onset of global tectonics result from the debated reliability of different lines of evidence for plate tectonic processes operating, alongside different weightings given to these different types of data. Here, we discuss the strengths and weaknesses of some of the major forms of each. For simplicity, these plate tectonic indicators are divided into three main groups – petrological, tectonic, and geochemical/isotopic lines of evidence – although many criteria cross these boundaries and should not be considered as being restricted to one typology. Finally, a fourth group is discussed: thermo-mechanical (geodynamic) and petrological modeling. While such models are, by definition, simulations of nature, their results can be directly compared against evidence preserved within the rock record. Thus, interrogation of parameter space and interpretation of the results produced can provide indirect constraints on the likelihood of subduction having operated based on correlation with known time-dependent variables (see Section 1.3).

3.1. Petrological evidence

Petrological evidence for subduction is categorized here as being the fundamental lithologies that are reported to form only in convergent plate margin settings, although the veracity of such claims is also assessed for each.
3.1.1. Blueschists

Blueschists are defined within the metamorphic facies classification system (Eskola, 1920; Fyfe, 1958) as high-\(P\)/low-\(T\) metabasic rocks that are dominated by the Na-rich clinoamphibole, glaucophane (Bailey, 1961; Ernst, 1963). Such glaucophane-rich assemblages stabilize along geothermal gradients of \(~150–350\) °C/GPa and to a maximum temperature of \(~500–550\) °C (Fig. 7; Maruyama et al., 1996; Clarke et al., 2006; Palin and White, 2016); thus, they characterize the shallow levels of subduction zones. However, while sediments or felsic igneous rocks may be subducted and metamorphosed at blueschist-facies \(P\)/\(T\) conditions, the mineral assemblages that form are not necessarily diagnostic of such low geotherms (Evans, 1990), meaning that a distinct focus has been placed on the occurrence of metamafic blueschists sensu stricto in the rock record as evidence (or not) for the operation of subduction through geological time. The common association of exotic blocks of serpentinized peridotite within tectonic mélangé (Ernst, 2003; Festa et al., 2010; Weller et al., 2015b; Balestro et al., 2018; Wakabayashi, 2019) supports the interpretation that they form during oceanic slab
subduction and so their presence can be viewed as sufficient, but not necessary evidence of subduction/mobile lid tectonics having operated at the time of terrane formation. However, many blueschist-absent mélanges may still represent examples of ancient stages of subduction, such as a Neoarchean mélangé (c. 2.5 Ga) from the North China Craton that hosts serpentine exotic blocks (Peng et al., 2020). Such occurrences are described in more detail in Section 3.2.1.

The oldest blueschists on Earth are Neoproterozoic in age (c. 0.8 Ga; Maruyama et al., 1996) and their striking absence from the geological record before this time has been attributed to a wide range of factors (cf. Korenaga, 2016). Some workers have argued that their appearance marks the onset of global subduction at c. 0.8–0.9 Ga (e.g. Stern, 2005), although this interpretation is not widely accepted (cf. Ernst, 2017b). In a scenario where plate tectonics/subduction had begun to operate on Earth before the Neoproterozoic, which is agreed upon by the majority of the geological community (Fig. 1), the lack of older blueschists may alternatively by attributed to preservation bias (Möller et al., 1995; Keller and Schoene, 2018) or that a hotter Archean mantle could have increased subduction zone geotherms outside of those required to stabilize glaucophane (Björnerud and Austrheim, 2004). Alternatively, there may have been a compositional control on blueschist formation in the Archean and Proterozoic, whereby high-MgO basalts typical of Precambrian oceanic crust (Takahashi and Brearley, 1990; Klein et al., 2017; Weller et al., 2019) would not have been able to stabilize sodic amphibole (Palin and White, 2016; Palin and Dyck, 2018), even if metamorphosed to blueschist-facies P–T conditions. All three factors likely contribute independently to this anomaly in the rock record, although additional research is needed to determine the relative importance of each. These ideas are revisited in more detail in Section 4.3.

3.1.2. Jadeitites and lawsonite-bearing rocks

Jadeite is a sodic clinopyroxene of composition NaAlSi2O6 that is stable in meta-igneous rocks of magmatic and intermediate composition at high-P/low-T conditions (Robertson et al., 1957; Birch and LeComte, 1966; Newton and Kennedy, 1968) characteristic of the blueschist and eclogite facies. As such, lithologies comprised of >90% jadeite (ja- deite) have long been recognized as diagnostic indicators of subduction (cf. Harlow et al., 2015). To date, however, only 19 jadeite localities are known worldwide; all of which occur in five Phanerozoic orogenic belts (Caribbean, circum-Pacific, Alps/Himalayas, Uralides, and Central Asia/Altaids). The oldest jadeitites formed at c. 470–440 Ma (Oya-Wakasa, Japan; Nishimura and Shibata, 1989).

Akin to blueschists, all jadeitite occurrences are found in close spatial association with serpentine-matrix mélanges and/or rocks with other high-pressure/low-temperature parageneses (Harlow et al., 2014). Experimental petrology, petrography, and phase equilibrium modeling suggest that jadeitites form either as direct precipitates from crustal materials in the absence of free water at high pressure (Harlow et al., 2015 and references therein). The subsequent exposure of jadeitites requires a late-stage Wilson Cycle compressional event that exhuases the subduction channel boundary as a serpentine mélangé (Tsujimori and Harlow, 2012). Due to their rarity even in modern-day convergent plate margin settings, jadeitites should be considered sufficient – but not necessary – evidence of subduction.

Serpentine is a hydrous silicate with a composition of CaAl2Si2O7(OH)2H2O that is stable at low geothermal gradients (dT/ dP < 350°C/GPa; Tsujimori and Ernst, 2014; Palin and White, 2016), and is thought to be a significant reservoir of structurally bound H2O content (11–12 wt%) in subducted metamabls. Lawsonite is stable up to ~10 GPa and may so carry H2O and other trace elements (REE, Sr, Th, and U) into the mantle more effectively than other hydrous phases, such as amphibole, epidote, and chloride (Pawley, 1994; Schmidt and Poli, 1998; Spandler et al., 2003; Usui et al., 2007; Martin et al., 2014). Lawsonite-bearing lithologies often occur in close spatial association with serpentine-matrix mélanges and/or rocks with other high-P/low-T parageneses, even in UHP terranes (Tsujimori et al., 2006; Tsujimori and Ernst, 2014). Rare lawsonite eclogites occur as xenoliths in pyro- litic tephras and in diatremes of serpentinitized ultramafic microbreccia (Hoffman and Keller, 1979; Usui et al., 2003; Hernández-Uribe and Palin, 2019b), indicating the operation of subduction and transport of slab-top fragments back to the Earth’s surface via volcanism. Lawsonite blueschist is relatively more common than lawsonite eclogite (Tsujimori and Ernst, 2014), probably due to its lower density, which promotes exhumation prior to its transition to lawsonite-eclogite subfacies assemblages (Hernández and Palin, 2019a). The oldest known lawsonite blueschist formed at c. 560–550 Ma (Anglesey, Wales; Kawai et al., 2007), whereas as the oldest known lawsonite eclogite formed at c. 490–450 Ma (North Qilian orogen, China; Song et al., 2004).

Lawsonite stability is favored in Ca-rich rocks such as metabasites (e.g. basalts and gabbros) and is relatively rare in rocks with a meta- sedimentary protoliths (Evans and Brown, 1986; Poli and Schmidt, 2002). As such, lawsonite-bearing rocks are considered indicators of subduction of mafic oceanic crust (Stern, 2005; Tsujimori et al., 2006). While experimental petrology and phase equilibrium modeling suggest that lawsonite-bearing rocks should be common in the rock record (Schmidt and Poli, 1998; Clarke et al., 2006), natural samples are relatively rare (Tsujimori and Ernst, 2014). Existing explanations for the uncommon occurrences of lawsonite-bearing lithologies – the so-called the lawsonite paradox – rely on the exceptional conditions (i.e. a high amount of free water at high pressure) thought necessary to form and preserve lawsonite during exhumation (Zack et al., 2004; Clarke et al., 2006; Whitney and Davis, 2006; Tsujimori et al., 2006; Wei and Clarke, 2011). However, recent study has shown that typical subduction zone geotherms do not promote lawsonite stability, which should only stabilize in particularly cold examples (Pennist-Dorland et al., 2015), thus accounting for the limited occurrence of these rocks in the geological record.

3.1.3. Ultrahigh-pressure (UHP) metamorphism

Ultrahigh-pressure (UHP) metamorphism is defined by achieving P–T conditions sufficient to transform quartz to coesite (~26–28 kbar at ~500–900 °C; Fig. 7) (Hacker, 2006). The oldest such coesite-bearing rocks that have been reliably dated belong to the Pan-African belt in northern Mali, and formed at 620 Ma (Jahn et al., 2001). Conventionally, UHP metamorphism has been viewed as a diagnostic indicator of deep subduction, owing to depths of >100 km within the Earth being required to achieve such pressures under lithostatic conditions (Li et al., 2010). Thus, the absence of coesite-bearing UHP rocks from the geological record prior to 620 Ma has also been used by some workers to argue for the non-operation of subduction (e.g. Stern, 2005). There are, however, two fundamental problems with this viewpoint. First, several geodynamical studies performed in recent years have shown that pressure within the Earth's crust and upper mantle may deviate significantly from purely lithostatic values; an effect known as tectonic overpressure (e.g. Petrinli and Podladchikov, 2000; Li et al., 2010; Schmalholz and Podladchikov, 2013; Gerya, 2015). Reuber et al. (2016) demonstrated that coesite-forming P–T conditions may be achieved at depths as shallow as ~40 km in deforming continental crust where there are strong rheological/lithological contrasts, such as mafic intrusions into felsic host rock. This implies – in theory – that UHP conditions may be achieved by crustal materials in the absence of subduction. Nonetheless, even in subducted oceanic lithosphere, tectonic overpressure may reach values up to 0.5 GPa at relatively shallow depths (< 50 km; So and Yuen, 2015; Palin et al., 2017), casting doubt on the reliability of the HP–UHP quartz–coesite transition as a necessary criterion for deep subduction. As a result, uniformitarianistic arguments for a late onset of plate tectonics based on the absence of coesite-bearing UHP rocks in the geological record before this time are weakened.

Second, the somewhat arbitrary choice of the quartz–coesite
transition as representing a diagnostic indicator of modern-day style plate tectonics is countered by high-pressure eclogite-facies rocks preserved in Phanerozoic orogens that record peak metamorphic pressures just below the HP–UHP transition, but which undoubtedly formed during steep subduction (e.g. Erzgebirge, Czech Republic, Klápová et al., 1998; Tso Morari, northwest Himalaya, St-Onge et al., 2013). Within the past ten years, deeply subducted mafic eclogites have been discovered within Meso-Archean rocks of the Kola Peninsula, Russia, which equilibrated at P–T conditions of ~16 kbar and ~750 °C at c. 2.87 Ga (Mints et al., 2010), the Fennoscandian Shield, which equilibrated at ~24 kbar and ~700 °C at c. 2.82–2.72 Ga (Dokukina et al., 2014), the Paleoproterozoic Congo Craton, Democratic Republic of the Congo, which equilibrated at ~23 kbar and 550 °C at c. 2.10 Ga (François et al., 2018), the Paleoproterozoic Nagssugtoqidian Orogen, south-east Greenland, which equilibrated at ~19 kbar and ~810 °C at c. 1.89 Ga (Müller et al., 2018a, 2018b), and the Mesoproterozoic Trans-Hudson orogen, Canada, which reached P–T conditions of ~26 kbar and ~700 °C at c. 1.8 Ga (Weller and St-Onge, 2017). All of these new discoveries are of critical significance for interpretation of the meta morphic rock record and strongly argue that subduction was operational on Earth – at least locally in these regions – by the Archean–Proterozoic transition. Other tectonic evidence can be invoked to support or deny claims that these subduction events were connected by a global plate boundary network, as discussed in Section 5.3.

3.1.4. Ophiolites

Ophiolites are complete or partial sections through the oceanic lithosphere that have been tectonically emplaced (obducted) onto a continental margin (Miyashiro, 1975; Dewey, 1976; Moores, 1982). Most known examples on Earth today were emplaced either from downgoing oceanic lithosphere via subduction-accretion or from the upper plate in a subduction zone through trench–continent collision (Dilek and Furnes, 2014). Excluding those formed via emplacement beneath a hyper-extended margin, such ophiolites are typically diagnostic indicators of sea-floor spreading and subsequent ocean–continent plate margin convergence (i.e. subduction) (Stern et al., 2012). The identification of ophiolites in the geological record has been a highly contentious field of research in recent years. Akin to blueschists, jadeites, and UHP rocks, their presence in a metamorphic terrane would be viewed as very strong evidence for the operation of subduction, as no numerical simulations have been able to replicate their emplacement in intraplate tectonic environments (Agard et al., 2014; Edwards et al., 2015; Duretz et al., 2016). Different types of ophiolitic fragments also occur within mélangé and so also record convergent plate boundary processes associated with the evolution of both active and passive margins (e.g. Festa et al., 2010). Several such cases are documented from Neoproterozoic (c. 0.6 Ga: Hajná et al., 2019) to Paleoproterozoic (c. 1.9 Ga: Liu and Zhang, 2019) and Neoarchean (c. 2.5 Ga: Peng et al., 2020) terranes.

Complete ophiolites (cf. Section 2.1) containing pelagic sediments, pillow basalts, sheeted dikes, gabbros, and tektontized ultramafic rocks (dunite, harzburgite, and lherzolite) are rare on Earth today, and many workers have instead searched for fragmented/partial sections as evidence for the past operation of plate tectonics. Ideally, several disparate components should be preserved in a single orogenic belt if oceanic lithosphere was episodically obducted or incorporated into accretionary prisms along active plate margins (Condie and Kröner, 2008). The oldest undisputed ophiolites on Earth are the Purtuniq ophiolite, Cape Smith belt, Trans-Hudson orogen, Canada (c. 2.0 Ga; Scott et al., 1992), the Jormua ophiolite, Finland (c. 1.95 Ga; Peltonen et al., 1996), and the Payson ophiolite, Arizona, USA (c. 1.73 Ga; Dann, 1997). More contentious examples include the Dongwanzi greenstone belt, North China Craton, which has been proposed by Kusky et al. (2001) to contain obducted fragments of Archean oceanic crust (c. 2.5 Ga), although this interpretation has been strongly contested (Zhai et al., 2002; Zhao et al., 2007). Sheeted dikes and associated pillow basalts in the Isua supracrustal sequence (c. 3.8 Ga), Greenland, have also been interpreted to represent fragments of a Paleoarchean ophiolite complex (Furnes et al., 2009; Friend and Nutman, 2010), although again this interpretation is not universally accepted (e.g. Hamilton, 2007). This issue is revisited in Section 5.1.

3.1.5. Andesites and arc/back-arc assemblages

The petrology and geochemistry of volcanic rocks found today in arc complexes have long been used to infer the likelihood of similar subduction-zone processes having operated in the Archean (e.g. Barley et al., 2006; Polat, 2012). In particular, calc-alkaline andesites, which are ubiquitous in Phanerozoic accretionary and collisional orogens, also occur throughout the geological record. Neoarchean (c. 2.7 Ga) andesites from the East Yilgarn craton, Western Australia, have a similar petrology and incompatible trace-element signature to those of modern island-arc examples, although their higher Ni and MgO contents have been interpreted by some workers to record formation above a mantle plume (Barnes and van Kranendonk, 2014). While not all Archean greenstone belts may preserve convergent-margin arc/back-arc assemblages, there are many examples documented in sequences as old as the Early Archean (see below).

Archean greenstones have been divided into two major types by some workers based on their overall petrological composition: “mafic-type” sequences that consist chiefly of pillow basalt and komatiite, and “arc-type” sequences that additionally contain calc-alkaline volcanics and related sediments (Thurston and Chivers, 1990; Condie, 1994; Condie and Benn, 2006). Arc-type andesite-bearing successions are widespread in the Superior, Slave, Yilgarn, and Eastern and Southern Africa Archean cratons (e.g. Boily and Dion, 2002). These andesitic members are often accompanied by graywacke and various volcanoclastic rocks that are commonly deposited in an arc system. Field mapping and sedimentologic studies of arc-type greenstone sequences in the Raquette Lake Formation, Slave Province, indicate the presence of high-energy clastic sedimentary facies that were deposited contemporaneously with ignimbrite (Mueller and Corcoran, 2001), resembling volcaniclastic strata that occur along modern-day continental-margin arcs, such as Japan. Boninite, shoshonite, and high-Mg andesite have also been reported from several Archean greenstone belts that formed at 3.4 Ga (Parmen et al., 2001; Smithies et al., 2004). Such successions argue strongly for the operation of subduction and arc volcanism by at least this time in Earth history, although they alone cannot confirm the existence of a global network of plate boundaries (cf. Section 5.3).

3.2. Tectonic evidence

Tectonic evidence for the operation of subduction-driven plate motion focuses on large-scale morphological features that require dominantly horizontal tectonic forces, or else those that infer independent plate motion or rotation.

3.2.1. Accretionary and non-accretionary subduction complexes

Accretionary prisms are the hallmarks of oceanward growth of continental margins – an important continent-building process associated with horizontal plate motion and convergence. Importantly, accretionary prisms also illustrate the process of downward younging of the accreted sediments. An evaluation of the accretionary prisms in Japan shows that individual units become more voluminous as they get younger, which implies that part or all of the older units were tectonically eroded and dragged down into the mantle (Isozaki et al., 2010). This process is driven by sediment subduction at convergent margins with modern examples along the Japanese and Chilean trenches, where older fore-arc crust has been eroded from the bottom (Yamamoto et al., 2009, and references therein). Isozaki et al. (2010) also illustrated that accretionary growth during the past ca. 500 million years of subduction history in Japan was not a continuous process, but alternated with
subduction erosion. Tectonic erosion along convergent margins by down-going oceanic plate includes diverse processes of arc subduction and sediment subduction as well as erosion of the hydrated mantle wedge (Yamamoto et al., 2009). Thus, accretionary prisms also mark the sites of continental convergence and destruction.

A typical feature of accretionary prisms is the occurrence of diverse types of mélangé: complex geologic units carrying chaotic rock assemblages that often display block-in-matrix fabric (Festa et al., 2010). Recent classification of mélangés suggests a close relationship between processes and mechanisms of their formation with diagnostic features of tectonic, sedimentary and diapiric origin (Festa et al., 2019). Among these, sedimentary mélangés are diagnostic of subduction processes (i.e. accretionary and non-accretionary) along convergent margins, and are characterized by the dominant association of basalt and limestone clasts within a mudstone matrix, often considered to have been derived from ancient seamounts (Wakita, 2019). The paucity of accretionary prisms in the rock record prior to c. 0.9 Ga has been used as evidence against the existence of Proterozoic and Archean subduction (Hamilton, 1998), although several mélangé-like terranes have been identified in Archean terranes and have been interpreted as accretionary prisms (Komiya et al., 1999; Kitajima et al., 2001; Peng et al., 2020). For example, the Schreiber-Hemlo greenstone belt (2.75–2.70 Ga) in the Superior Province of Canada was described by Polat and Kerrich (1999) and Yang et al. (2019) to contain a tectonic (accretionary) mélangé, as have other Meso- to Late-Archean deformed sedimentary-volcanic sequences, including the Abitibi greenstone belt, Quebec (Mueller et al., 1996), and the Tokwe terrane, Zimbabwe (Kusky, 1998). Though controversial, some researchers suggest that the Isua supracrustal sequence, which formed at c. 3.8 Ga, is an Eoarchean example (Shervais, 2006), thus suggesting that subduction was operating very early in Earth history (Turner et al., 2014), although this may represent an example of localized plume-induced subduction initiation instead (Section 5.3).

3.2.2. Paired metamorphic belts

Parallel linear metamorphic belts showing contrasting metamorphic mineral assemblages of low-temperature/high-pressure (LT/LP) and high-temperature/low-pressure (HT/LP) assemblages are referred to as paired metamorphic belts, and were first described from the active convergent margin of SW Japan (Miyashiro, 1961). Paired metamorphic belts are defined as penecontemporaneous belts of contrasting type of metamorphism that record different apparent thermal gradients – one warmer and the other colder – which are juxtaposed through tectonic processes. A typical example is the Ryoke and Sambagawa metamorphic belts in SW Japan that were superposed through shortening induced by forearc contraction during opening of the Japan sea (Isozaki et al., 2010).

Paired high-pressure (HP) and high-temperature (HT) metamorphic belts can also form through tectonic erosion along convergent plate margins (Santosh and Kusky, 2010). Substantial erosion of the accretionary wedge and sediment subduction such as in the case of Central American trench, Alaskan forearc, and SW Pacific provides evidence for subduction, tectonic erosion, crustal shortening and exhumation along convergent plate boundaries, and this duality of thermal regimes can be traced back through the geological record as far as c. 3.3 Ga (e.g. Li et al., 2020).

3.2.3. Collisional and accretionary orogens

The convergence of tectonic plates, forcing closure of intervening oceans, and final collisional amalgamation of continental blocks to build major orogenic belts on Earth can be classified into two end-member types: collisional and accretionary orogens (also known as Pacific-type and Himalayan-type, respectively; Maruyama et al., 1996; Cawood et al., 2009; Santosh et al., 2009). Accretionary-type orogens are composed of accretionary complexes carrying MORB, seamounts, ocean island basalt (OIB), carbonates, and deep-sea sediments that belong to the oceanic plate, and medium- to high-grade metamorphic rocks and subduction-related batholiths belonging to the continental arc. A fore-arc basin often occurs in between. Collisional-type orogens are characterized by passive continental-margin sequences, with an orogenic core of regional metamorphic rocks. A collisional suture with remnants of oceanic components marks the zone of ocean closure. Cawood et al. (2009) further subdivided accretionary orogens into retrotreating and advancing types. Advancing orogens, such as the Andes, have a foreland fold and thrust belt and crustal thickening, whereas retreating orogens, such as those that occur in the modern western Pacific, are characterized by a back-arc basin. Accretionary orogens are major sites of both crust formation through lateral growth as well as destruction through tectonic erosion caused by the downgoing oceanic lithosphere (Scholl and von Huene, 2010). One of the best examples of accretionary orogenesis is the Central Asian Orogenic Belt (CAOB), considered as the world's largest Phanerozoic accretionary orogen, where multiple subduction-accretion-collision events have been recorded (Xiao et al., 2015).

Accretionary orogens along modern convergent margins often preserve an original ocean plate stratigraphy (OPS) that can be used to reconstruct the history of the ocean plate from its birth at a MOR to its demise at the trench. An OPS comprises a composite stratigraphic succession of the ocean floor which is incorporated in the accretionary complex (Matsuda and Izozaki, 1991; Santosh, 2010), and thus includes MORB, chert, OIB and trench sediment (Isozaki et al., 2010). Remnants of OPS can also be traced in Precambrian suture zones along which ocean closure and continent assembly occurred (Santosh et al., 2009). Safonova and Santosh (2014) described examples of typical OPS sequences from Central and East Asia (including Russia, Kazakhstan, Kyrgyzstan, Tajikistan, Mongolia, and China) and the Western Pacific (China, Japan, Russia) where fragments of oceanic island basalt (OIBs) and ophiolite units occur within the accreted sequences. Petrological and geochemical data on these rocks indicate extensive plume-related magmatism in the Paleo-Asian and Paleo-Pacific Oceans. The OIB-bearing OPS units in CAOB and Western Pacific were correlated to two superplumes: the late Neoproterozoic Asian and the Cretaceous Pacific plumes. The accreted seamounts also play an important role in the outward growth of continental margins by enhancing the accumulation of fore-arc sediments (Safonova and Santosh, 2014).

It has long been believed that subduction-accretion complexes such as those along the Western Pacific margin are major sites of juvenile crustal growth. However, based on an extensive dataset of Sr–Nd isotope of Cretaceous, Miocene and Quaternary granitoids from SW Japan, Jahn (2010) showed that the magmas from which these rocks formed incorporated a substantial volume of recycled ancient continental crust. Independently, Kröner et al. (2014) showed that the crustal evolution of the CAOB, regarded as the hallmark of juvenile crustal growth, preserves evidence for abundant reworking of older crust of varying proportions throughout its accretionary history. Thus, modern accretionary orogens may not be entirely composed of juvenile components, but may
incorporate variable amounts of recycled older crustal components (e.g. Spencer et al., 2017). As such, both ancient and modern collisional and accretionary orogens are markers of convergent tectonics, with OPS accreted on to continents representing firm evidence for the horizontal movement of oceanic lithosphere from ridge to trench.

3.2.4. Supercontinent assembly

Supercontinents are large landmasses that form a closely packed assembly through the convergence of multiple continental fragments carrying ancient cratons, together with accreted terranes (Rogers and Santosh, 2004). Although some supercontinents such as Ur (3.0 Ga) and Kenorland (2.7–2.5 Ga) have been proposed to have existed on the Archean Earth, the first coherent supercontinent is thought to have assembled at c. 2.0–1.8 Ga, termed Columbia/Nuna (Hoffman, 1997; Rogers and Santosh, 2002; Meert and Santosh, 2017). Following this, several other younger supercontinents have been documented, including Rodinia (1.2–1.1 Ga), Gondwana (0.54 Ga) and Pangea (0.30–0.25 Ga) (Fig. 1: Rogers and Santosh, 2004; Nance et al., 2014). The episodic assembly, evolution and dispersion of supercontinents exert a major impact on growth and destruction of continental crust and its resources, mantle dynamics, surface processes and evolution of life (Santosh, 2010; Stern et al., 2018). Diverse models have been proposed for the assembly and breakup of supercontinents (see Nance et al., 2014, for a comprehensive review), among which double-sided subduction (Maruyama et al., 2007) or multiple subduction (Santosh et al., 2009) are postulated to be key factors that promote the rapid assembly of continental fragments into supercontinents. In the case of multiple subduction, a Y-shaped convergent triple junction would accelerate plate refrigeration and thus promote stronger downwelling compared to other regions of the mantle, termed super-downwelling (Santosh et al., 2009). This process would pull together dispersed continental fragments into a close-packed assembly. Indeed, Maruyama et al. (2007) considered the Western Pacific region as the frontier of a future supercontinent termed “Amasia” to be assembled within the next 250 Myr.

The voluminous subducted materials during ocean closure associated with supercontinent assembly temporarily accumulate in the mantle transition zone at 410–660 km depth (Fig. 2), from where they sink to the core–mantle boundary and accumulate as “slab graveyards” (Fig. 2: Maruyama et al., 2007). Melting of the slab graveyards through heating from the core provides a potential trigger for the formation of superplumes, which ascend from the core–mantle boundary, eventually diverging into hot spots (Condie, 2001) and riftling the supercontinent. Plumes rising from the core–mantle boundary facilitate heat and mass transport between different layers of the Earth (Maruyama et al., 2007). The insolation of mantle heat radiation by large supercontinents on the surface also triggers the break-up of supercontinent assembly. The role of mantle plumes associated with the break-up of supercontinents is marked by large igneous provinces (LIPs) and giant dike swarms. Major LIPs and regional magmatic events have been well documented to have driven the disruption of the Proterozoic supercontinents Columbia and Rodinia (Ernst et al., 2008).

One important implication of the supercontinent cycle is the impact on the rate and mechanisms of crustal growth and destruction (Nance et al., 2014). Condie (2004) proposed a correlation between the increased rate of production of juvenile crust and the formation of supercontinents. The spikes in zircon age spectra of orogenic granitoids were correlated with continental growth and supercontinent formation (Condie and Aster, 2010). Based on magmatic zircon grains in detrital populations of river sands, Rino et al. (2008) suggested continuous growth of continental crust since the Archean with an abrupt increase during the Late Archean and Early Proterozoic, and significant contribution during the Neoproterozoic. Hawksworth et al. (2010) noted that although the peaks in crystallization ages might mark the times of supercontinent assembly, these may also correspond to an increased preservation potential for magmas rather than enhanced crust generation. However, Roberts (2012) proposed a contrasting model based on f(t)-time space of global zircon database which envisages increased continental loss during supercontinent amalgamation. Recent evaluations indicate that the preserved crustal record on our planet is the balance between the volume of crust generated by magmatic processes and the volume destroyed through return to the mantle by tectonic erosion and lower crustal delamination (Spencer et al., 2017). Other workers suggest that the preserved volume of Archean TTG on Earth today is far far less than that predicted by geodynamic models, and that much of the TTG record has been recycled back into the mantle via subduction (Kawai et al., 2013). However, due to various limitations of the data base and analytical techniques, the estimates of preserved continental crust and growth curves represent only a minimum of total crustal growth. Thus, the episodic assembly and disruption of supercontinents likely began during the Mesoarchean (c. 3 Ga) and provides evidence for large-scale horizontal plate motion, facilitated by subduction-driven tectonic processes, although uncertainty remains regarding whether these amalgamations can prove the existence of a global network of plate boundaries.

3.2.5. Paleomagnetism

Investigations of Precambrian plate tectonics from a paleomagnetic perspective are based on comparisons of apparent polar wander paths (APWPs) from Archean cratons (e.g. Buchanan, 2013). Early paleomagnetic studies were hindered by the difficulties of finding suitable stratigraphic sections (i.e. horizontal, undeformed, and not remagnetized), disagreements between paleomagnetic constraints and bedrock geology, and large uncertainties associated with geochronological constraints (e.g. Dewey and Spall, 1975; Irving and Lapointe, 1975; Mitchell et al., 2014). More recently, advances in isotopic geochronology and paleomagnetic analyses, including improved statistical approaches and best practices for identifying primary magnetism (e.g. Van der Voo, 1990; Buchanan, 2013), have led to a robust demonstration of relative motions between cratons since c. 1.7 Ga during formation and break-up of the Columbia and Rodinia supercontinents (e.g. Li et al., 2008; Buchanan, 2013; Pisarevsky et al., 2014; Meert and Santosh, 2017; Merdith et al., 2017). Further back in time still, APWPs from the Slave and Superior cratons record significant divergence between these blocks during 2.2–2.0 Ga, followed by their accretion during formation of the Nuna continent (the core of the Columbia supercontinent) by c. 1.8 Ga (Evans and Halls, 2010; Mitchell et al., 2014; Buchanan et al., 2016). Similarly, paleomagnetic data from Laurentian and Baltic Archean cratons, which formed the other constituent parts of Nuna, record relative lateral motions between c. 2.1 Ga and c. 1.7 Ga (Lubinina et al., 2017; Meert and Santosh, 2017). Most recently, it has been argued that paleomagnetic data record ~5000 km lateral displacement between the Superior and Kaapvaal cratons between c. 2.7 and c. 2.4 Ga (Cawood et al., 2018). Based on the above works, it can be argued that paleomagnetic studies robustly demonstrate the activity of plate tectonics on Earth since c. 1.7 Ga (Buchanan, 2013; Pisarevsky et al., 2014) and provide a strong argument for its occurrence at c. 2.2 to 2.0 Ga (Mitchell et al., 2014; Buchanan et al., 2016), and possibly as far back as c. 2.7 Ga (Cawood et al., 2018).

3.3. Geochemical and isotopic evidence

3.3.1. Geochemical constraints on geodynamic environments

Geochemical and isotopic data are used extensively to determine the tectonic environments and mechanisms of formation of Phanerozoic rocks, particularly mafic lavas (Winchester and Floyd, 1976; Pearce, 1996, 2008). Different geochemical reservoirs within the mantle allow discrimination between basaltic generated in divergent plate-boundary settings (MORs) from those that form above subduction zones in island arcs (Hofmann, 1997; Sepidbar et al., 2019). As such, geochemical fingerprinting has potential to act as a powerful tool for tracking the existence of different geodynamic settings through time by analysis of
the geochemical characteristics of mafic lavas through time (Keller and Schoene, 2018). Nonetheless, there remains great debate concerning whether isotopic and trace element signatures that characterize modern-day or Phanerozoic environments are applicable to the early Earth (Pearce, 2008; Payne et al., 2010; Verma and Verma, 2013; Condie, 2015), and some authors caution use of this technique in its entirety, given notable overlap in fields that define different distinct tectonic settings on Earth today (Wood et al., 1979; Maniar and Piccoli, 1989; Snow; 2006; Vermeesch, 2006; Li et al., 2015).

Using Nb–Th–Zr systematics in young oceanic basalts with well-constrained environments of formation, three mantle source domains can be identified (cf. Condie, 2003): enriched mantle (EM), depleted mantle (DM), and hydrated mantle (HM). While primitive (unmodified) mantle (PM) has its own unique Nb/Th and Zr/Nb ratios, these signatures do not show up in basal melt fractions unless by chance, given crystal–melt partitioning during the mantle melting process (Blundy and Wood, 2003). DM has high values for each ratio (Nb/Th > 8 and Zr/Nb > 20); EM has high Nb/Th ratios but typically low Zr/Nb ratios (< 20); and HM has very low Nb/Th (< 8) and variable Zr/Nb ratios (Condie, 2015). DM signatures are characteristic of asthenospheric mantle below mid-ocean ridges, but also may appear in mantle wedges above subduction zones (Saunders et al., 1988). EM signatures occur in basalts erupted on oceanic plateaus and islands, as it is thought to occur in mantle plumes that initiate in the middle and lower mantle (Hofmann, 1997; Hofmann and White, 1982; Stracke, 2012). Finally, HM is characteristic of arc/back-arc geodynamic settings where partial melting and basalt petrogenesis takes place within a hydrated mantle wedge (e.g. Kimura and Yoshida, 2006).

A recent application of this technique to a global dataset of mafic lavas and greenstone belt components by Condie (2015) suggests that modern-day tectonic settings cannot be easily identified in rocks older than 2.2 Ga, based on EM and DM signatures only becoming widespread at that time. However, other studies have performed similar analyses using different incompatible trace element ratios and suggest that the majority of Archean greenstone belt basalts formed in subduction-related regimes (Furnes et al., 2014a). Here, Th/Yb–Nb/Yb and V/Ti ratios suggest that Palea-, Meso-, and Neoarchean greenstone belts preserve trace element compositions equivalent to modern-day boninites, island arc tholeiites, and MORB (Furnes et al., 2014b). One point of contention in using such geochemical and/or tectonic discrimination diagrams for tracing geodynamic regimes through time is the uncertainty regarding the expected major-, minor-, and trace-element signatures of basalts generated in various types of stagnant lid regime (e.g. Fig. 3). HM signatures, for example, which may be viewed as diagnostic of subduction at oceanic or continental arcs today, may potentially also represent intraplate mantle that has experienced hydration due to dripping or delamination of hydrous lower crust (Bédard et al., 2003; Fischer and Gerya, 2016a, 2016b; Piccolo et al., 2019). Future work specifically focused on the geochemistry of basilitic rocks exposed on Mars and Venus, which almost certainly formed in some form of stagnant lid regime, may provide critical new insight into this problem (cf. Section 7.1; Greenough and Ya’acooby, 2013).

3.3.2. Diamonds and their inclusions

Diamond is a high-pressure polymorph of carbon that stabilizes at minimum pressures of ~3.5–4.5 GPa at ~600–1200 °C, equivalent to at least 150–180 km depth within the Earth’s upper mantle (Khaliullin et al., 2011; Day, 2012; Figs. 2 and 7). A rarer variety of “superdeep” diamonds are thought to have originated from > 410 km depth, within the mantle transition zone (e.g. Timmerman et al., 2019). As such, during growth, diamonds can trap minerals, fluids, or melts that are stable at various depths within the Earth’s interior. Based on their morphology and internal growth structures, natural diamonds likely crystallize from solutions within the mantle, rather than forming in the solid state (Harte, 2010). The precipitation of diamond from such carbon-bearing fluids or melts is thought to be driven by reduction–oxidation events (Deines, 1980; Haggerty, 1986; Jacob et al., 2016).

Several important studies have used the composition of diamonds and/or their inclusions to identify transport of crustal materials into the mantle, potentially via subduction. In a landmark paper, Shirey and Richardson (2011) compiled isotopic and bulk chemical data of over 4000 silicate and sulfide inclusions in diamonds with well-constrained ages of formation from five Archean cratons worldwide. Silicate inclusions formed two major groups: p-type (peridotitic), including both harzburgitic and lherzolitic compositions, and e-type (eclogitic) parageneses, characterized by Cr- and Al-rich garnet and Na-, Fe-, and Mg-rich pyroxene. This analysis showed that diamonds older than 3.2 Ga contained only p-type inclusion suites, whereas e-type inclusions became dominant after c. 3.0 Ga. This mineralogical transition was interpetred by Shirey and Richardson (2011) to record the capture of eclogite and diamond-forming fluids in subcontinental mantle via subduction and continental collision, marking the onset of the Wilson Cycle (i.e. plate tectonics) at around 3.0 Ga.

Other studies have used stable isotope compositions of diamonds to infer contamination of the mantle with crustal and other Earth-surface materials. Recently, Archean placer diamonds (c. 3.5–3.1 Ga) from the Kaapvaal craton, South Africa, were analyzed by Smart et al. (2016) for both their nitrogen content and nitrogen and carbon isotopic signatures. High concentrations of nitrogen in these diamonds compared to the average upper mantle were interpreted as evidence for localized contamination of the Archean mantle by nitrogen-rich sediments, and carbon isotopic signatures suggested diamond formation by reduction of an oxidized fluid or melt. Both isotopic characteristics were used to argue for the introduction of oxidized sediments and aqueous fluids to the mantle by crustal recycling at subduction zones, thus indicating the operation of plate tectonics no later than c. 3.1 Ga. Oxygen and strontium isotopic ratios in Archean diamonds from cratonic mantle eclogite xenoliths in South Africa and Venezuela were reported by MacGregor and Manton (1986) and Schulze et al. (2002) to record seafloor alteration and the transport of metasomatized oceanic crust into the mantle during the Mesoproterozoic. Smit et al. (2019) compared the mass-independently fractionated sulfur, which refers to Δ33S (33S/32S) and Δ34S (34S/32S) relative to Δ33S (34S/32S) in sulfide inclusions in diamond from Archean to Proterozoic terranes. They showed that the mass-independently fractionated sulfur was not present in sulfides in Paleoproterozoic diamonds, but was in sulfides in younger diamonds. Because the mass-independent fractionation can be caused by photolysis of sulfur in the atmosphere with UV light, the authors suggested that the mass-independently fractionated sulfur in diamonds younger than c. 3 Ga was carried into the mantle by subduction. In addition, negative Eu anomalies in majoritic garnet inclusions in diamond from the Jagersfontein kimberlite, South Africa, and the unusually light carbon isotopic signature of the host grains was interpreted by Tappert et al. (2005) to record recycling of oceanic crust into the mantle, which carried organic carbon-rich sediments with it. Nonetheless, it is important to remember that such lines of evidence do not unequivocally prove the operation of subduction, as various forms of stagnant lid tectonics allow crust–mantle mass exchange (Fig. 3) to different degrees.

3.4. Modeling

Many studies have employed various types of modeling to infer the likelihood of subduction at different times during the Archean, with the most compelling arguments coming from the results of 2-D and 3-D thermo-mechanical modeling at the crustal, lithospheric, and planetary scale (cf. Section 1.2). Petrological and geochemical modeling can also inform about whether lithologies in Archean terranes likely formed in subduction zone or intraplate environments by way of matching predicted major-, minor-, and trace-element signatures with those preserved in the geological record (e.g. Palm et al., 2016b).
3.4.1. Geodynamic modeling

Thermo-mechanical modeling represents a powerful tool with which to examine the likely effects that different physico-chemical parameters impart on crustal or mantle dynamics, although the reliability of the results of such simulations are necessarily dependent on the properties chosen a priori. Geodynamic modeling is particularly useful for constraining the likely effects of secular cooling of the mantle (cf. Section 1.3), which impacts on its viscosity and the rigidity of the lithospheric lid (Rolf et al., 2012). Mantle viscosity also directly controls the wavelength of mantle convection – with increases as mantle T_p decreases – and so feeds back on the mechanism of heat transfer (Bunge et al., 1996). Secular cooling over time is thus expected to promote the transition from short-wavelength drip-and-plume tectonics (Fig. 3) to broader-scale delamination and associated convection cell-style upwellings (Fig. 3), with plate tectonics being associated with wide aspect ratio mantle convection (Grigné et al., 2005).

Geodynamic modeling of stagnant-lid regimes has been instrumental in decoupling the form of tectonics that may have preceded the modern-day mobile-lid regime. Several workers have investigated the thermal stability of thick, mafic primary crust, and suggested that shown that eclogitization of buried lithologies could have promoted dripping and delamination of this dense material into the mantle (Fischer and Gerya, 2016a; Capitano et al., 2019). Thermo-mechanical investigations of the viability and style of subduction through geological time have provided great insight into the conditions necessary to initiate and sustain plate tectonics on Earth (Section 1.2: Gerya et al., 2008; Van Hunen and Moyen, 2012; Gerya, 2014). Parameterizations employing different oceanic lithospheric thicknesses, crustal compositions, mantle hydration states, and mantle T_p values for Phanerozoic, Proterozoic, and Archean convergent margins suggest that hot, thick, and more mafic Archean oceanic slabs lack the competency to subduct at steep angles without breaking away from the lithosphere at the surface (Moyen and van Hunen, 2012). In some 3-D simulations, this is manifested via a form of “dripping subduction” predicted at mantle T_p values just 50–100 K greater than the present-day (Fischer and Gerya, 2016b), which is characterized by frequent dripping from the slab tip and a loss of coherence of the slab. Slab decomposition in this cases is likely the result of a hotter (weaker) mantle providing less support for the subducting mass and the thicker oceanic crust creating a larger tensile stress between the buoyant crust near the surface and dense eclogite at depth (Moyen and van Hunen, 2012). Simulations of Phanerozoic subduction systems confirm the importance of slab pull in driving plate motion at the surface (Becker and Facenna, 2009), suggesting that eclogitization and slab fragmentation in the Archean may have been sufficient to allow transient subduction initiation, but long-term stability was not achieved until the subducted lithosphere became stronger during secular cooling.

3.4.2. Petrological modeling

An independent approach to examine the likelihood of plate tectonics/subduction at any point in geological time involves forward and inverse petrological modeling, which can characterize the metamorphic mineral assemblages and partial melts that stabilize at different P–T conditions within the Earth's crust and mantle (Vance and Mahar, 1998; Štípská and Powell, 2005; Palin et al., 2012; Jennings and Holland, 2015; Treloar et al., 2019; Parsons et al., 2020). These predictions may then be compared to lithologies preserved in Archean cratons, as different metamorphic environments are characterized by different thermal gradients (see Section 4) and contain rocks with different major-, minor-, and trace-element signatures (e.g. Wilson, 2007; Moyen, 2011). Recent advances in the capability of petrological modeling to simulate subsludius and suprasolidus phase equilibria (Diener et al., 2007; Diener and Powell, 2012; Green et al., 2007, 2016; Holland et al., 2018) in metamorphosed mafic igneous precursors (e.g. MORB, calc-alkaline basalt, picrite) has allowed interplay between high-grade metamorphism and melt generation to be constrained with significantly greater precision and reliability (Palin et al., 2016a; Marsh and Kelly, 2017; Stuck and Diener, 2018; Cao et al., 2019; Kunz and White, 2019). However, care must be taken to choose appropriate lithologies as potential protoliths, as petrological modeling of Archean basalts of unsuitable geochemistry has in the past lead to spurious results (cf. Corrigan to Johnson et al., 2017).

Early petrological modeling-based investigations of Archean continental crust petrogenesis (Nagel et al., 2012) examined the compositions of partial melts generated in convergent margin tectonic settings using MORB-like protoliths, although could not effectively examine trace element systematics or consider the effects of open-system melt loss. Following parameterization of a thermodynamic model for TTG-like silicate melt (Green et al., 2016), numerous workers have examined the melt fertility of different Archean mafic lithologies with a view to constraining the geodynamic environment and mechanisms of formation of Earth's first stable continents (e.g. Palin et al., 2016b; White et al., 2017; Zhang et al., 2017; Ge et al., 2018; Wiemer et al., 2018; Kröner et al., 2018). The results of these investigations are discussed in more detail in Section 4.4.

4. Metamorphism in the Archean

Metamorphic mineral assemblages are highly sensitive to changing P–T conditions within the Earth, so can record the degree of heating and cooling of a rock during its burial and exhumation (Anovitz and Essene, 1990; Powell and Holland, 2008; Green, 2018). When combined with isotopic geochronology, absolute ages (t) can be assigned to different stages in a thermobarometric evolution (e.g. Hacker and Wang, 1995; Foster and Parrish, 2003; Palin et al., 2014a; Taylor et al., 2016; Lamont et al., 2019), thus producing a P–T–t path that describes the changing nature of geotherms in a particular tectonic setting (England and Richardson, 1977; Harris et al., 2004; Li et al., 2018a). As different geometric settings are characterized by different thermal conditions, careful examination of the mineralogy, microstructures, and geochemistry of metamorphic rocks provides critical insight into the thermal evolution of the Earth’s crust throughout time and space (e.g. Burke and Kidd, 1978; England and Thompson, 1984; Bohlen, 1987; Harris et al., 2004; Holder et al., 2018; Huang et al., 2019; Waters, 2019). As a result, the metamorphic rock record is often considered as the first port of call for examining the changing nature of lithospheric tectonics since the Archean–Hadean boundary.

Compilations of apparent peak metamorphic P–T conditions throughout geological time have been used by some authors to define a tripartite classification scheme that can inform about secular changes in geodynamics. In these schemes, high dT/dP types include normal and ultrahigh temperature (UHT) granulites, intermediate dT/dP types typically include high-pressure granulites (HPG) and medium- and high-temperature eclogites, and low dT/dP types include blueschists and low-temperature eclogites. The low-dT/dP limit of metamorphism on Earth is ~150 °C/GPa, with geothermal gradients below this value defining the “Forbidden Zone” (Fig. 7; Liou et al., 2000). Fig. 8a shows the temporal distribution of such metamorphic data reported by Brown and Johnson et al. (2018), although we adopt a corrected set of dT/dP thermal gradients that more accurately reflect mineralogical transitions between key metamorphic facies (cf. Maruyama et al., 1996), and so better reveal the secular evolution of tectonic regimes. In this expanded dataset, to which we have added additional data published since its compilation, subduction-related blueschists and eclogites are considered together as having low dT/dP apparent peak gradients of 150–440 °C/GPa, HPG have intermediate dT/dP apparent peak gradients of 440–760 °C/GPa, and normal and UHT granulites have high dT/dP apparent peak gradients of 760–1500 °C/GPa (Fig. 8a). This revised 440 °C/GPa gradient for the high-pressure granulite-eclogite transition more closely aligns with the plagioclase-out/omphacitic clinopyroxene-in transition in mafic rocks, as constrained via phase equilibrium modeling (De Paoli et al., 2012; Palin et al., 2014b; Weller
and experimental petrology (Green and Ringwood, 1967; Ito and Kennedy, 1971; Austrheim, 1990). The revised 760 °C/GPa gradient for the high-pressure granulite-to-normal granulite/UHT transition better fits the garnet–orthopyroxene mineralogical transition in mafic rocks, as documented in Pattison (2003), although this reaction is multi-variant in nature, such that both garnet and orthopyroxene may stably exist in mafic granulites worldwide (Brandt et al., 2003; Sajeev et al., 2004). Finally, we discard the small number of data with dT/dP > 1500 °C/GPa, as these likely formed via contact metamorphism instead of regional-scale tectonic events, and so detail localized thermal anomalies rather than crustal-scale tectonic phenomena.

4.1. High dT/dP metamorphism

Granulite-facies metamorphism is ubiquitous throughout the rock record (Fig. 8a) and occurs prominently in Archean terranes (e.g. Jahn and Zhang, 1984; Harley, 1989). The elevated heat flow required for granulite-facies P–T conditions is thought to be associated with regional-scale magmatism or local concentrations of radiogenic heat.
producing elements (Warren, 1983; Ellis, 1987; Clemens, 1990; Clark et al., 2011). In the former scenario, which is likely the most general case, tectonic environments of granulite formation – at least on Earth today – include island and continental arcs at convergent plate margins, continental rifts, hot spots and at the margins of large, deep-seated batholiths (Bohlen, 1991; Collins, 2002; Santosh et al., 2003, 2012). Granulites are thus interpreted to form the bulk of the lower continental crust (Fig. 5), as supported by geophysical investigations, direct inspection of exhumed terranes, and xenoliths (Rudnick and Fountain, 1995; Gao et al., 2004; Zhang et al., 2020). However, the absolute P–T conditions of the prograde amphibolite–granulite transition, defined by the appearance of metamorphic orthopyroxene (Phillips, 1981), are sensitive to fluid content and its composition. A reduction in the activity of H₂O in coexisting metamorphic fluid due to dissolution of CO₂ or salts can expand orthopyroxene-bearing assemblages to relatively low temperatures (Frost and Frost, 1987; Bucher and Grapes, 2011), although such effects are often metamorphic and localized in nature and cannot be responsible for terrane-scale granulite formation (Newton, 1992). The abundance of granulites in Archean cratons is thus likely a result of elevated continental geotherms caused by a higher mantle Tₚ (Fig. 4) and regional-scale metamorphism due to magma emplacement and crustal thickening.

More extreme thermal regimes in the middle- to lower-crust are recorded in the rock record by UHT granulites. Crustal UHT metamorphism is defined by temperatures exceeding 900 °C at pressures below the sillimanite–kyanite transition (cf. Fig. 7; Harley, 1998; Kelsey, 2008). Diagnostic mineral assemblages of such P–T conditions include high-Al orthopyroxene + sillimanite + quartz, sapphireine + quartz, and spinel + quartz, alongside metamorphic pigeonite and ternary feldspar (Kelsey and Hand, 2015). By contrast with normal granulites, UHT metamorphism is rare in the Archean, being mostly associated with Proterozoic supercontinent accretion events (e.g. Santosh et al., 2006; Kelsey, 2008; Li et al., 2019), which themselves record evidence of horizontal plate motion.

4.2. Medium dT/dP metamorphism

The HPG metamorphic facies is transitional between true crustal granulites and hot eclogites (Fig. 7), and is bracketed here by geotherms of 440–760 °C/GPa (Fig. 8). Mineralogically, HPGs are characterized by garnet + diopsidic clinopyroxene + plagioclase + quartz in mafic rocks and kyanite + K-feldspar in intermediate and felsic rocks (O’Brien and Rötzer, 2003). Two essential types of HPG occur in the geological record: a high- to ultrahigh-temperature group and a group representing overprinted eclogites (Rudnick and Presper, 1990; Zhao et al., 2001; O’Brien and Rötzer, 2003). The former, which are considered HPG sensu stricto, form due to short-lived tectonic events that generate overthickened continental crust (Carswell and O’Brien, 1993; Liu and Zhong, 1997; Guo et al., 2002), commonly due to accretional or collisional orogeny (e.g. Zhang et al., 2020). The latter group typically has a subduction origin and so although they may contain metamorphic parageneses with P–T conditions representative of HPG metamorphism, their precursors provide constraints on the operation of plate tectonic activity through time. Examples of such granulitized MORB-type eclogites have recently been documented from the Paleoproterozoic Kasai Block, Democratic Republic of Congo by François et al. (2018) and record evidence of subduction having operated at 2.2–2.1 Ga. Near-complete granulitization of eclogite has been documented from the Himalaya (e.g. O’Brien, 2018), and is kinetically promoted by rehydration during exhumation through the crust (Sartini-Rideout et al., 2009; Palin et al., 2014b; Yardley and Bodnar, 2014). It thus remains a possibility that some Archean HPG localities may represent overprinted hot eclogites, providing further support for the operation of subduction at this time in Earth history, although much or all petrological evidence of their early tectonic evolution has been lost due to tectonic reworking. Instead of continued exploration for preserved eclogites and blueschists in Archean terranes, which may represent a fool’s errand (see below), focused study of these lesser-studied HPG lithologies represents a potentially more fruitful avenue for future breakthroughs.

4.3. Low dT/dP metamorphism

Blueschists and eclogites represent definitive petrological evidence of the operation of plate tectonics at any point in geological time (Section 3.1), as low dT/dP geothermal gradients are uniquely characteristic of subduction zones (Vidale and Benz, 1992; Peacock, 1996). While the P–T conditions experienced by a descending oceanic slab surface vary according to factors including plate convergence rate, dip angle, and slab age (Peacock and Wang, 1999; Syracuse et al., 2010; Pennist-Dorland et al., 2015), all except the very hottest examples pass sequentially through the zeolite, prehnite–pumpellyite, greenschist, blueschist, and eclogite facies (Fig. 7; Hernández-Urbie and Palin, 2019b). Ultrahigh-pressure (UHP) metamorphism is defined in silica-bearing rocks by the stabilization of coesite (Chopin, 1984; Smith, 1984) – a high-pressure polymorph of quartz – which occurs at ~90–100 km depth below the Earth’s surface, assuming lithostatic pressure (Liou et al., 2004). However, much study in recent years into the effects of non-lithostatic “overpressure” in crust show that so-called UHP conditions can be reached in overthickened continental roots (Schmalholz and Podladchikov, 2014; Reuber et al., 2016) or at notably shallower depths in subducted oceanic slabs (Audet et al., 2009; Palin et al., 2017). For this reason, discrimination between normal high-pressure eclogite and UHP eclogite as an indicator of deep subduction is becoming widely recognized as misleading for interpreting tectonic regimes on the early Earth.

The temporal distribution of low dT/dP rocks in the geological record has proven to be one of the most contentious points of debate that exists for interpretation of Archean geodynamics (cf. Stern, 2005; Palin and White, 2016). The oldest blueschists on Earth are Neo-Proterozoic in age (c. 0.8 Ga; Maruyama et al., 1996), and examples occur in almost all Phanerozoic orogenic belts worldwide (Tsujimori and Ernst, 2014). Given multiple independent lines of evidence for plate tectonics having operated since at least the Late Archean (Fig. 1), the absence of pre-0.8 Ga blueschists in the rock record has been variably attributed to a lack of preservation (Gibbons and Mann, 1983), a lack of exhumation (Maruyama et al., 1996), elevated subduction zone geotherms prohibiting their formation (Niibet and Fowler, 1983), and secular change in oceanic crust composition prohibiting formation of diagnostic mineral assemblages (cf. Section 3.1.1; Palin and White, 2016). Each of these factors has merit and it is likely that all contribute in some shape or form, although a very late onset of subduction (Stern, 2005; Hamilton, 2011) is least compatible with most other independent lines of evidence.

4.4. Metamorphism and the generation of tonalite–trondjhemite–granodiorite (TTG) magmas

Magmas and their metamorphosed equivalents (gray gneisses) of TTG composition in Archean terranes represent components of the Earth’s earliest-formed continental crust and formed by partial melting of hydrated metasalts (e.g. Rapp et al., 1991; Wolf and Wyllie, 1994; Rapp and Watson, 1995). Such TTGs have considerable value for evidencing the operation (or not) of subduction in the Archean (cf. Fig. 1), as patterns and secular trends in their bulk compositions provide critical petrological information about the mafic parent rock from which they separated and P–T conditions of metamorphism, and so the tectonic environment of their formation.

In a pioneering study, Martin and Moyen (2002) divided a global compilation of sodic Archean TTGs into three main groups based on their major- and trace-element geochemistry: (1) those with high Al₂O₃, Na₂O, Sr, and La/Yb, and low Y and Nb/Ta; (2) those with low Al₂O₃, Na₂O, Sr, and La/Yb, and high Y and Nb/Ta; and (3) those with...
intermediate compositions between these end members. Such geochemical signatures constrain the minerals present in the metabasite residuum from which the TTG melts separated, with high Sr contents indicating plagioclase-poor assemblages, high La/Yb ratios indicating garnet-rich assemblages, and low Nb/Ta ratios indicating the presence of rutile and amphibole (Fig. 10; Martin and Moyen, 2002; Foley et al., 2002, 2003; Rapp et al., 2003). Experimental investigation and phase equilibrium modeling of the absolute P–T stability fields of these minerals (e.g. Rushmer, 1991; Rapp et al., 1991; Rapp and Watson, 1995; Foley et al., 2003; Zhang et al., 2013; Palin et al., 2016a, 2016b) has led some workers to refer to TTG types 1–3, above, as “high-pressure”, “low-pressure”, and “medium-pressure”, respectively (Moyen and Stevens, 2006; Moyen, 2011; Moyen and Martin, 2012; Laurie and Stevens, 2012; Rozel et al., 2017; Rajesh et al., 2018). Such classifications have inherent geodynamic implications, as “high-pressure” TTGs requires separation from an eclogite-like source rock (Rapp et al., 1991, 2003), “medium-pressure” TTGs would require a garnet-bearing high-pressure granulite or garnet amphibolite, and “low-pressure” TTGs would form via partial melting of a normal (garnet-absent) amphibolite. However, while samples from individual plutons typically belong to the same “group”, many Archean cratons contain mixtures of multiple groups with similar ages (Moyen, 2011), complicating tectonic interpretations.

Due to petrological similarities with modern-day adakites (Drummond and Defant, 1990; Martin, 1999), many workers have suggested that “high-pressure” TTGs formed due to slab melting in a subduction zone setting (Martin and Moyen, 2002; Rapp et al., 2003; Laurie et al., 2013), either with a steep dip angle and thick mantle wedge between both plates (Fig. 9a), or involving shallower subduction/underplating with little or no intermediate asthenospheric mantle present (Fig. 9b). Given the large proportion of felsic crust to mafic crust, such classiﬁcations have inherent geodynamic implications, as “high-pressure” TTGs would require separation from an eclogite-like source rock (Rapp et al., 1991, 2003), “medium-pressure” TTGs would require a garnet-bearing high-pressure granulite or garnet amphibolite, and “low-pressure” TTGs would form via partial melting of a normal (garnet-absent) amphibolite. However, while samples from individual plutons typically belong to the same “group”, many Archean cratons contain mixtures of multiple groups with similar ages (Moyen, 2011), complicating tectonic interpretations.

Possible architectures and geological characteristics of (a) shallow and (b) steep Archean subduction zones (after Palin et al., 2016b). Note that subducted-slab melts must pass through a much thicker mantle wedge to reach the overlying arc in the case of steep subduction compared to shallow subduction. (c) Potential mechanism for TTG generation in an intraplate environment above a mantle plume. Vertical box plot shows the schematic step-like hydration state of multiply buried mafic lava ﬂows. Figures are approximately to scale but emphasize general geodynamic concepts rather than exact crustal thicknesses or plate margin geometries.

voluminous TTG generation, as a substantial amount of hydrated mafic source material may be transported to granulite- or eclogite-facies P–T conditions depths at convergent plate margins (Foley et al., 2002, 2003). However, subsolidus dehydration of the slab during prograde metamorphism is likely to have reduced the overall fertility of subducted Archean crust, as fluid-undersaturation suppresses the onset of partial melting to higher temperatures (Hacker et al., 2003; van Keken et al., 2011; Hernández-Uribe et al., 2020).

Alternative mechanisms proposed for TTG petrogenesis focus on vertical-growth in intraplate tectonic settings, such as anatexis of the lower levels of tectonically thickened oceanic crust or plateaux (Fig. 9c), or the foundered portions thereof (Zegers and van Keken, 2001; Bédard, 2006; Bédard, 2013; Zhang et al., 2013; Wiemer et al., 2018). Trace-element systematics of Archean sediments imply that oceanic plateaux were much more common than on the modern-day Earth (Kamber, 2010), and had equilibrium thicknesses of ~40–45 km (Vlaar et al., 1994; Korenaga, 2006). Given the density of high-MgO basalt and komatiite, this depth range would have produced metamorphic pressures of ~12–14 kbar at the plateau base, which forms garnet-bearing HPG in most mafic precursor materials (Fig. 10; Palin et al., 2016a, 2016b). Voluminous TTG generation in Archean plateau environments is perhaps unexpected based on comparison with differentiated modern-day examples (e.g. Arndt, 2003), which are nominally anhydrous at depth. However, repeated sub-aqueous eruption, hydration, and burial of lava during top-down construction of Archean examples was proposed by Kamber (2015) to transport hydrated basalt to depths enough for partial melting to occur (Fig. 9c). Hybrid models incorporating elements of lateral accretion and vertical thickening have been proposed by Bédard (2013), with horizontal cratonic motion potentially driven by large-scale convective currents in the mantle pushing on deep-seated roots.

Despite these well-refined geodynamic models, experimental petrology and thermodynamic phase equilibrium modeling has revealed
Fig. 10. Calculated mineral assemblages and partial melts compositions generated during metamorphism of an enriched Archean tholeiite (EAT) at low- (6 kbar), medium- (12 kbar) and high-pressure (20 kbar) conditions (after Palin et al., 2016b).

complexity in this tripartite major- and trace-element division of TTGs due to potential variation in the bulk composition of possible source rocks. Most experiments focused on determining the stability of garnet, plagioclase, amphibole, and rutile in metabasalt considered modern-day MORB or MORB-like amphibolites, which have a low MgO content (e.g. Rushmer, 1991; Rapp et al., 1991; Sen and Dunn, 1994; Wolf and Wyllie, 1994). While of direct relevance to Phanerozoic subduction systems, the likelihood that Archean oceanic crust was considerably
more mafic than that observed today affects interpretations that can be drawn from the results of such work. For example, picritic and komatiitic basalts with higher MgO contents suppress plagioclase formation and coevally expand the limit of garnet stability to much lower pressures than for MORB, as would an unusually high FeO content. As a result, “high-pressure” signatures can be generated at moderate pressures within the crust in bulk-rock compositions that differ significantly from MORB (cf. Wade et al., 2017; Nebel et al., 2018).

Palin et al. (2016b) demonstrated that TTG magma genesis is severely restricted at pressures exceeding 20 kbar, representative of intersection of the wet basalt solidus during steep subduction. The maximum fertility of such minimally hydrated, MORB-like Archean basalts occurred at ~12 kbar, which was interpreted by these authors to record the pressure at which shallowly subducted oceanic lithosphere may begin to melt. However, Palin et al. (2016b) defined optimum $P-T$ conditions for slab melting and the production of Archean-like TTG magmas with compositional characteristics matching natural examples of > 800 °C at a pressure of less than 18 kbar (Fig. 11), such modeling cannot directly constrain whether subduction could have operated at any point in time in Earth history. Subsequent studies (e.g. Zhang et al., 2017; Ge et al., 2018; Wiemer et al., 2018; Wei et al., 2019) have corroborated these findings. Interestingly, due to metamorphic transformations during subduction allowing meta-basalt to exceed the density of surrounding mantle (Fig. 11), it is possible that the contribution

Fig. 11. Density-contrast maps for (a) Phanerozoic low-MgO and (b) Archean high-MgO basalt (AHMB) experiencing subduction (or burial/delamination) into the mantle. Color scale denotes the percentage density difference between the basalt and peridotite. Red colors indicate that the former is denser than the latter, and so is not expected to be exhumed due to buoyancy. The inverse is true for blue colors. Panel (c) shows the relative exhumation potential of both end-member basalts, such that red colors indicate that AHMB is denser than Phanerozoic low-MgO basalt at any given pressure-temperature ($P-T$) condition. Subducting slab-top geotherms for Phanerozoic subduction zones are after Syracuse et al. (2010) and the optimum $P-T$ conditions for Archean TTG genesis determined by Palin et al. (2016b) are shown for reference.
by high-pressure metamorphism is underestimated based on the paucity of exhumed HP eclogites in Proterozoic rocks (and absence in Archean terranes).

5. Unresolved issues

Despite decades of focused study, there are several unresolved issues related to the broad theme of secular change in metamorphism and tectonics through Earth history. Below, we initiate discussion on three of the topics that we consider most important for the community reaching a more holistic understanding of the early Earth and its transition into a mobile-lid plate-tectonic regime, whenever that is interpreted to have initiated.

5.1. Are greenstone belts obducted oceanic crust?

Given renewed uncertainty surrounding the thermal history of the Earth’s mantle (Section 5.2), discovery of certified Archean ophiolites (or fragments thereof) would be groundbreaking within the scientific community. Claims of this nature have been made several times in the past (cf. Section 3.1.4), but the community appears reticent in accepting them. So, are none, some, or all greenstone belts obducted oceanic crust?

The geochemistry of Archean greenstones has been used as a proxy to trace magma mantle-source regions and tectonic settings of formation (Section 3.3.1), although the limitations and reliability of this technique are disputed for modern-day proxies being translated to the early Earth (Pearce and Cann, 1973; Wood, 1980; Vermeesch, 2006; Condie, 2015; Furnes and Safonova, 2019). Here we briefly discuss evidence from incompatible elements for the tectonic setting of formation and/or mantle source of basaltic rocks in the well-preserved and well-documented Neoarchean (c. 2.6–2.5 Ga) greenstone belts in the Dharwar Craton, India, and the North China Craton, China.

The crustal blocks in the Dharwar Craton are welded together by several greenstone belts, including the Chitradurga Suture Zone that separates the Western Dharwar Craton (WDC) and Central Dharwar Craton (CDC), and the Kolar-Kadiri greenstone belt welding the Central Dharwar Craton with the Eastern Dharwar Craton (EDC) (Manikyamba et al., 2008; Jayananda et al., 2018, 2020; Li et al., 2018b) (Fig. 12). In the Nb/Th vs. Zr/Nb tectonic discrimination diagram from Condie (2015), MORB–OIB-type (meta)basalts from the c. 2.7 Ga Sandur greenstones of the CDC show relatively high Zr/Nb values and variable Nb/Th values and fall into the HM field, suggesting a hydrous source mantle within continental margin setting (Manikyamba et al., 2008) (Fig. 13). The Mesaoarchean greenstones from Goa in the WDC yield low Nb/Th and high Zr/Nb, also suggesting a hydrous source region, typical of a hydrated wedge above a subducting slab in a convergent margin setting (unpublished data). Similarly, the c. 2.6 Ga Hutton greenstone in the EDC, which underwent greenschist- to amphibolite-facies metamorphism, also shows a variably enriched geochemical affinity to MORB-type basalts, suggesting the magmas were generated through slab melting (Manikyamba et al., 2009), along with high-Mg basalts from the Kushthi Hungund (Fig. 12: Naqvi et al., 2006). The c. 2.5 Ga basalt from Nallamalai suture zone and Moyar suture zone are MORB type formed by melting of subducted oceanic plate (Samuel et al., 2014; Li et al., 2018a). The Palghat-Cauvery Shear Zone (PCSZ) separates the Dharwar Craton to the north and Southern Granulite terrane in the south, and contains c. 2.5 Ga mafic granulite that has a MORB geochemical signature and hydrous mantle provenance (Noack et al., 2013). In a Th/Nb versus Nb/Nb diagram (Fig. 13), basaltic rocks from greenstone belts in the Dharwar Craton and those between the south microblocks dominantly show P-MORB, E-MORB and N-MORB characteristics, suggesting formation within an enriched suprasubduction zone (Saccani, 2015). These features support independent arguments (e.g. Li et al., 2018a) showing that the greenstone belts that stitch the Dharwar Craton together (a) contain fragments of OPS – albeit metamorphosed to greenschist-facies conditions – and (b) were obducted at convergent plate margins (e.g. Dewey, 1976; Agard et al., 2014). This suggests that plate tectonic processes and a major network of subduction zones had been established by at least the Archean–Proterozoic transition.

Akin to the Dharwar Craton, the Neoarchean North China Craton is a collage of microblocks welded by several greenstone belts (see Fig. 12b for detail: Zhai and Santosh, 2011; Tang and Santosh, 2018). The c. 2.5 Ga Wutai greenstones include light rare earth element (LREE)-depleted back-arc basin basalts and LREE-enriched IABs, suggesting generation in an intra-oceanic subduction and mantle upwelling setting. The alkaline and E-MORB types suggest additional material interaction with the downgoing slab and their ages correlate with the final collision of eastern and western block of the North China Craton (Gao and Santosh, 2019; Wang et al., 2004). Similar c. 2.5 Ga LREE-enriched MORB-type basalts and c. 2.3–2.0 Ga IAB or MORB-type basalts from the Zanhuang complex are interpreted to record ocean closure associated with the amalgamation of Archean microblocks and back-arc setting closure and final collision of the Eastern and Western blocks of the NCC, respectively (Li et al., 2016; Deng et al., 2013). In a Zr/Nb versus Nb/Th diagram, the basalts and metavolcanics from Zanhuang mainly fall in the HM field.

Metavolcanic rocks from eastern Hebei (c. 2.6–2.5 Ga) and siliceous high-MgO basalt from Taishan (c. 2.5 Ga) show variable LREE enrichment and an N-MORB character, together with a primitive arc basalt character suggesting partial melting of a mantle wedge associated with hydration from ocean plate subduction (Guo et al., 2013; Peng et al., 2013). The metavolcanics from the eastern Hebei yield moderate Zr/Nb values, variable Nb/Th values, and spread from the HM to the DM and EM classification field. Further, greenstone belt components with ophiolite-like structures in the Yishui Complex at the southern margin of Jiaoliao Block contain (meta)basalt with E-MORB and N-MORB geochemical affinities, which infer an IAT mode of origin in a supra-subduction zone setting (Santosh et al., 2015a). In the Zr/Nb versus Nb/Th diagram, the plats of the basaltic rocks from Yishui Complex mostly fall into the HM and PM field, again suggesting a hydrous mantle source.

Geochemical data for (meta)basalts from these two major Archean cratons that have a similar age both support the interpretation that subduction was operating on Earth immediately prior to the Archean–Proterozoic transition. Examination of Zr/Nb vs. Nb/Th characteristics for metabasalts for both the North China Craton and Dharwar Craton shows mostly HM and DM source regions, suggesting that magmas were derived from hydrated oceanic crust, albeit with minor incorporation of variably depleted components. These conclusions are echoed by Th/Nb vs. Nb/Nb data, where most analyzed samples lie within the N-MORB, E-MORB, P-MORB and IAT fields. Such data are fully consistent with these basalts having been generated as part of oceanic lithosphere created at a divergent plate margin, as opposed to in an intraplate setting above the head of a mantle plume (e.g. Boily and Dion, 2002).

Just before the turn of the century, Bickle et al. (1994) suggested that no unequivocal Archean ophiolites have been identified. While this may have been true at this time, more exploration of Archean terranes and new laboratory techniques have shows that this is likely not the case (e.g. Section 3.1.4). One immediate issue that complicates the search for a pristine section through Archean oceanic crust (with or without upper mantle) is the structural difference between typical oceanic crust today and that predicted via thermal–petrological models for the Archean and/or Proterozoic. Due to more efficient melt formation in a hotter Archean mantle, the Archean oceanic crust would likely have been ~25–40 km in thickness (McKenzie and Bickle, 1988) with a high bulk MgO content of ~18–24 wt% (Fig. 5: Abbott et al., 1994; van Thienen et al., 2004). This architecture is in stark contrast with modern-day oceanic crust, which is ~6–7 km thick (Fig. 5), has an average bulk MgO content of 10–13 wt% (Sleep, 1975). Most
Fig. 12. Geological maps of (a) the North China Craton, China, and (b) the Dharwar Craton, India, highlighting the position of greenstone belts and Archean-Proterozoic microblocks. See main text for discussion.
Neoproterozoic (and younger) ophiolites are less than 5 km in thickness (Condie, 2005), and are bound by thrust faults, which imply that they have been emplaced by obduction. One might then pose the question – is there a constraint on the maximum mass/volume/thickness of oceanic crust and/or lithosphere that may be mechanically emplaced onto a continental margin? To our knowledge, this has not been investigated, although if the worldwide "mean" thickness of an ophiolite (~5 km) exposed in a Phanerozoic orogenic belt is representative, then an Archean ophiolite would not resemble a complete section through the crust, but merely the uppermost portion. As shown in Fig. 5, this would likely comprise a thick sequence of pillow basalt with the uppermost portions of sheeted dikes. Notably, these are the petrological – structural components almost always observed in greenstone belts, whereas the highly mafic and/or ultramafic cumulate sequences expected to characterize the basal levels of a thicker Archean oceanic crustal section remain scarce (or absent). Further investigation of this hypothesis is clearly needed to test whether field geologists are searching for rock types that are not expected to have ever been exhumed in the first place.

5.2. Magnitude and rate of cooling of the Earth’s mantle

Descriptions of the thermal evolution of the Earth and absolute temperature of the ambient Archean mantle vary significantly in the literature, with discrepancies emanating from different datasets, assumptions, and uncertainties (see Korenaga, 2006, for a review). The present-day mantle T_P is well constrained and propagation of this variable backwards in time has been used to predict the potential temperature of the Archean and Proterozoic mantle (Fig. 4). Knowledge of such a parameter is critical for effectively parameterizing two- and three-dimensional geodynamic simulations (cf. Gerya et al., 2015; Piccolo et al., 2019), for forward-modeling the volume and composition of partial melt fractions derived during adiabatic decompression of early-Earth mantle (Vlaar et al., 1994), and so modeling of crustal extraction and geochemical depletion of the upper mantle reservoir (Chase and Patchett, 1988; Maurice et al., 2003; McCoy-West et al., 2019).

Early thermal models of mantle T_P over time initially showed a clear discrepancy: Korenaga (2008a, 2008b) deduced that the Mesoarchean mantle T_P reached a maximum of ~1600–1650 °C by projecting a value

![Fig. 13. Tectonic discrimination diagrams for basaltic greenstone belt components from the North China Craton and Dharwar Craton shown on (a) Zr/Nb vs. Nb/Th and (b) ThN vs. NbN bivariate plots. HM = hydrated mantle; EM = enriched mantle; DM = depleted mantle; PM = primitive mantle; CAB = continental arc basalt; IAT = island arc tholeiite; BABB = back-arc basin basalt; MORB = mid-ocean ridge basalt; OIB = ocean island basalt; SSZ = supra-subduction zone; AFC = assimilation–fractional crystallization; FC = fractional crystallization; AB = alkaline basalt.](image)
of Ur of 0.23 ± 0.15 backwards in time (Fig. 4). In these thermal models, the Paleoarchean was cooler than the Mesoarchean due to the delayed effect of radiogenic nuclides incorporated into the mantle during planetary accretion beginning their heat production. By contrast, a study published by Davies (2009) shortly afterwards suggested that there was no arch-like \(T_p \) curve, and that the Earth’s mantle had experienced continual cooling since c. 4.56 Ga. This model inferred a mantle \(T_p \) at 3.5 Ga of ~1425 °C, much cooler than that put forward by Korenaga (2008a, 2008b). Apparent validation of the “high-temperature” models was provided by Herzberg et al. (2010), who calculated liquidus temperatures for 33 non-arc basaltic of various ages (yellow dots on Fig. 4), with these data lying within Ur = 0.23–0.38 for the models of Korenaga (2008a, 2008b). However, as outlined in Section 1.3, subsequent analysis of much larger geochemical sets of basalt compositions by Condle et al. (2016) and Ganne and Feng (2017), facilitated by the rise of Big Data, favor the interpretation of Davies (2009). Both studies concluded that ambient Archean mantle \(T_p \) outside periods of supercontinent formation was ~1450–1500 °C (Fig. 4), defining a more subdued secular cooling rate of ~30–50 °C/Gyr compared to the conclusions of Herzberg et al. (2010).

If the results of Condle et al. (2016) and Ganne and Feng (2017) are correct, a worrying large number of studies conducted in the past decade based on “hot” Archean mantle \(T_p \) values will need re-examination. The sensitivity of thermo-mechanical models to mantle \(T_p \) values has been studied explicitly by several workers (e.g. Gerya, 2014; Fischer and Gerya, 2016a, 2016b), and the timing of transition from stagnant-lid to mobile-lid tectonics has often been defined based on a critical \(T_p \) value being passed. The point in time at which cooling of the ambient mantle crossed this threshold is dependent on interpreted models of the thermal history of the Earth. Recent modeling studies have identified this issue and have investigated how continental crust may form in intraplate geodynamic environments in a “relatively cool Archean mantle” (Piccolio et al., 2019), although much further study is required from two standpoints: firstly, to finalize the magnitude and rate of cooling of the Earth through time, whether from first principles with updated physico-chemical constraints, or from a more in-depth study of the petrological record. Secondly, tectonic, petrological, and/or geodynamic modeling should adopt fewer a priori assumptions of mantle \(T_p \) in the Precambrian, whether this has influence over the resultant architecture of oceanic crust (e.g. Palin and White, 2016; Palin and Spencer, 2018) or petrophysical properties of Archean continental crust and its ability to partially melt and internally differentiate (e.g. Nebel et al., 2018). Ideally, more advanced integrated models (e.g. Section 7.2) may be adopted in the future that take greater consideration of the effects of uncertainty related to this secular cooling until the issue approaches a more definite conclusion.

5.3. Global vs. localized onset of subduction

With the increasing number of examples of eclogite-facies metamorphic rocks and terranes of Precambrian age (cf. Fig. 5a–b) having been reported in the literature over the past decade (Section 3.1.3), it has become a topic of recent debate whether these exposures truly represent evidence for a globally connected network of subduction zones, as one would require for plate tectonics to operate, or else localized occurrences of subduction initiation that failed to subsequently stabilize (e.g. Viete and Holder, 2019). Alternatively, plate tectonic behavior may have been transient during the Proterozoic, with the Earth frequently switching between stagnant- and mobile-lid states before reaching an equilibrium (Lenardic, 2018; O’Neill et al., 2018). Without doubt, the temporal clustering of HP/UHP eclogite-facies metamorphism at c. 1.8–2.1 Ga in many different localities around the world is significant, as is the curious lack of such samples in the 600-Myr period afterwards (c. 1.2–1.8 Ga: Fig. 8b). The large-scale emergence of blueschists and eclogites in the geological record at c. 0.9 Ga represents a firm constraint on the latest possible onset of cold, steep subduction (cf. Stern, 2005).

While eclogite (sensu lato) is not diagnostic of subduction, given the potential for overthickening of continental crust and transformation of its mafic lower levels (e.g. continental eclogite from the Pamir; Hacker et al., 2005), geochemical characteristics and field associations of many examples within this cluster of data support a subduction-related origin. For example, recently reported Paleoproterozoic (c. 1.8 Ga) eclogite from the Trans-Hudson orogen, Canada, by Weller and St-Onge (2017), shows comparable field relations (i.e. boudinaged and metamorphosed dikes enclosed within felsic continental basement) and peak \(P–T \) conditions to equivalent eclogite from the Himalayan orogeny (e.g. Wilke et al., 2010; St-Onge et al., 2013). The scale and rates of orogenesis in both the upper and lower plate in both orogenies are also comparable (St-Onge et al., 2006), which was used by Weller and St-Onge (2017) as evidence for comparable modern-day-style plate tectonic processes having operated at that point in Earth history. Although much independent evidence supports subduction of some form having operated prior to 1.8 Ga, early forms of subduction likely had a shallow angle of dip (Van Hunen and Moyen, 2012), thus precluding formation of UHP rocks; however, one study has purported eclogite-facies metamorphism of garnet pyroxenite from the Nagsugtoqidian orogen, Greenland, at extreme \(P–T \) conditions of ~7 GPa and ~975 °C (Glassley et al., 2014). This data point stands as a clear outlier to the other eclogite examples of this age, and even in modern-day environments, the geodynamic mechanism by which high-density mafic rocks could be exhumed from such mantle depths is uncertain (cf. Agard et al., 2009), although steep subduction remains one possibility.

While many forms of petrological evidence (e.g. UHP metamorphism, blueschists, jadeitites etc.) are diagnostic of subduction through Earth history, there is much evidence from the tectonic record that adds compelling independent arguments to the broader-scale conclusion that a global network of plate boundaries had been present on Earth since at least the Archean-Proterozoic transition (cf. Fig. 1). Supercontinent formation (Section 3.2.4) requires the lateral accretion of formerly separate lithospheric terranes, which is facilitated today by the large-scale emergence of oceanic crust from the underlying mantle, as is associated with plume activity and/or convergent margin arc-related processes (Dewey and Horsfield, 1970; Rudnick, 1995; Clift et al., 2009).

Interrogation of these hypotheses has rightly been made by comparison with subduction-like features observed on other planets in our solar system – particularly Venus (Section 7.1.1) – which otherwise are observed to exhibit a stagnant-lid tectonic regime (Reese et al., 1999). Such features on Venus include abyssal hills on MOR-like structures (Head and Crumpler, 1987; McKenzie et al., 1992) and trench-like features with similar curvature and asymmetry as ocean–ocean plate margins on Earth (Sandwell and Schubert, 1992; Schubert and Sandwell, 1995), and suggest that localized subduction may occur on a planet that is otherwise made up of static lithospheric fragments. Although such bi-modal regimes have not been predicted in simulations of the early Earth, they are at least conceivable, or else may be partially represented by episodes of incipient subduction initiation that never stabilize (e.g. Toth and Gurnis, 1998; Gurnis et al., 2004; Ueda et al., 2008).

Field investigation and thermo-mechanical modeling of subduction initiation has been undertaken by a variety of researchers in recent
years, although the former technique can only inform geologists of recent (Phanerozoic) processes. A detailed and realistic numerical simulation of subduction initiation on the Archean Earth was completed by Gerya et al. (2015), where discrete and self-contained clusters of 100-km scale microplates bounded by spreading ridges, transform faults, and one-sided subduction zones were predicted to form above a mantle plume (Fig. 14a). The remaining area outside of this simulated microcosm would exhibit characteristics of a stagnant lid regime. While no proto-continents were predicted in this scenario, subduction of oceanic lithosphere would be expected to form arc-like nuclei on the overriding plate, or else melting at the base of the microplates situated directly above the plume head would likely begin to internally differentiate to generate TTG-like magmas. Although subduction in this case is localized, mantle plumes were thought to be much more abundant on the Archean Earth compared to today (Kamber, 2010). Thus, if two or more microplate clusters formed in close proximity, and if plume migration or subduction zone advancement could cause one cell to merge with another, it can be envisaged that two or more microcontinents can be brought together, akin to Phanerozoic collisional orogenesis (Fig. 14b–c). Such a collision would be characterized by at least two discrete continental terranes that have been fused along a suture zone, with associated petrological (Section 3.1) and tectonic (Section 3.2) features observed in modern day collision zones. Thus, it would have been possible to produce small-scale plate tectonic-like features on the surface of the early Earth that mostly exhibited a stagnant lid regime. Given the recent surge of reports of Paleo-Proterozoic examples of subduction-related eclogite in the geological record (cf. Fig. 8), continued exploration of Archean terranes coupled with detailed thermobarometry and geochronology offer the best path forwards to illuminate whether such simulations are representative of natural processes.

6. The timing of onset of plate tectonics on Earth

The timing of onset of plate tectonics on Earth is a topic that will likely never be agreed upon by the scientific community. While many lines of evidence may be used to infer the possibility of subduction and/or independent plate motion at any given period in Earth history, few proxies are considered definitive. Indeed, while it is argued here that some of the most robust evidence for subduction comes from the metamorphic rock record, especially in the form of blueschists (Section 3.1.1) and exhumed UHP eclogites (Section 3.1.3), neither of these lithologies have been dated to be older than c. 0.9 Ga (Fig. 1). Nonetheless, this does not preclude them from having formed earlier in Earth history, but never having been exhumed to the surface, or else exhumed but completely eroded or overprinted by later tectonic activity, thus aligning with other forms of evidence supporting (steep) subduction as early as the Paleo-Proterozoic (e.g. Shirey and Richardson, 2011 and many others). It is thus of critical importance to realize that ‘the absence of evidence is not evidence of absence’ (cf. Sagan, 2011), which has been used to enforce somewhat Uniformitarianistic viewpoints of the evolution of plate tectonics in recent works. While Uniformitarianism has use in that many fundamental geologic processes observed today have presumably operated similarly throughout all of Earth history (cf. Hutton, 1795), the geodynamics of the Hadean or Early Archean Earth may simply be too far-removed to envisage (Shea, 1982).

A holistic synthesis of the arguments discussed in this review paper is provided in Fig. 15, which illustrates major secular changes in continental (Fig. 15a) and oceanic (Fig. 15b) crust, through an overview of global geodynamic regimes (Fig. 15c). The initial tectono-magmatic state of the very early Earth is likely to have been a global magma ocean (Hosono et al., 2019) of unconstrained depth (Section 1.1), capped by a thin scum-like floatation of uncertain composition. Different studies disagree on this petrological constitution, purporting that fractional crystallization and differentiation of this precursor, short-lived magma ocean produced a primary komatiitic (Reimink et al., 2016), anorhotic (Santosh et al., 2017), or silica- and potassium-rich protocrust (Boehnke et al., 2018), the latter being comparable to modern-day continents. Nonetheless, no bonafide fragments are preserved on Earth today and indications of its geochemistry and structure are restricted to rare inclusions within Hadean zircons, for example from the Jack Hills region of Western Australia (e.g. Maas et al., 1992; Hoskin, 2005; Menneneke et al., 2007; Harrison, 2009). The geological mechanisms responsible for destroying this Hadean primary crust are further unresolved, but are likely both exogenic and endogenic in nature. In the
former case, interpretations of crater densities on the surfaces of the Moon, Mercury, and Mars suggest that there was a discrete episode of increased flux of bolide impacts within the inner solar system at c. 4.2–3.9 Ga (Bottke and Norman, 2017), termed the late heavy bombardment. This process likely also induced widespread mixing, destruction, and/or resurfacing of the Earth’s Hadean crust (Marchi et al., 2014; O’Neill et al., 2020). Endogenic solutions involve global lithospheric inversions or volcanic resurfacing events (e.g., Griffin et al., 2014), such as is thought to have occurred on Venus at c. 500 Ma (Strom et al., 1994; see Section 7.1.1.). Geodynamic simulations of possible early-Earth thermo-tectonic regimes suggest that such large-scale resurfacing is plausible (e.g., Moore and Webb, 2013) and has given rise to the moniker ‘heat-pipe Earth’ as a term for describing a global stagnant-lid tectono-magmatic regime dominated by extrusive volcanism (Section 1.1: Fig. 3).

While Earth’s first continental crust may have formed during the Hadean, it is practical to omit this from discussion, as none is preserved in the geological record. Some of the Earth’s oldest preserved continental-like crustal material is exposed within the Isua Supracrustal Belt, Greenland, and has multiple radiogenic ages of c. 3.8 Ga (Moorbath et al., 1977; Boak and Dymek, 1982; Myers, 2001; Crowley, 2003). Field evidence and geochemical characteristics of TTG

Fig. 15. Summary diagram showing key changes in the secular evolution of (a) the continental crust, (b) the oceanic crust, and (c) global geodynamics discussed in this study. Curve showing calculated continental crust juvenile thickness is after Dhuime et al. (2015), that for continental growth is after Dhuime et al. (2012), and that for continental freeboard is from Bada and Korenaga (2018). The global zircon archive curve is from Roberts and Spencer (2015).
components within the Isua belt have been used by some researchers as evidence for subduction having operated at that time (e.g. Komiya et al., 1999; Polat et al., 2002; Jenner et al., 2009; Kaczmarek et al., 2016), although few attempts at lithospheric-scale numerical modeling have been able to replicate subduction in any form at such a time in Earth history. Could such a discrepancy be a result of uncertainty in mantle P, which plays a critical role in determining the mode of geodynamic regime (cf. Section 5.2)? In partial contrast with geodynamic modeling, petrological modeling suggests that the major- and trace-element characteristics of Early Archean TTG magmas are consistent with derivation from shallowly subducted oceanic crust (Palin et al., 2016b) or at the base of thickened oceanic plateau (Zhang et al., 2017) formed above mantle plumes. These results are to-date inconclusive, as similar P-T conditions are expected in each scenario, meaning that similar metabasaltic rock types (e.g. high-pressure granulite or eclogite) may form in either tectonic model. This early continental crust is thought to be notably maﬁc in composition compared to Phanerozoic continental crust (Section 2.2), and relatively thin (~18 km; Dhuime et al., 2015; Fig. 15a).

Progressive cooling of the Earth during the Archean is expected to result in a continual change in the thickness and bulk-chemistry of oceanic lithosphere generated at divergent plate margins (Section 2.1), becoming increasingly less magnesian over time (Herzberg et al., 2010; Palin and White, 2016). The buoyancy of this oceanic lithosphere is expected to decrease commensurately, thus promoting transition from a pre-plate tectonic regime to one dominated by subduction, which geodynamic models suggest would be warm and shallow in this ﬁrst instance (Fig. 15c). The absolute timing of this change as it occurs at a global scale is, of course, the matter of this discussion and a primary focus of this review. Much petrological evidence argues for this transition at some point during the Middle to Late Archean (c. 3.2–2.5 Ga: Fig. 1), and we favor interpretations that utilize bonafide petrological and/or tectonic indicators of the Wilson Cycle, including supercontinent formation (Section 3.2.4) or a sudden shift in the petrology of inclusion suites in diamonds (Section 3.3.2). Together, these indicators argue for subduction having been established at a global scale by at least c. 3 Ga (Fig. 15c), with indicators of subduction preserved in older terranes potentially representing localized events. Secular cooling and the onset of subduction-driven accretion at convergent margins also facilitated reworking of older materials and likely promoted more efﬁcient internal differentiation of the continents, transforming a semi-homogenous Early Archean continental crust to a more layered Late Archean one (cf. Dhuime et al., 2015; Hawkesworth et al., 2016). Accelerated reworking is supported by a distinct change in upper crustal composition over this c. 3.0–2.5 Ga period (Section 2.2; Tang et al., 2016).

Emergence of the continents around the Archean–Phanerozoic transition (c. 2.5 Ga: Section 2.2) and progressive steepening of subduction zones throughout the Proterozoic were both direct results of continued secular cooling of the mantle (e.g. Ganne and Feng, 2017). Decreasing mantle T would have resulted in bulk thinning of juvenile oceanic lithosphere (Fig. 15b: Herzberg et al., 2010; Weller et al., 2019) and a decrease in its MgO content, which numerical models have shown increase the effective viscosity at the oceanic lithosphere–asthenosphere boundary (e.g. Korenaga, 2013 and references therein). Ecolitization of subducted portions of this relatively low-MgO oceanic crust (Palin and Dyck, 2018) would have provided a sufﬁcient negative buoyancy to promote progressive steepening of the mean angle of subduction throughout Phanerozoic, with a seemingly critical threshold occurring at c. 0.9 Ga, when diagnostic indicators of subduction become extremely abundant in the geological record, including blueschist and UHP eclogite (Stern, 2005; Fig. 1). At this point in time in the Neoproterozoic, there is almost no doubt that subduction was a worldwide phenomenon and operated in an identical fashion to convergent margins observed on Earth today. A major curiosity in the post-Archean geological record is the preservation of HP eclogite (and one unusual occurrence of UHP garnet-pyroxenite) at c. 1.8–2.1 Ga (Figs. 8 and 15b), but a notable gap between 1.8 and 1.2 Ga (Figs. 8 and 15b). This 600-Myr period overlaps with the proposed period of worldwide tectonic quiescence—the “Boring Billion” (c. 1.8–0.8 Ga) – which is bookmarked by two major glaciation and oxygenation events (Brazier and Lindsay, 1998). The Boring Billion itself is thought to record a period of stable tectonics on Earth where floral and faunal diversity stalled, although several major tectonic events are known to have occurred, including assembly of the Rodinia supercontinent (c. 1.23 Ga: Fig. 1) and major mantle plume-derived magmatism in central Australia (c. 1.2 Ga: Gorczyk et al., 2015). Whether this period represents a transitional state in global geodynamic regime – from a previously established mobile-lid regime to a new post-Archean stagnant-lid regime, with transition back again – or whether the notable paucity of evidence for subduction documents pervasive overprinting and reworking is unclear. More detailed study into rocks of this period is needed.

7. Future directions

Here, we outline key areas of research that hold much promise for developing our understanding of the initiation of plate tectonics on Earth. Many of these concepts necessarily cross disciplinary boundaries, and no single researcher is equipped to handle any one alone! Collaborative efforts between research groups with different (but complementary) expertise is required for signiﬁcant advances to be made.

7.1. Extraterrestrial tectonics

Earth is the only planet in our solar system thought to have developed plate tectonics, although examination of our neighboring terrestrial bodies can shed much light on the likely tectonic regime that existed beforehand, as discussed in Section 1.2. With continual advances being made in our technical ability to deliver analytical equipment to the surfaces of other planets in the inner solar system (Cutts et al., 2007; Bajracharya et al., 2008; Päun, 2015; Trebi-Ollennu et al., 2018), or else to allow spacecraft and probes to perform orbital or fly-by investigations of more distant bodies (Hu et al., 2012; Phillips and Pappalardo, 2014; Stern et al., 2015; Lunine, 2017), we are assuredly now entering a new age of space exploration and discovery that will have unprecedented feedbacks on our understanding of the early Earth (Lowman Jr, 1989).

7.1.1. Venus

Venus is remarkably similar to Earth in terms of its size and density, exists at a similar distance from the sun, and exhibits a relatively young surface geology (e.g. Smrekar et al., 2018), which suggests comparable interior geodynamics. Indeed, many features exposed on the surface of Venus are morphologically similar to those characteristic of terrestrial plate margins, including transform faults (Ford and Pettengill, 1992), abyssal hills on MOR-like structures (Head and Crumpler, 1987; McKenzie et al., 1992), and trench-like features with similar curvature and asymmetry as ocean–ocean plate margins on Earth (Sandwell and Schubert, 1992; Schubert and Sandwell, 1995). In contrast, many other features on the Venusian surface more closely resemble those expected to form in intraplate environments, such as above the head of a mantle plume, including >1000-km-diameter shield volcanoes (Ernst and Desnoyers, 2004; Hansen and Olive, 2010), lava ﬂow ﬁelds of scales comparable to terrestrial ﬂood basalts (Lancaster et al., 1995), and smaller-scale volcanic ‘pancake’ domes of silica-rich lava (Fink et al., 1993; Stofan et al., 2000). Indeed, at least four regions of the Venusian surface are thought to expose recent basaltic lava ﬂows, with gravity and topography data in these locations consistent with active mantle plumes being present at depth (Kiefer and Hager, 1991; Simons et al., 1997). Given that crater counting suggests a global resurfacing event on Venus at c. 300 Ma (Strom et al., 1994), all of these apparent plate
boundary and intraplate tectonic features must be younger, and so likely formed coevally with one another. This hypothesis then implies localized subduction initiation, as opposed to a global network of plate boundaries, which itself may have been a transitional state for the early Earth (Moyen and van Hunen, 2012).

During recent analogue modeling of plume-induced subduction on Venus, which attempted to reproduce the structural features observed around Artemis Corona, Davaille et al. (2017) reported that hot mantle plumes impinging on the underside of the Venusian lithosphere caused tensile fractures to develop, which subsequently acted as conduits for basaltic eruptions onto the surface, akin to large igneous provinces on Earth. Spreading, loading, and flexure of newly formed oceanic-like lithosphere eventually led to subduction-like behavior along arcuate trenches. Similar results have been produced for the early Earth using geodynamic modeling (Gerya et al., 2015) and suggest that mantle plumes may be likely drivers for subduction initiation (Ueda et al., 2008; Burov and Cletetpinh, 2010).

The cause of catastrophic global resurfacing on Venus at c. 300 Ma is debated and represents a significant "loss" of potential knowledge of the early evolution of the inner solar system. Various hypotheses have been put forward, which may readily be separated into cyclical and single-event processes. Parmentier and Hess (1992) suggested that competition between compositional stratification and thermal buoyancy may cause episodic overturn of the upper mantle, with Turcotte (1993) suggesting that this restructuring would occur over periods of ~500 Myr and would be characterized by long periods of quiescence followed by short periods of active plate tectonics. By contrast, thermo-mechanical modeling conducted by Solomatov and Moresi (1996) and Reese et al. (2007) suggests that the unusually thick lithosphere preserved today (200–400 km) may have formed due to a transition from a mobile lid regime to a stagnant lid regime immediately prior to c. 300 Ma, thus marking the onset of the terminal stagnant lid phase of silicate planetary evolution (Fig. 3). In these models, sublithospheric small-wavelength convection stops and conductive thickening of the lid suppresses the ability for mantle melts to reach the surface. Ultimately, Earth will suffer the same fate.

7.1.2. Mars

The scientific value of Mars for understanding the geodynamics of crust-forming processes in a stagnant-lid tectonic regime cannot be understated. Mars is Earth’s closest planetary neighbor and so has been the target of over 50 fly-by, orbital, and surface exploration missions in the past few decades (Snyder and Moroz, 1992; Levine et al., 2010; Münévar, 2019). Mars is notably smaller than Earth, and thus cooled at a much greater rate than our home planet (Schubert and Spohn, 1990; Wade et al., 2017). Today, despite evidence for recent (< 40–100 Ma) volcanism on its surface (Lucchitta, 1987; Hartmann et al., 1999; Hauber et al., 2011), Mars exhibits relatively subdued seismic activity (Hansen, 2000; Giardini et al., 2020), although there is abundant evidence for active tectonics, metamorphism, and magmatism having shaped its surface soon after formation (Ingersoll, 1970; McSween Jr., 2015).

Mars’ surface shows a pronounced hemispheric dichotomy (Smith et al., 1998), with low-elevation northern plains comprised of thin (~32 km) mafic crust and high-elevation southern highlands, which are much thicker (~58 km). The boundary between both domains contains landforms that appear to have been shaped by the flow of ice and/or water, indicating that the northern plains may at one time have hosted an ocean of liquid water (Baker et al., 1991; Head et al., 1999; Di Achille and Hynek, 2010; Citron et al., 2018). The origin of this hemispheric dichotomy is much debated, and hypotheses consider endogenic (e.g. mantle plume-driven) and exogenic (e.g. bolide impacts) factors (Watters et al., 2007). In the case of an endogenic driving force, planetary-scale geodynamic modeling of early Mars suggests that a degree-1 mantle convection profile, where one hemisphere (i.e. the south) hosts an upwelling in the Martian mantle and the other hemisphere (i.e. the north) hosts a downwelling, could be responsible for its formation (Zhong and Zuber, 2001). In this scenario, upwelling in the northern hemisphere could have acted to erode away the base of the crust, potentially redistributing it in the opposite hemisphere, or else upwelling in the southern hemisphere may lead to a greater degree of melting and extensive fracturing, producing outpourings of lava (akin to terrestrial large igneous provinces) and a thicker crust above the plume (Roberts and Zhong, 2004). Exogenic hypotheses include a single, giant impact (Wilhelms and Squyres, 1984; Frey and Schultz, 1988) that caused catastrophic delamination of weakened lower crust in the north, implying that the ~58-km thickness recorded in the south represents a primary crustal architecture. Discussion of the validity of any particular hypothesis is far beyond the scope of this work, although ancient volcanism on the Tharsis Plateau has been attributed to mantle plume activity, such as is expected to have characterized the early Archean on Earth (cf. Fig. 3), and so many useful parallels can be drawn between Mars’ evolution and that of the pre-plate tectonic Earth (Mège, 2001).

The southern highlands of Mars are of particular interest for theorizing the past operation of plate tectonics on the planet. The occurrence of large, linear crustal remnant magnetic anomalies with alternating polarities in this region (Acuña et al., 1999; Connerney et al., 1999) suggests that Mars sustained an intrinsic and dynamic magnetic field early on in its history. These magnetic anomalies are weak (or absent) adjacent to large impact basins and regions of volcanic activity, indicating erasure by thermal events. Notably, the northern plains lack such anomalies almost entirely. These Martian anomalies superficially resemble magnetic stripes that form via seafloor spreading on Earth today (Vine and Matthews, 1963); however, these extraterrestrial examples are around ten-times wider than those found on Earth and lack a well-defined spreading center (Connerney et al., 2001). Such features may be interpreted to record plate tectonic-like behavior characterized by either faster spreading and/or slower magnetic-field reversal rates, although other mechanisms have been proposed, including dike intrusion (Nimmo, 2000) and the lateral accretion of multiple micro-continentals (Fairén et al., 2002) akin to the Northern Cordillera on Earth today. In either of the latter cases, significant horizontal plate motion is still required.

One additional theory of note put forward to support the operation of plate tectonics early in Martian history relates to the Valles Marineris trough system, which reportedly hosts a large-scale (> 2000-km-long and 50-km-wide) strike-slip fault zone, resembling transform faults that define transverse plate boundaries on Earth (Yin, 2012). An apparent sinistral offset of ~150 km of an ancient impact basin along this transtensional fault zone was identified by Yin (2012) from satellite imagery, and the absence of deformation in both adjoining crustal blocks was suggested to show that they were rigid at the time of faulting. In a similar vein to the debate surrounding magnetic stripes in the southern highlands, the scale of the Valles Marineris trough system is much larger than any equivalent examples seen on Earth, although a total displacement of ~150 km is almost identical in magnitude compared to terrestrial transform faults, such as the San Andreas fault, USA (Sieh and Jahns, 1984; Revenaugh and Reasoner, 1997), or Karakoram fault, Ladakh Himalaya (Robinson, 2009; Wang et al., 2012). Nonetheless, competing theories for formation (or accentuation) of this trough system have been proposed, including graben (rift) formation due to deformation related to magmatic overpressure in the Tharsis region (Andrews-Hanna, 2011), catastrophic flooding, or collapse due to withdrawal of subsurface magma (McCauley et al., 1972). Further robotic and/or manned exploration missions, with or without sample return, present the best hope of deciphering Mars’ early tectonic history, and so shed light on that of the Earth.

7.1.3. Exoplanets

While our ability to locate and characterize the orbital, physical, and/or basic geochemical properties of planets outside of our solar
system (exoplanets) has improved significantly in recent years (Borucki et al., 2010; Schneider et al., 2011; Miller et al., 2014; Pepe et al., 2014), it is impossible at this time to directly infer the operation of plate tectonics on such a body with any level of confidence. Indeed, such a discovery would make the exoplanet a prime candidate for harboring intelligent life (cf. Stern, 2016; Tosi et al., 2017), assuming extraneous factors are favorable, such as location within the circumstellar habitable zone (Abe et al., 2011).

In recent years, there has been a surge of interest in applying thermo-mechanical modeling (Foley et al., 2012; Noack and Breuer, 2014) and petrological phase equilibrium modeling to exoplanet interiors (Unterborn et al., 2014; Dorn et al., 2015) to infer the possibility of mantle convection. Indeed, it has even been proposed that the development of plate tectonics is inevitable on super-Earths (Valencia et al., 2007), which have masses ~2–10 times that of our home planet (Charbonneau et al., 2009). Exoplanets with masses significantly greater than Earth are likely to have gas- or ice-rich outer shells, such as the Jovian s in our solar system. In the former case of the gas giants, the lack of well-defined solid surfaces precludes any kind of pseudo-plate-like behavior (Lunine, 2001), although convection in nitrogen-ice sheets on Sputnik Planum, Pluto, has been suggested to represent a type of “sluggish-lid” behavior (McKinnon et al., 2016). Indeed, several types of stagnant- and mobile-lid tectonic features have been reported from small bodies in our solar system, including Io (Bland and McKinnon, 2016; Moore et al., 2017) and Europa (Howell and Pappalardo, 2019), and potentially also Enceladus (Kargel and Pozio, 1996; Gioia et al., 2007), Triton (Prockter et al., 2005), and Titan (Collins et al., 2009). While exoplanets of similar masses to these Jovian satellites are too small to be identified by currently available detection techniques (Fischer et al., 2015), they very likely exist and may one day hold great scientific value for deciphering the early history of the Earth.

7.2. Integrated modeling of the early Earth

Great strides have been made in recent years in the capabilities of both geodynamic (Section 3.4.1) and petrological (Section 3.4.2) modeling as tools with which to characterize the tectonic evolution of the Earth (cf. Gerya, 2019). Each technique can provide critically important, but independent, constraints on the possible thermal characteristics of the Archean and Proterozoic mantle, and associated continental and/or oceanic crust (Diner et al., 2005; Nagel et al., 2012; Palin and White, 2016; Nicoll and Dyck, 2018; Wiemer et al., 2018; Gardiner et al., 2019). Early attempts to combine both techniques met with limited success, as an overwhelming amount of computational power is required to effectively simultaneously correlate tens-of-kilometer-scale structural deformation with the relatively fine detail of meter- or centimeter-scale mineralogical change driving metamorphic reaction and melt generation. Further, it has also only become computationally possible in recent years to expand two-dimensional simulations into a more realistic three-dimensional framework, thus allowing examination of cross sections and surficial spatial relationships well documented in exhumed Archean terranes (e.g. dome-and-keel architecture; Fischer and Gerya, 2016a). Continual improvement to thermodynamic databases (e.g. Holland and Powell, 2011) and activity–composition relations used to characterize metamorphism and anatexis in mafic and ultramafic lithologies (e.g. Holland et al., 2018) representative of subducted oceanic crust (e.g. eclogite) or adiabatically decompressed mantle now allow forward modeling to be fully integrated with lithospheric scale thermo-mechanical simulations (Rozel et al., 2017; Piccolo et al., 2019).

A relatively underused petrological modeling technique that has much relevance to continent formation on the early Earth is that of reactive transport between melt fractions as they ascend through the crust and potentially hybridize in composite magma chambers. Preliminary investigations of magma-mixing in Archean terranes have been conducted in recent years, but only in-depth investigations of the petrological and geodynamic (e.g. rheological) effects of (pseudo)real-time melt transfer through the crust or mantle can come close to approaching reality. For example, arguments for steep subduction and slab melting during the Archean have conventionally relied on the requirement of a plagioclase-free eclogite-facies metamorphic source rock (e.g. Section 3.4.2), with high Mg# and Cr contents in so-called high-pressure TTGs interpreted to represent component exchange during ascent through the ultramafic mantle wedge (Rapp et al., 2003). While subsequent studies have shown that the geochemical signatures in Archean high-pressure TTGs can be replicated without steep subduction, it seems necessary that some interaction with the ultramafic mantle is required (Martin, 1999; Moyen, 2011). Effective constraints on residence or transport times through this wedge derived from reactive transport calculations may provide new constraints supporting or refuting the possibility of subduction-driven continental crust formation on the early Earth entirely, although a new generation of integrated petrological–geodynamic models will be required to do so.

7.3. Concluding remarks

Many research groups are already strongly invested in particular interpretations of secular change through Earth history, and it is possible that the details provided in this review are unlikely to change some hearts or minds. Nonetheless, the authors hope that it represents a somewhat concise introduction to the state of play at the turn of the decade, and we are excited to see how these scientific opinions may change over the next 10, 25, or 50 years! As so eloquently stated by Hoekykas (1963), we may be unfortunately hindered in our ability to discern what the Hadean, Archean, or even Proterozoic Earth may have looked like, given our vast knowledge of how the Phanerzoic Earth has evolved: “By explaining past changes by analogy with present phenomena, a limit is set to conjecture, for there is only one way in which two things are equal, but there is an infinity of ways in which they could be supposed different.” In this case, looking and working outside of the box may be of critical importance to making advances in this field, which we are now being given the opportunity to do so with the recent resurgence of interest in exploration of our neighboring rocky planets and moons. It truly is a Golden Age to study petrology, tectonics, and comparative planetology.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank editor Arturo Gomez-Tuena, Andrea Festa, and one anonymous reviewer for detailed, thorough, and thought-provoking sets of comments on our manuscript that led to significant improvement during revision. In addition, the first author would like to thank many colleagues for insightful discussions on Archean geodynamics throughout the past five years — in particular, Dick White, Owen Weller, Brendan Dyck, Andrea Piccolo, and Boris Kaus. Although we have attempted to credit all those who have contributed significantly to the field of secular change and early Earth dynamics, we may not have succeeded due to vast amount of literature that is available on the topic. Failure to do so is but simple oversight and not deliberate omission.

References

Lacer...
Pacific Section S.E.P.M. pp. 31–50.
Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt. Geosci. Front. 6, 137–146.

